
ADAPTIVE QUERY PROCESSING IN DATA GRIDS

Chunjiang Zhao1, Junwei Cao2,3*, Huarui Wu1,4, Weiwei Chen5, Xiang
Sun1, Wen Zhang2,5 and Yong Hou6

1National Engineering and Research Center for Information Technology
for Agriculture, Beijing 100097, P. R. China

2Research Institute of Information Technology, Tsinghua University,
Beijing 100084, P. R. China

3Tsinghua National Laboratory for Information Science and Technology,
Beijing 100084, P. R. China

4School of Computer Science, Beijing University of Technology, Beijing
100022, P. R. China

5Department of Automation, Tsinghua University, Beijing 100084, P. R.
China

6College of Information Science and Engineering, Xinjiang University,
Urumchi 830046, P. R. China

*Corresponding email: jcao@tsinghua.edu.cn

Abstract

The data grid integrates wide-area autonomous data sources and provides users with a
unified data query and processing infrastructure. Adapt data query and processing is
required by data grids to provide better quality of services (QoS) to users and
applications in spite of dynamically changing resources and environments. Existing
AQP techniques can only meet partially data grid requirements. Some existing work is
either addressing domain-specific or single-node query processing problems. Data
grids provide new mechanisms for monitoring and discovering data and resources in a
cross-domain wide area. Data query in grids can benefit from these information and
provide better adaptability to the dynamic nature of the grid environment.

In this work, an adaptive controller is proposed that dynamically adjusts resource
shares to multiple data query requests in order to meet a specified level of service
differentiation. The controller parameters are automatically tuned at runtime based on
a predefined cost function and an online learning method. Simulation results show
that our controller can meet given QoS differentiation targets and adapt to dynamic
system resources among multiple data query processing requests while total demand
from users and applications exceeds system capability.

1 Introduction

Query processing (QP) is an essential technology for traditional database management
systems [1]. QP aims to transform a query in a high-level declarative language (e.g.
SQL) into a correct and efficient execution strategy. Query optimization [2] is one of
key techniques to achieve high performance data query using cost estimation in
various types of database systems, e.g. multimedia, object-oriented, deductive,
parallel, distributed databases, heterogeneous multidatabase systems, fuzzy relational

databases, and so on [3].

Traditional query processing in database management systems is usually carried out in
two phases: optimization and execution. While the details of optimization have been
improved over the years, the basic approach of optimization followed by execution
has not been changed. In this way, optimization could only be carried out in a
coarse-grained way, since during the execution environmental changes could not be
identified and feedback to implement an improved optimization. If data query
processing has to be carried out in a long time, QP performance may not satisfy user
requirements. This is why adaptability of QP is required.

Adaptive Query Processing (AQP) [4] is becoming more popular in recent years
where optimization is required to be carried out during execution. The main reason is
the emergence of new domains, e.g. peer-to-peer (P2P) computing and grid
computing, where it is nearly impossible to use traditional query processing, because
of lack of reliable performance statistics or the dynamic nature of data and
environments. Two styles of adaptation in AQP is summarized in [5]: plan-change
based adaptation provides a well-defined query execution plan but allow the plan to
be changed during query processing; tuple-routing based adaptation views query
processing as routing of tuples through operators and effects plan changes by
changing the order in which tuples are routed.

P2P computing provides a dynamic and data sharing environment, where adaptability
of data access and query is implemented by optimal selection in peers of data
providers. All data requester at the same time become a data provider after its request
is fulfilled. Due to the absence of a central control in a P2P environment, further
fine-grained adaptability cannot be implemented. In this work, we only address AQP
issues in data grids where AQP is required for distributed data access and fine-grid
resource management and scheduling.

Grid computing aims for integration and sharing geographically distributed resources
in multiple management domains [6]. While the grid is originally motivated by
computational power sharing, data management turns out to be an essential service
since large volumes of data processing are involved in most grid applications. Data
grids [7] provide a transparent and seamless infrastructure for cross-domain
distributed data access, leading to the following challenges for data query processing:

 Performance of grid resources may change dramatically over time, since most
these resources are shared and not dedicated to the grid.

 QoS requirements of data query processing from grid applications may also
change over time, since most grid applications last for a long time with large
amount of data processing involved.

Existing AQP techniques can only meet partially data grid requirements. Some
existing work is either addressing domain-specific or single-node query processing
problems [8]. Data grids provide new mechanisms for monitoring and discovering
data and resources in a cross-domain wide area. Data query in grids can benefit from
these information and provide better adaptability to the dynamic nature of the grid
environment.

In this work, an adaptive controller is proposed that dynamically adjusts resource

shares to multiple data query requests in order to meet a specified level of service
differentiation. The controller parameters are automatically tuned at runtime based on
a predefined cost function and an online system identification method. Simulation
results show that our controller can meet given QoS differentiation targets and adapt
to dynamic system resources among multiple data query processing requests. By
carefully tuning weighting parameters in the cost function, the controller can make a
good balance between adaptability and stability.

The rest of this article is organized as follows: detailed research background of our
work is introduced in Section 2; Section 3 provides a formal representation of the
issue to be addressed in this work; corresponding adaptive controller is described in
Section 4; Experimental evaluation results are included in Section 5; and the article
concludes in Section 6.

2 Research Background

2.1 AQP

As mentioned above, AQP is required in scenarios where optimization is carried out
during execution, e.g. continuous queries (CQs) and data streams [9]. In this section, a
brief introduction to several existing projects is given below.

CQs are persistent queries that allow users to receive new results when they become
available, and they need to be able to support millions of queries. NiagaraCQ [10], the
continuous query sub-system of the Niagara project, a net data management system
being developed at University of Wisconsin and Oregon Graduate Institute, is aimed
to addresses this problem by grouping CQs based on the observation that many web
queries share similar structures. NiagaraCQ supports scalable continuous query
processing over multiple, distributed XML files by deploying the incremental group
optimization ideas. A number of other techniques are used to make NiagaraCQ
scalable and efficient:

 NiagaraCQ supports the incremental evaluation of continuous queries by
considering only the changed portion of each updated XML file and not the entire
file.

 NiagaraCQ can monitor and detect data source changes using both push and pull
models on heterogeneous sources.

 Due to the scale of the system, all the information of the continuous queries and
temporary results cannot be held in memory. A caching mechanism is used to
obtain good performance with limited amounts of memory.

The Telegraph implementation explores novel implementations for adaptive CQ
processing mechanisms. The next generation Telegraph system, called TelegraphCQ
[11], is focused on meeting the challenges that arise in handling large streams of
continuous queries over high-volume, highly-variable data streams. Specifically,
TelegraphCQ is designed with a focus on the following issues:

 Scheduling and resource management for groups of queries
 Support for out-of-core data
 Variable adaptivity
 Dynamic QoS support

 Parallel cluster-based processing and distribution.

Researchers in Stanford University developed a general-purpose DSMS, called the
STanford stREam dAta Manager (STREAM) [12], for processing continuous queries
over multiple continuous data streams and stored relations. STREAM consists of
several components:

 The incoming Input Streams, which produce data indefinitely and drive query
processing;

 Processing of continuous queries typically requires intermediate state, i.e.,
Scratch Store;

 An Archive, for preservation and possible offline processing of expensive
analysis or mining queries;

 CQs, which remain active in the system until they are explicitly reregistered.

Eddy [13] is a query processing mechanism continuously reorders operators in a
query plan as it runs. By combining eddies with appropriate join algorithms, the
optimization and execution phases of query processing is merged, allowing each tuple
to have a flexible ordering of the query operators. This flexibility is controlled by a
combination of fluid dynamics and a simple learning algorithm. Eddies are typical
implementation of tuple-routing based adaptation.

Traditional query optimization can be successful is partially due to the ability to
choose efficient ways to evaluate the plan that corresponds to the declarative query
provided by the user. AQP merges optimization and execution because well-defined
query plan cannot be achieved beforehand, especially for continuous queries and
long-running data streaming.

2.2 AQP and the Grid

The grid brings more challenges for distributed data query processing. For example,
information about data properties is likely to be unavailable, inaccurate or incomplete,
since the environment is highly dynamic and unpredictable. In fact, in the grid, the
execution environment and the set of participating resources is expected to be
constructed on-the-fly. Existing solutions for AQP are either domain specific or focus
on centralized, single-node query processing [14], so cannot meet adaptability
demands of query processing on the grid. In this section, several efforts on AQP in the
grid are given below.

Distributed query processing (DQP) is claimed in the work by University of
Newcastle and University of Manchester to be important in the grid, as a means of
providing high-level, declarative languages for integrating data access and analysis. A
prototype implementation of a DQP system, Polar* [15], is developed running over
Globus [16] that provides resource management facilities. The Globus components
are accessed through the MPICH-G [17] interface rather than in a lower level way. To
address the DQP challenge in a grid environment, the non-adaptive OGSA-DQP1
system described in [18] and [19] has been enhanced with adaptive capabilities.

A query optimization technique, Grid Query Optimizer (GQO) [20], aims to improve
overall response time for grid-based query processing. GQO features a resource
selection strategy and a generic parallelism processing algorithm to balance

optimization cost and query execution. GQO can provide better-than-average
performance and is especially suitable for queries with large search spaces.

In the work described in [21], a data grid service prototype is developed that aims at
providing transparent use of grid resources to data intensive scientific applications.
The prototype targets three main issues

 Dynamic scheduling and allocation of query execution engine modules into grid
nodes;

 Adaptability of query execution to variations on environment conditions;
 Support to special scientific operations.

Based on the ParGRES database cluster, a middleware solution, GParGRES [22],
exploits database replication and inter- and intra-query parallelism to efficiently
support OLAP queries in a grid. GParGRES is designed as a wrapper that enables the
use of ParGRES in PC clusters of a grid (Grid5000 [23]). There are two levels of
query splitting in this approach: grid-level splitting, implemented by GParGRES, and
node-level splitting, implemented by ParGRES. GParGRES has been partially
implemented as database grid services compatible with existing grid solutions such as
the open grid service architecture (OGSA) and the web services resource framework
(WSRF). It shows linear or almost linear speedup in query execution, as more nodes
are added in the tested configurations.

ObjectGlobe [24] is a distributed and open query processor for Internet data sources.
The goal of the ObjectGlobe project is to establish an open marketplace in which data
and query processing capabilities can be distributed and used by any kind of Internet
application. Furthermore, ObjectGlobe integrates cycle providers (i.e., machines)
which carry out query processing operators. The overall picture is to make it possible
to execute a query with unrelated query operators, cycle providers, and data sources.
Main challenges include privacy and security enduring. Another challenge is QoS
management so that users can constrain the costs and running times of their queries.

Processing of multiple data streams in grid-based peer-to-peer (P2P) networks is
described in [25]. Spatial matching, a current issue in astrophysics as a real-life
e-Science scenario, is introduced to show how a data stream management system
(DSMS) can help in efficiently performing associated tasks. Actually, spatial
matching is a job of information fusion across multiple data sources, where
transmitting all the necessary data from the data sources to the data sink for
processing (data shipping) is problematic and in many cases will not be feasible any
more in the near future due to the large and increasing data volumes. The promising
solutions are dispersing executing operators that reduce data volumes at or near the
data sources (query shipping) or distributing query processing operators in a network
(in-network query processing). In-network query processing, as employed in the
StreamGlobe [26] system, can also be combined with parallel processing and
pipelined processing of data streams, which enables further improvements of
performance and response time in e-Science workflows.

An adaptive cost-based query optimization is proposed in [27] to meet the
requirements of the grid while taking network topology into consideration.

2.3 Control Theory for Adaptability

There have been many works on the implementation of adaptability of computing
systems using control theory. For example, variations of proportional, integral, and
derivative (PID) control is applied in [28] and [29] for performance optimization and
QoS supports of Apache web servers. The linear quadratic regulator (LQR) is adopted
in [30] for application parameter tuning in web servers to improve CPU and memory
utilization. Fuzzy control is utilized in [31] for IBM Lotus Notes email servers to
improve business level metrics such as profits. Adaptive control is used in [32] to
improve application level metrics such as response time and throughput for three-tier
e-commerce web sites. In the work described in [33], an adaptive multivariate
controller is also developed that dynamically adjusts resource shares to individual
tiers of multiple applications in order to meet a specified level of service
differentiation. This work has the similar motivation to maintain QoS differentiation
at a certain level with our work, though at a different context of virtualization based
host sharing.

Traditional query processing research is focused on fine-grained adaptability within a
single node or database. As mentioned in Eddies [13], eddies can be used to do tuple
scheduling within pipelines, since they can make decisions with ongoing feedbacks
from the operations they are to optimize. The work described in this article is focused
on higher level coarse-grained data query processing optimization in a distributed data
grid environment. Adaptability is achieved using feedbacks from real-time outputs of
QoS levels of different applications.

3 Problem Statement

In this work, we consider a data grid query processing scenario described in Figure 1.
A data grid is usually composed with many nodes, each serving a different dataset. If
data replication strategies are used, different nodes can serve the same dataset, which
is out of the scope of this work. A data grid application, e.g. scientific data analysis
and processing, is in general a pipeline of tasks, each processing a different dataset.
Users send requests to the grid for data query processing, each with different levels of
priority corresponding to different levels of QoS requirements.

Data Grid Node 1 Data Grid Node 2 Data Grid Node N

QP 1/Task 1 QP 1/Task 2 QP 1/Task N QP Request 1

QP 2/Task 1 QP 2/Task 2 QP 2/Task N QP Request 2

QP M/Task 1 QP M/Task 2 QP M/Task N QP Request M

Figure 1 Query Processing in a Data Grid

In general, a data grid node is composed with large storage facilities and
corresponding query processors, serving multiple QP requests. One of the key

characteristics of the grid is that all nodes are shared instead of dedicated to the grid,
so the available capacity of QP of a node varies over time. A grid node always gives
highest priority to local users (resource owners) before sharing resources with grid
users. When demand from all QP requests from grid users exceeds the total available
capacity of a node, the node becomes saturated and cannot meet QoS requirements of
all QP requests. In this situation, since different grid users have different priorities and
QoS requirements, it is desired to keep QoS differentiation among multiple QP
requests.

Besides that multiple QPs are sharing one node to access a same dataset, different
tasks of one QP on different nodes are also correlated with each other. For example,
some scientific data analysis applications are pipelines of tasks, each looping through
one dataset. After each loop of a task, the results are transferred to the next task for
further data query and processing. The more resource located to a task, the more data
query processing loops can be fulfilled, the higher QoS level can be achieved for a
request. In order to achieve a higher end-to-end QoS, QoS levels of each tasks in an
application pipeline have also to be coordinated. Reducing resource allocation to one
task of an application leads to reduced load going to the next task in the pipeline.
Such dependencies have also to be captured.

Let N be the number of datasets and tasks involved in a certain data grid application,
each located at one data grid node. The total processing capacity of the node i, pi
(i=1,2,……,N), can be normalized up to 100%. Let M be the number of concurrent
requests sent from different users with different QoS requirements.

Let tij be the resource allocation for the task i of the request j. Since the total
processing capacity of the node i is limit:

)1(
1

Nipt i

M

j
ij ≤≤=∑

=

,

there are totally (M-1)*N such independent variables.

Let yj (j=1,2,……,M) be the normalized end-to-end QoS ratio for the request j. The
desired QoS ratio for the request j is represented as Qj (j=1,2,……,M). Since there is:

1
1

=∑
=

M

j
jy ,

there are totally M-1 independent outputs.

The major issue we are trying to address in this work is to find appropriate tij, for all
i’s and j’s, there is:

)11(−≤≤= MjQy jj .

4 The Adaptive Controller

The problem described in Section 3 can be solved using existing methods in control
theory. As shown in Figure 2, a closed-loop control system is designed between user
requests and the data grid to determine the overall resource allocation scheme tij.

Optimal
Controller

Data
Grid

System
Identification

Q y t

Figure 2 The Adaptive Controller for Query Processing in a Data Grid with

Online System Identification Supports

In order to maintain QoS ratios for each request, the system has to figure out the
relationship between the resource allocation scheme and QoS ratios. This can be
represented using the linear, auto-regressive MIMO (multiple inputs and multiple
outputs) model and model parameters can be determined using online system
identification. The actual optimal controller generates the optimal resource allocation
scheme based on estimated model parameters and a predefined cost function. These
are introduced in details below.

4.1 The Online System Identification

Composed with M users and N nodes, the system can be modeled using the linear,
auto-regressive MIMO. The use of a MIMO model allows us to capture interactions
and dependencies among data nodes for different application tasks. For example,
reducing resource utilization for one QP task on a certain grid node will increase
resource allocation for other QP tasks on the same node, and may reduce the load
going into the next node of the same QP request. Such dependencies cannot be
captured by individual SISO (single input single output) models. The MIMO model
enables the controller to make tradeoffs between different QPs and their tasks when
the system total demand from users’ QP requests exceeds system capability. To
simplify the problem, the system model is written using the ARMAX
(autoregressive-moving average with exogenous inputs) model with multiple inputs
and single output, i.e. M=2:

)()()1()()()(keqCktqBkyqA +−=
n

nqAqAqA −− −−−= L1
11)(

n
n qBqBqB −
−

− ++= 1
1

0)(L
n

nqCqCqC −− +++= L1
11)(

The values of above parameters may or may not change as system conditions and
workload change. It is difficult to determine these values to represent all cases
beforehand. Therefore, a self-learning approach is preferred where model parameters
are estimated online and updated whenever new data has become available. In this
work, the Matlab System Identification Toolbox is used to resolve system parameters
online. In general, the order of the system is usually low in computer systems [34],
which can be defined offline in advance.

For the convenience of computing, we rewrite this model to be:

)1()()1(++=+ kekXky φ ,
where

][110 nn AABBX LL −=
TTTTT nkykynktktk)]1()()1()([)(+−+−= LLφ

For the sake of processing, we define:
TTTTT nkykynktktk)]1()()1()1(0[)(~

+−+−−= LLφ
We use an ARMAX model and its corresponding estimator to identify the parameter
matrix X, as provided by combing matrixes A and B.

4.2 The Linear Quadratic Optimal Controller

The optimal goal of the adaptive controller is for the output y(k) to follow the
reference input Q(k) as close as possible, as defined in Section 3. Note that the
required QoS level from users may change over time. Meanwhile, we penalize large
changes in resource allocation variables t(k). Here we adopt the following cost
function, using W and P to weight these two optimal goals, respectively:

{ }22)1()(()()1((−−+−+= ktktPkQkyWEJ

The following derivative is zero when the cost function J is at its minimum:

0
)(
=

∂
∂

kt
J .

The derivation of the control law below is adapted from the controller synthesis in
[33]. Note that X(k) and B0 are system identification results obtained using the
ARMAX model estimator described in the last section.

()() () ()())1()(~)()()(* 0

1

00 −+−+=
−

kPtPkkXkQWWBPPWBWBkt TTTT φ

5 Performance Evaluation

As an example of the shared data grid environment presented in Section 3, we present
the experimental evaluation results of our controller design using a two-tier data grid
application.

5.1 Simulation Environment

We develop a simulation environment using Matlab, which provides sufficient math
functions. In this simulation environment, M=2 and N=2, so that the controlled system
is a two-input-one-output system to simplify the problem. The input variables are
t(k)=[t1(k) t2(k)]T, each denoting resource allocation for a sub-task of an application. In
our models, the two nodes have similar parameters of transfer functions, and therefore
the resources would be similar.

5.2 Experimental Results

The experimental results included in this section illustrate clearly the effectiveness of

our control method and the impact of W and P on control performance. In each
experiment, we set the reference output Q(k) as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤<
≤<
≤<
=

=

300200,5
200100,15

1000,10
0,0

)(

k
k

k
k

kQ
,

in order to observe the tracking performance of the actual system output. As shown in
Figure 3, the output y(k) can follow up with Q(k) in less than 10 steps. In most cases,
inputs of this system represent the resource (usually CPU and memory consumption)
allocated to an application. Figure 3 also shows the two inputs and target output are
positively related, demonstrating a physical fact that QoS will improve with the
increase of allocated resources.

Figure 3 Tracking Performance of the Output and the Variation of Inputs with
W=1 and P=I

To further explore characters of our control method, we select different weights W
and P to observe their impacts on control performance. Figure 3 shows the tracking
performance of the output and the variation of two inputs with W=1 and P=I. As
shown in Figure 4 with W=0.4 and P=I, the decrease of W and relative increase of P
will smooth the curves of both output and inputs, since P serves as a weight matrix of
the continuity of inputs (and thus output). The relative decrease of W leads to a slower
tracking speed for the actual system output compared with the reference output.

Figure 4 Tracking Performance of the Output and the Variation of Inputs with
W=0.4 and P=I

What’s more, W is the weight parameter of the gap between the reference output and

current output. Therefore, curves in Figure 5 with a relatively higher W compared to
Figure 3 are steeper at the point of change. In actual systems, fast tracking may lead to
instability, as shown in Figure 5. Also more burrs occur as a result of relatively lower
P and less continuity of curves. In order to obtain a stable and fast tracking
performance, matrixes W and P should be set in a specified zone.

Figure 5 Tracking Performance of the Output and the Variation of Inputs with
W=1.4 and P=I

6 Conclusions

In this work, we address the connection of AQP and Data Grids, where AQP is
required to provide better quality of services (QoS) to users and applications in spite
of dynamically changing resources and environments in a data grid. Existing AQP
techniques are either addressing domain-specific or single-node query processing
problems.

To address the data query challenge in data grids, we propose an adaptive controller
that dynamically adjusts resource shares to multiple data query requests in order to
meet a specified level of service differentiation. The controller parameters are
automatically tuned at runtime based on a predefined cost function and online system
identification. The cost function considers both output tracking speeds and system
stability.

A simulation environment is developed using Matlab to evaluate our controller design.
Experimental results show that our controller can meet given QoS differentiation
targets and adapt to dynamic system resources among multiple data query processing
requests. By carefully tuning weighting parameters in the cost function, the system
can make a good balance between adaptability and stability.

Ongoing works include the implementation of a grid environment for data intensive
applications. Currently a simulated system is used in our Matlab environment, which
will be replaced with an actually running system. Performance of real time system
identification and adaptive control will be evaluated using existing data query and
processing applications.

Acknowledgement

This work is supported by National Science Foundation of China (grant No.
60803017), Ministry of Science and Technology of China under the national 863
high-tech R&D program (grants No. 2006AA10Z237, No. 2007AA01Z179 and No.
2008AA01Z118), Ministry of Education of China under the program for New Century
Excellent Talents in University and the Scientific Research Foundation for the
Returned Overseas Chinese Scholars, and the FIT foundation of Tsinghua University.

References

[1]. W. Kim, D. S. Reiner, and D. S. Batory (Eds.), Query Processing in Database Systems,
Springer Verlag, 1985.

[2]. M. Jarke and J. Koch, “Query Optimization in Database Systems”, ACM Comput. Surv., Vol.
16, No. 2, pp. 111–152, 1984.

[3]. C. T. Yu and W. Meng, Principles of Database Query Processing for Advanced Applications,
The Morgan Kaufmann Series in Data Management Systems, 1997.

[4]. J. Hellerstein et al, “Adaptive Query Processing: Technology in Evolution”, IEEE Database
Engineering Bulletin, Vol. 23, No. 2, pp. 7-18, 2000.

[5]. A. Deshpande, J. M. Hellerstein, and V. Raman, “Adaptive Query Processing: Why, How,
When, What Next”, in Proc. ACM SIGMOD 2006, pp. 806-807, 2006.

[6]. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, San Francisco, CA USA, 1998.

[7]. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The Data Grid:

Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets”, J. Network and Computer Applications, Vol. 23, pp. 187-200, 2001.

[8]. A. Gounaris, N. W. Paton, R. Sakellariou, and A. A. A. Fernandes “Adaptive Query
Processing and the Grid: Opportunities and Challenges”, in Proc. the 15th Int. Workshop on
Database and Expert Systems Applications, 2004.

[9]. B. Shivanath and W. Jennifer, “Continuous Queries over Data Streams”, SIGMOD Record,
Vol. 30, No. 3, pp. 109-120, 2001.

[10]. J. Chen, D. J. DeWitt, F. Tian and Y. Wang, “NiagaraCQ: A Scalable Continuous Query
System for Internet Databases”, in Proc. ACM SIGMOD 2000, pp. 379-390, 2000.

[11]. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S.
Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah, “TelegraphCQ: Continuous
Dataflow Processing”, in Proc. ACM SIGMOD 2003, pp. 668, 2003.

[12]. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom,
“STREAM: The Stanford Stream Data Manager”, IEEE Data Engineering Bulletin, March
2003.

[13]. R. Avnur and J. Hellerstein, “Eddies: Continuously Adaptive Query Processing”, in Proc.
ACM SIGMOD 2000, pp. 261–272, 2000.

[14]. Z. Ives, A. Halevy, and D. Weld, “Adapting to Source Properties in Processing Data
Integration Queries”, in Proc. ACM SIGMOD 2004, pp. 395-406, 2004.

[15]. J. Smith, P. Watson, A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakellariou,
“Distributed Query Processing on the Grid”, Int. J. High Performance Computing
Applications, Vol. 17, No. 4, pp. 353-367, 2003.

[16]. I. Foster, and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, Int. J.
Supercomputer Applications, Vol. 11, No. 2, pp. 115-128, 1997.

[17]. N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface”, J. Parallel and Distributed Computing, Vol. 63, No. 5, pp.
551-563, 2003.

[18]. A. Gounaris, N. W. Paton, R. Sakellariou, A. A. A. Fernandes, J. Smith, and P. Watson,
“Modular Adaptive Query Processing for Service-Based Grids”, in Proc. IEEE Int. Conf. on
Autonomic Computing, pp. 295-296, 2006.

[19]. A. Gounaris, N. W. Paton, R. Sakellariou, A. A. A. Fernandes, J. Smith, and P. Watson,
“Practical Adaptation to Changing Resources in Grid Query Processing”, in Proc. 22nd Int.
Conf. on Data Engineering, pp. 165, 2006.

[20]. S. Liu and H. A. Karimi, “Grid Query Optimizer to Improve Query Processing in Grids”,
Future Generation Computer Systems, Vol. 24, No. 5, pp. 342-353, 2008.

[21]. F. Porto, V. F. V. Da Silva, M. L. Dutra, and B. Schulze, “An Adaptive Distributed Query
Processing Grid Service”, in Proc. the Workshop on Data Management in Grids, VLDB 2005,
LNCS 3836, pp. 45-57, 2005.

[22]. N. Kotowski, A. A. B. Lima, E. Pacitti, P. Valduriez, M. Mattoso, “Parallel Query Processing
for OLAP in Grids”, Concurrency and Computation: Practice and Experience, 2008.

[23]. R. Bolze, et al, “Grid'5000: a Large Scale and Highly Reconfigurable Experimental Grid
Testbed”, Int. J. High Performance Computing Applications, Vol. 20, No. 4, pp. 481-494,
2006.

[24]. R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, A. Kreutz, S. Seltzsam, and K. Stocker,
“ObjectGlobe: Ubiquitous Query Processing on the Internet”, The VLDB J., Vol. 10, No. 1,
pp. 48-71, 2001.

[25]. R. Kuntschke, T. Scholl, S. Huber, A. Kemper, A. Reiser, H. Adorf, G. Lemson, and W. Voges,
“Grid-based Data Stream Processing in e-Science”, in Proc. 2nd IEEE Int. Conf. on e-Science
and Grid Computing, Amsterdam, The Netherlands, 2006.

[26]. R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser, “StreamGlobe: Processing and
Sharing Data Streams in Grid-Based P2P Infrastructures”, in Proc. Int. Conf. on Very Large
Data Bases, Rondheim, Norway, pp. 1259-1262, 2005.

[27]. S. Yahya, N. Faiza, and M. Najla, “An Adaptive Cost Model for Distributed Query
Optimization on the Grid”, in Proc. OTM 2004 Workshops, LNCS 3292, pp. 79-87, 2004.

[28]. T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance Guarantees for Web Server
End-systems: A Control-theoretical Approach,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 13, 2002.

[29]. P. Bhoj, S. Ramanathan, and S. Singhal, “Web2K: Bringing QoS to Web Servers,” HP Labs
Technical Report, HPL-2000-61, May 2000.

[30]. Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D.M. Tilbury, “MIMO Control of an
Apache Web server: Modeling and Controller Design,” American Control Conference, 2002.

[31]. Y. Diao, J. L. Hellerstein, and S. Parekh, “Using Fuzzy Control to Maximize Profits in
Service Level Management,” IBM Systems J., Vol. 41, No. 3, 2002.

[32]. A. Kamra, V. Misra, and E. M. Nahum, “Yaksha: A Self-tuning Controller for Managing the
Performance of 3-tiered Web Sites,” in Proc. 12th IEEE Int. Workshop on Quality of Service,
June, 2004.

[33]. X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal, “Optimal Multivariate Control for
Differentiated Services on a Shared Hosting Platform”, in Proc. 46th IEEE Conference on
Decision and Control, New Orleans, LA, 2007.

[34]. J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback Control of Computing Systems,
ser. ISBN: 0-471266-37-X, Wiley-IEEE Press, August 2004.

	Adaptive Query Processing in Data Grids
	Abstract
	1 Introduction
	2 Research Background
	2.1 AQP
	2.2 AQP and the Grid
	2.3 Control Theory for Adaptability

	3 Problem Statement
	4 The Adaptive Controller
	4.1 The Online System Identification
	4.2 The Linear Quadratic Optimal Controller

	5 Performance Evaluation
	5.1 Simulation Environment
	5.2 Experimental Results

	6 Conclusions
	Acknowledgement
	References

