
Performance Optimization of Temporal Reasoning for Grid Workflows Using
Relaxed Region Analysis

Ke Xu1, Junwei Cao2,3,*, Lianchen Liu1,3 and Cheng Wu1,3

1National CIMS Engineering and Research Center, Tsinghua University, Beijing, 100084, P. R. China
2Research Institute of Information Technology, Tsinghua University, Beijing, 100084, P. R. China

3Tsinghua National Laboratory for Information Science and Technology, Beijing, 100084, P. R. China
*Corresponding email: jcao@tsinghua.edu.cn

Abstract

With quick evolution of grid technologies and

increasing complexity of e-Science applications,
reasoning temporal properties of grid workflows to
ensure reliability and trustworthiness is becoming a
critical issue. Relaxed Region Analysis (RRA) is
proposed in this work for performance optimization of
grid workflow verification by decomposing workflows
into separate standard regions with parallel branches.
The approach is implemented in GridPiAnalyzer, a Pi
Calculus based formal verifier for grid workflows, and
validated using gravitational wave data analysis
workflows. Detailed experimental results illustrate that
RRA can dramatically reduce CPU and memory usage
of verification processes.

1. Introduction

The grid is becoming a mainstream technology for
cross-domain management and sharing of
computational resources [6]. Grid workflows [2, 15], a
composition of various grid services according to
prospective processes, have become a typical paradigm
for problem solving in various e-Science domains, e.g.
gravitational wave data analysis [5].

With increasing complexity of e-Science
applications, how to implement reliable and
trustworthy grid workflows according to specific
scientific criteria is becoming a critical research issue.
In addition to existing grid enabling techniques, e.g.
job scheduling, workflow enactment and resource
locating, various grid ensuring techniques are
developed [12], e.g. data flow analysis and temporal
reasoning. While these techniques aim to guarantee
that large scale grid workflows can be developed to
meet exact requirements of domain-specific users,
performance is still a bottleneck for probing all
potential pitfalls and errors in large scale and
dynamically evolving grid workflows. Implementation
of grid verification processes has to be of high
performance in terms of CPU and memory usage.

Performance optimization of formal verification of
grid workflows is focused in this work. Following our

preliminary efforts on grid workflow decomposition
[13], a Relaxed Region Analysis (RRA) approach is
proposed to divide-and-conquer global verification of a
grid workflow into local verification on sub grid
workflow models. Target grid workflows are
decomposed into sequentially composed regions with
relaxation of parallel workflow branches. The approach
is implemented in GridPiAnalyzer [14], a Pi Calculus
[8] based formal verifier for grid workflows using
NuSMV2 [3] as its engine. Three application scenarios
of using workflow technologies for gravitational wave
data analysis are investigated [1]. While the
complexity of a grid workflow increases exponentially
with the number of involving services and
interdependencies, the RRA approach can dramatically
reduce CPU and memory usage of formal verification
processes, as illustrated using quantitative performance
evaluation results included in this work.

Formal verification based temporal reasoning [4] is
becoming essential for Web Services based systems to
probe potential errors and enhance reliability. How
process algebras can be applied to model and reason
the choreography of Web Services is discussed in [10].
Regarding grid system formalization, the Abstract
State Machine based formalism is applied in [9] to
distinguish grid features from traditional distributed
systems. In our previous work described in [12, 14], a
formal framework is proposed as an integrated solution
to reliability issues in existing grid applications.

Decomposition is a common technique for handling
complex systems to exponentially decrease system
dimensions. While application-specific decomposition
strategies have been investigated in [11] for carrying
out computational tasks in grid environments, a more
general decomposition approach is proposed in our
work for grid workflow verification using process
structure analysis. The RRA approach described in this
paper is a follow-up work of our initial decomposition
efforts in [13]. It allows the relaxation of parallel
branches in grid workflows to achieve better
decomposition results and verification performance.

The rest of the paper is organized as follows. In
Section 2, grid workflow regions are defined. Section 3
introduces the RRA approach and how it works in the

decomposed verification strategy. The implementation
of RRA in GridPiAnalyzer and corresponding
performance evaluation results are given in Section 4.
Section 5 concludes the paper.

2. Grid Workflow Regions

Considering that there are various grid workflow

specification languages, common notations used in this
paper are provided in Figure 1 to visually represent a
grid workflow model. Modeling elements in Figure 1
are extended from typical Directed Acyclic Graph
(DAG) based workflow models, allowing explicit
modeling of data service nodes, service control nodes,
conditional transitions and arbitrary cycles of
transitions. While DAG is already well-defined and
intuitive, these extensions are more expressive to cover
many other existing workflow specifications.

To prevent unstructured grid workflows, syntactical
constraints are defined as a unified basis for our region
analysis. These constraints are concluded from sound
criteria, e.g. no deadlocks and no multiple service
activity instances on the same service activity.
Constraint 1: We refer a Srv&Ctrl node to a Grid
Service Activity, Subflow or Control node and refer a
SrvFlow node to a Srv&Ctrl or Data Service node.
Constraint 2: Each grid workflow has exactly one
explicit Begin node and End node (which will be later
relaxed in our RRA approach).
Constraint 3: Every Srv&Ctrl node must be
syntactically reachable from the Begin node and can
reach the End node by transitions (i.e., no dangling
Grid Service Activity, Subflow, or Control nodes).
Constraint 4: Each transition has exactly one source /
target Srv&Ctrl node. Each data channel has at most
one source / target SrvFlow node (with one of them
must be a Data Service Node).
Constraint 5: Multiple inputs and outputs are allowed
for a Grid Service Activity and Control node. Their
equivalent semantics are illustrated in Figure 1(b).
Constraint 6: Arbitrary cycles are allowed as long as
no unstructured workflow models are caused.

Begin
Node

Grid Service
Activity Node

Data Service
Node

Grid Service
Control Node

Transition Transition with
Condition

Data
Channel

……

……

……

……

……

……

……

……
=

=
……

……

……

……

……

……

……

……
=

……

……

……

……

(a) Visual Notations of Grid Workflow Elements

(b) Annotation Shortcuts for Grid Workflow Controls

End
Node

SrvName Subflow
Node

SrvName SrvName

(Split) Grid Service
Control Node (Join)

Figure 1. Visualization of grid workflow elements

Figure 2 illustrates an example gravitational wave

data analysis workflow SF1 based on visual notations
provided in Figure 1.

A region {Nhead, Ntail} specifies a structure in which
node Nhead will always reach Ntail in order for it to reach
the End node in a grid workflow Γ (and vice versa).
For example, in Figure 2 {TrigBank_H2_3,
thIncaII_L1H2} is a region while {sInca_L1H1,
thIncaII_L1H2} is not. The whole grid workflow Γ
itself also forms a region. A node N’ is thus said to be
within a region {N1, N2} (denote by N’⊂{N1, N2}) if
there exists a path N1 … N’ … N2. Two nodes
Nhead and Ntail form a maximized region in a grid
workflow Γ, if and only if (IFF) ∀Begin

N1 …Nm End where Nhead and Ntail are contained
in the path and Nhead≠Ntail.

Moreover, for nodes N’1, … N’m within region {N1,
N2}, the set of maximized regions {{N’, N’’} | {N’,
N’’}={N1, N’1} or {N’1, N’2} or … or{N’m, N2}} is said
to be a total decomposition of {N1, N2} IFF all {N’,
N’’}s are maximized regions and can not be
decomposed further. A maximized region {N1, N2} in Γ
is a standard region IFF {N1, N2} belongs to the total
decomposition of Γ. A standard region will always
exist for Γ (in the worst case the only standard region
will be Γ itself). For example in Figure 2, while
{TrigBank_H2_3, thIncaII_L1H2} is a region, it is
neither a maximized region nor a standard region.
However, {Begin, Inspiral_L1} is a standard region of
Γ. Figure 2 also shows standard regions of SF1.

TmpltBank_H1

TmpltBank_H2

TmpltBank_L1

Inspiral_L1

TrigBank_H1_1

TrigBank_H1_2

Inspiral_H1_1

Inspiral_H1_2

sInca_L1H1

thInca_L1H1

TrigBank_H2_1

TrigBank_H2_2

Inspiral_H2_1

Inspiral_H2_2 thIncaII_L1H1

ReturnRes

FData_H_1

FData_H_2

TrigBank_H2_3 InspVeto thIncaII_L1H2

InitData_H1H2

Standard Region 1

Standard Region 2
Figure 2. Gravitational wave data analysis – case study I (SF1)

3. Grid Workflow Decomposition

3.1. Standard Region Analysis

Apart from the decomposition of grid workflows,

the decomposition of corresponding formal verification
strategy has also to be developed, which includes:
(1) How to exploit the properties of a standard region

into its verification;
(2) How to exploit local verification of a standard

region into verification of other standard regions;
(3) How to deduct the global verification result based

on local verification of standard regions.
Above issues can be actually transformed into a

special modular model checking problem [7]. As we
know, the idea of formal verification is to find all
states {s∈M | M,s╞f}, where M is the state model [4]
(e.g. kripke structure, automata, etc) of the target
system and f is the desired property. It is said that M
satisfies f (i.e. M╞f) if the set of states s is not empty.
A modular model checking tries to deduct the formal
verification procedure in the following form:

><><
><><><><

ψ
ψϕϕ

'|
'

MMTRUE
MMTRUE

(d-1)

The deduction tries to prove that if model M
satisfies property ϕ (<TRUE>M<ϕ>) and model M’
satisfies property ψ under the assumption that its
environment satisfies property ϕ (<ϕ>M’<ψ>), the
parallel composition of (M|M’) will satisfy propertyψ
(<TRUE>M|M’<ψ>). An essential procedure in the
above deduction is how to define and implement
<ϕ>M’<ψ> such that the deduction will hold true.
Consequently, our decomposition strategy of
verifications based on standard regions follows the
idea below: given the total decomposition {M1, M2, …,
Mn} of a grid workflow Γ where Mi={Ni, Ni+1}，Ni,
Ni+1∈Γ, the verification of a desired property ψ is
carried out on Mn,…,M1 separately, whereas the
verification of Mi against ψ will be based on the
satisfaction of Mi+1;…;Mn against ψ such that the
satisfaction of the complete workflow Γ against ψ can
be eventually deducted.

><><
><><><><

+

+++

inii

iiiini

MMMTRUE
MMMTRUE

ψ
ψψψ

;......;;
;......;

1

111
(d-2)

Here we have 1≤i≤n-1 and M;M’ indicates the
sequential composition of identified standard regions
since sequential relations are preserved among
standard regions. The following takes LTL-X (a
popular temporal logic with universal path qualifiers
and no next operators) [4] as the target for the
implementation of <ϕ>M’<ψ> (i.e. both ϕ and ψ are
specified in LTL-X). LTL-X is an intuitive and
shuttering closed logic with wide formal verification

tool support. Since an important theoretical foundation
is that LTL-X formulae can be transformed to an
equivalent generalized büchi automata [4],
<ϕ>M’<ψ> can be obtained by verifying
Trans(ϕ)|M’╞ψ [7], where Trans(ϕ) indicates the
equivalent automata for ϕ. However in this work, the
sequential nature of standard regions enables us to
further avoid the cost of automata composition.

Given the total decomposition {M1, M2, …, Mn} of a
grid workflow Γ where Mi={Ni, Ni+1}, Ni, Ni+1∈Γ,
denote TransSys(Γ,Φ) to be the automata for Γ under
the given initial state set of Φ. Since Mi and Mi+1 share
the service node Ni+1, the set of association states
Im(Mi, Mi+1, Γ) is the states when Mi;Mi+1;…;Mn
transits to the process of Mi+1;Mi+2;…;Mn.

The association states literally indicate the region
initial states for the previous local verification
(<TRUE>Mi+1;Mi+2;…;Mn<ψi+1>)
(S(Mi+1;Mi+2;…;Mn)) and the region ending states for
the current local verification (<ψi+1>Mi<ψi>) (E(Mi))
in the deduction procedure (d-2).

In the total decomposition of Γ, the only shared
states of the corresponding automata for standard
regions Mi and Mi+1 are their association states. This
implies that no states in one standard region will loop
back to states in another standard region.

An important decomposition strategy for formal
verification based on standard regions is, given a
standard region Mi in a grid workflow Γ, the desired
LTL-X formula Ψ and its sub formulae ϕ∈sub(Ψ), if
<TRUE>Mi+1;Mi+2;…;Mn<ϕ> holds, we can deduct
the satisfaction of <TRUE>Mi;Mi+1;Mi+2;…;Mn<ϕ>
by investigating whether (Trans(Mi,
S(Mi;…;Mn));Trans(ϕ)), S(Mi;…;Mn)╞ϕ holds. Here
“;” represents the sequential composition of Trans(Mi,
S(Mi;…;Mn)) and Trans(ϕ).

3.2. Relaxed Region Analysis

One deficiency of the above workflow

decomposition using standard regions is that it has
imposed strong constraints (see Section 2) on grid
workflow structure analysis, which sometimes limits
verification performance since identified standard
regions may not small enough. For example in the
decomposition result in Figure 2, the identified
standard region {Inspiral_L1, End} can be still
considered as a complex sub workflow.

One of key factors in decomposing the verification
of a grid workflow Γ is to assure that
TransSys(Mi,S(Mi;…;Mn)) ⊇ S(Mi+1;Mi+2;…;Mn) s.t.
the sequential composition of Mi;…;Mn will not loose

complete behaviors in the original grid workflow.
Under this condition, it is inspired to relax Constraint 2
in Section 2 to allow multiple End nodes in Γ such that
potential parallel branches can also be discovered in
addition to sequential standard regions.
Relaxation of Constraint 2: Each grid workflow has
exactly one explicit Begin node and can be relaxed to
allow multiple End nodes. New End nodes after
relaxation are named secondary end nodes (VEnd).

For a standard region, denote Mi/(N1 … Nm)
(Nj∈Mi, j=1,…,m) as the operation of removing a
branch in Γ with corresponding grid workflow nodes,
transitions and data channels. It is then expected to find
more potential standard regions in a grid workflow by
temporarily removing a selected branch, and to make
the verification decomposition result still work in this
relaxed context.

A parallel branch CP=N1 *N2 … VEnd
indicates a path that ends with VEnd, such that a
parallel composition relation holds between grid
service nodes in N2 … VEnd and new discovered
standard regions after node N1 (i.e. there are no
control/data constraints in service executions among
them). In the total decomposition {M’1,M’2,…,M’m} of
Mn/(N2 … VEnd), if N1∈M’i, it is called that the
parallel branch CP belongs to M’i, denoted by M’i
(CP). {M1,M2,…,M’1,M’2, …,M’i (CP),…,M’m} is
therefore called the relaxed total decomposition after
the relaxation of CP=N1 N2 … VEnd for the grid
workflow Γ.

Denote CP’=N2 … VEnd, because CP’ forms a
parallel relation with all the rest standard regions
(M’i+1,…, M’m) when M’i (CP), we have Trans((M’k,…,
M’m|CP’))⊇Trans((M’k+1,…, M’m|CP’)) for any i≤k<m
under the same initial state Init. Therefore the
verification under relaxed region analysis can also
reuse the results in Section 3.1. The whole deduction
procedure includes 4 steps, as shown in (d-3):

1 1 1

1

1 1 1

1

(' ;......; ') | ' ' ' ' | ' '

(' ; ' ;......; ')|
(' ;......; ') | ' ' ' (') '

(' ; ' ;......; ')| '
'

j m j j j j

j j m i

i m i i i i

i i m i

TRUE M M M
i j m

TRUE M M M
TRUE M M M

TRUE M M M
TRUE M

ψ ψ ψ
ψ

ψ ψ ψ
ψ

+ + +

+

+ + +

+

< > < > < > < >
< ≤

< > < >
< > < > < > < >

< > < >
< >

CP CP
CP

CP CP
CP

1 1 1

1

1 1 1 1 1

1 1 1

;......; ' ' ' ' ' 1 1
' ; ' ;......; ' '

;......; ; ' ;......; ' 1
; ;......; ; ' ;......; '

l m l l l l

l l m l

k n m k k k k

k k n m k

M M l i
TRUE M M M

TRUE M M M M M k n
TRUE M M M M M

ψ ψ ψ
ψ
ψ ψ ψ

ψ

+ + +

+

+ − + +

+ −






 < > < > < > ≤ ≤ −
 < > < >
 < > < > < > < >
 ≤ ≤

< > < >

(d-3)
The former two in (d-3) represent cases of standard

regions with consideration of parallel branches, while
the latter two are used to deal with normal situations
described in Section 3.1. The RRA flow chart is
illustrated in Figure 3, which is based on the
TotalDecomposition algorithm.

Figure 3. The RRA flow chart

In the gravitational wave workflow SF1, since
sInca_L1H1 *TrigBank_H2_3 InspVeto thIncaII_
L1H2 VEnd is a parallel branch, the original standard
region {Inspiral_L1, End} can be further decomposed
into 2 smaller regions, {Inspiral_L1, thInca_L1H1}
and {thInca_L1H1, End} based on the RRA approach
(see Figure 4).

TmpltBank_H1

TmpltBank_H2

TmpltBank_L1

Inspiral_L1InitData_H1H2

R11: Standard Region 1

Inspiral_L1

TrigBank_H1_1

TrigBank_H1_2

Inspiral_H1_1

Inspiral_H1_2

sInca_L1H1

thInca_L1H1

FData_H_1

TrigBank_H2_3 InspVeto

thIncaII_L1H2

VEnd

R12: Standard Region 2

thInca_L1H1

TrigBank_H2_1

TrigBank_H2_2

Inspiral_H2_1

Inspiral_H2_2 thIncaII_L1H1

ReturnRes
FData_H_2

TrigBank_H2_3 InspVeto thIncaII_L1H2 VEnd

R13: Standard Region 3 with the
parallel branch to be considered

Parallel Branch

Figure 4. Relaxed region decomposition for SF1

4. System Implementation

4.1. GridPiAnalyzer

The RRA approach with corresponding verification

strategy described in Section 3 is implemented in our
GridPiAnalyzer system to further improve its
performance in reasoning grid workflows.

GridPiAnalyzer is an automatic analyzer designed for
ensuring reliability of grid workflow based on its Pi
calculus formalism and verification.

GridPiAnalyzer accepts target grid workflow
scripts, e.g. DAG specifications, BPEL4WS and UML
activity diagrams. It automatically transforms grid
workflow specifications into the process algebra of Pi
Calculus and deduces the result into labeled transition
systems according to the operational semantics of Pi
calculus. A visual environment is provided to specify
required temporal properties on grid workflows using
LTL-X. These formulae, together with the transition
system, are accepted to perform the formal verification.

GridPiAnalyzer is further extended with the
capability of our RRA approach for performance
optimization. A new component is developed to
decompose grid workflows into standard regions with
parallel branches based on the procedure described in
Figure 3. The formal verification is then recursively
performed on each standard region instead of the
whole grid workflow. Detailed information about
GridPiAnalyzer and its applications can also be found
in our previous work [12-14].

4.2. Case Studies

Let’s take gravitational wave data analysis as our

application scenarios. Along with the relatively simple
workflow SF1 introduced in Figure 2, two more
complex ones SF2 and SF3 are also given in Figures 5
and 7 for performance evaluation of grid workflow
verification, with corresponding relaxed standard
regions illustrated in Figures 6 and 8, respectively.

InitData_L1_1 InitData_L1_2

InitData_L1_3

TmpltBank_L1_1

TmpltBank_L1_2

TmpltBank_L1_3

TmpltBank_L1_4

TmpltBank_L1_5

TmpltBank_L1_6TmpltBank_L1_8

Inspiral_L1_1

Inspiral_L1_2

Inspiral_L1_3 Inspiral_L1_5

Inspiral_L1_6Inspiral_L1_7

Inspiral_L1_8

TmpltBank_L1_7

TrigBank_H1_1

TrigBank_H1_2

TrigBank_H1_3 TrigBank_H1_4

TrigBank_H1_8 TrigBank_H1_7

TrigBank_H1_5
TrigBank_H1_6

Inspiral_L1_4

Inspiral_H1_1

Inspiral_H1_5
Inspiral_H1_6

Inspiral_H1_8

sInca_L1H1_1

thInca_L1H1Inspiral_H1_3

Inspiral_H1_7

Inspiral_H1_4

sInca_L1H1_2

TrigBank_H2_1

TrigBank_H2_2
TrigBank_H2_3

TrigBank_H2_4

TrigBank_H2_5

Inspiral_H2_1

Inspiral_H2_5

Inspiral_H2_3

Inspiral_H2_4

thIncaII_L1H1

ReturnRes

TrigBank_H2_4

InspVeto

thIncaII_L1H2

FData_H_1

Inspiral_H1_2

FData_H_2

FData_H_3
FData_H_4

Inspiral_H2_2

Figure 5. Gravitational wave data analysis – case

study II (SF2)

InitData_L1_1 InitData_L1_2

InitData_L1_3

TmpltBank_L1_1

TmpltBank_L1_2

TmpltBank_L1_3

TmpltBank_L1_4

TmpltBank_L1_5

TmpltBank_L1_6TmpltBank_L1_8

Inspiral_L1_1

Inspiral_L1_2

Inspiral_L1_3 Inspiral_L1_5

Inspiral_L1_6Inspiral_L1_7

Inspiral_L1_8

TmpltBank_L1_7

TrigBank_H1_1

TrigBank_H1_2

TrigBank_H1_3 TrigBank_H1_4

TrigBank_H1_8 TrigBank_H1_7

TrigBank_H1_5
TrigBank_H1_6

Inspiral_L1_4

Inspiral_H1_1

Inspiral_H1_5
Inspiral_H1_6

Inspiral_H1_8

sInca_L1H1_1

thInca_L1H1Inspiral_H1_3

Inspiral_H1_7

Inspiral_H1_4

sInca_L1H1_2

TrigBank_H2_4
InspVeto

thIncaII_L1H2

FData_H_1

Inspiral_H1_2

FData_H_2

thInca_L1H1

TrigBank_H2_1

TrigBank_H2_2
TrigBank_H2_3

TrigBank_H2_4

TrigBank_H2_5

Inspiral_H2_1

Inspiral_H2_5

Inspiral_H2_3

Inspiral_H2_4

thIncaII_L1H1

ReturnRes

TrigBank_H2_4

InspVeto

thIncaII_L1H2

FData_H_3
FData_H_4

Inspiral_H2_2

R21: Standard Region 1

R22: Standard Region 2 with the considered parallel branch

Figure 6. Relaxed region decomposition for SF2

InitData_H1

TmpltBank_H1_4

TmpltBank_H1_3

TmpltBank_H1_2

TmpltBank_H1_1

Inspiral_H1_4

Inspiral_H1_3

sInca_H1
thInca_L1H1

thInca_L1H2

InitData_L1

TmpltBank_L1_4

TmpltBank_L1_6

TmpltBank_L1_5

TmpltBank_L1_3

TmpltBank_L1_2

TmpltBank_L1_1

Inspiral_L1_1

Inspiral_L1_2

Inspiral_L1_3

Inspiral_L1_6

FData_L1_1

InitData_H2

TmpltBank_H2_4

TmpltBank_H2_3 TmpltBank_H2_2

TmpltBank_H2_1

Inspiral_H2_3 Inspiral_H2_2

Inspiral_H2_1
Inspiral_H1_1 FData_H2_1

thInca_L1H1H2

Inspiral_H1_2

FData_H1_1
Inspiral_L1_5

sInca_L1

Inspiral_H2_4

Inspiral_L1_4

InspVeto_H1_1

InspVeto_H1_2

InspVeto_H1_3

InspVeto_H1_4

InspVeto_H1_6

InspVeto_L1_1

InspVeto_L1_2

InspVeto_L1_3

InspVeto_L1_4

InspVeto_L1_5 InspVeto_L1_6

InspVeto_H2_2

InspVeto_L1_7

TrigBank_H1

TrigBank_L1

TrigBank_H2

InspVeto_H2_5

FData_H1_2

FData_L1_2

FData_H2_1

thIncaII_L1H1

thIncaII_L1H1H2

InspVeto_H2_3

InspVeto_H2_4

InspVeto_H1_5 thIncaI I_L1H2

ReturnRes

InspVeto_H2_1

Figure 7. Gravitational wave data analysis – case

study III (SF3)

InitData_H1

TmpltBank_H1_4

TmpltBank_H1_3

TmpltBank_H1_2

TmpltBank_H1_1

Inspiral_H1_4

Inspiral_H1_3

sInca_H1
thInca_L1H1

thInca_L1H2

InitData_L1

TmpltBank_L1_4

TmpltBank_L1_6

TmpltBank_L1_5

TmpltBank_L1_3

TmpltBank_L1_2

TmpltBank_L1_1

Inspiral_L1_1

Inspiral_L1_2

Inspiral_L1_3

Inspiral_L1_6

FData_L1_1

InitData_H2

TmpltBank_H2_4

TmpltBank_H2_3 TmpltBank_H2_2

TmpltBank_H2_1

Inspiral_H2_3 Inspiral_H2_2

Inspiral_H2_1
Inspiral_H1_1 FData_H2_1

thInca_L1H1H2

Inspiral_H1_2

FData_H1_1
Inspiral_L1_5

sInca_L1

Inspiral_H2_4

Inspiral_L1_4

InspVeto_H1_1

InspVeto_H1_2

InspVeto_H1_3

InspVeto_H1_4

InspVeto_H1_6

InspVeto_L1_1

InspVeto_L1_2

InspVeto_L1_3

InspVeto_L1_4

InspVeto_L1_5 InspVeto_L1_6

InspVeto_H2_2

InspVeto_L1_7

TrigBank_H1

TrigBank_L1

TrigBank_H2

InspVeto_H2_5

FData_H1_2

FData_L1_2

FData_H2_1

thIncaII_L1H1

thIncaII_L1H1H2

InspVeto_H2_3

InspVeto_H2_4

InspVeto_H1_5 thIncaII_L1H2

ReturnRes

InspVeto_H2_1

thInca_L1H1H2

R31: Standard Region 1

R32: Standard Region 2

Figure 8. Relaxed region decomposition for SF3

In gravitational wave data analysis workflows, the
following properties are required:
• p1: The necessary successor operations after

template bank generation;
• p2: The constraints on working status of

gravitational wave detectors;
• p3: The completeness of incidental analysis;
• p4: The precondition of final incidental analysis.

Correspondingly the LTL-X formulae of these
properties for each grid workflow are formulated in
Table 1. These properties are required to be true for all
three case studies.

Table 1. Formulae of properties against SF1, SF2
and SF3

G (_ 1 ((F _ 1) & (F _ 1))TmpltBank H TrigBank H Inspiral H→

G (_ 2 ((F _ 2) & (F _ 2))TmpltBank H TrigBank H Inspiral H→

G (_ 1 ((F _ 1) & (F _ 1))TmpltBank L TrigBank H Inspiral H→

G ((_ 1 2) (_ 2 U _ 1 1))InitData H H Inspiral H thInca L H→ ¬

G ((_ 1 2) (_ 2 U _ 1 1 2))InitData H H Inspiral H thInca L H H→ ¬

((F _ 1 1 (_ 1 1 U _ 1 1))
(F _ 1 1 (_ 1 1 U _ 1 1))) F _ 1 1

sInca L H thIncaII L H sInca L H
thInca L H thIncaII L H thInca L H thIncaII L H

∧ ¬ ∨
∧ ¬ ∧

((F _ 1 (_ 1 1 2 U _ 1)
F _ 1 (_ 1 1 2 U _ 1))
(F _ 1 1 2 (_ 1 1 2 U _ 1 1 2)))
 F _ 1 1 2

sInca L thIncaII L H H sInca L
sInca H thIncaII L H H sInca H
thInca L H H thIncaII L H H thInca L H H

thIncaII L H H

∧ ¬ ∧
∧ ¬ ∨

∧ ¬
∧

G (_ 1 (F _ 1 1))Inspiral H thIncaII L H→

G (_ 1 (F _ 1 1 2))Inspiral H thIncaII L H H→

G (_ 2 (F _ 1 1))Inspiral H thIncaII L H→

G (_ 2 (F _ 1 1 2))Inspiral H thIncaII L H H→

G (_ 1 (F _ 1 1))TmpltBank H thIncaII L H→

G (_ 1 (F _ 1 1))TmpltBank L thIncaII L H→

G (_ 1 (F _ 1 1 2.))TmpltBank H thIncaII L H H→

G (_ 2 (F _ 1 1))TmpltBank H thIncaII L H→

G (_ 2 (F _ 1 1 2))TmpltBank H thIncaII L H H→SF3

SF1
p44

SF3

SF2

SF1

p43

SF3

SF1 / SF2
p42

SF3

SF1 / SF2
p41

SF3

SF1 / SF2

p3

SF3

SF1 / SF2
p2

SF2p1

SF1 / SF3p12

SF1 / SF3p11

Formulae for the Desired PropertyTarget
SF

Prop
Name

SF3

SF1
p44

SF3

SF2

SF1

p43

SF3

SF1 / SF2
p42

SF3

SF1 / SF2
p41

SF3

SF1 / SF2

p3

SF3

SF1 / SF2
p2

SF2p1

SF1 / SF3p12

SF1 / SF3p11

Formulae for the Desired PropertyTarget
SF

Prop
Name

4.3. Performance Evaluation

In this section, the proposed RRA approach is
applied in formal verification of grid workflows and its
performance is compared with several well known
verification methods [3]. These include the Symbolic
Model Checking Algorithm (SMCA), SMCA with Cone
of Influence (COI), SMCA with dynamic re-ordering of
BDD (Binary Decision Diagram) variables (Dynamic),
and Bounded Model Checking algorithm (BMC(k),
where k is the setting of its length). All experiments are
carried out using an IBM laptop with a Pentium IV
1.73GHz mobile CPU, 2.0GB RAM, Windows
operating system and Eclipse development platform.

Performance evaluation results are illustrated in
Figures 9 and 10 in terms of verification time and peak
memory usage, respectively. The upper limit of
verification time is 750s for a complete grid workflow
and 600s for standard regions. The minimum
considered peak memory usage is 10Mb during grid
workflow verification. Among legends in Figures 9
and 10, SMCA’ indicates the time / memory usage for

the model initialization with the SMCA method. SF1,
SF2, and SF3 represent the three case studies
illustrated in Figures 2, 5 and 7, respectively. Rij
indicates the verification on the ith identified standard
region in SFj. RRA indicates the verification result
using the proposed approach. For a specific property p,
the total verification time of RRA(tp) is computed as
follows:

1
()n

p p ii
t t R

=
=∑ ,

where tp(Ri) is the verification time for p on the ith
region in a grid workflow; the peak memory usage of
RRA(mp) is computed as:

(())p p im Max m R= ,
where mp(Ri) is the peak memory usage for p on the ith
region in a grid workflow. The purpose of the
additional Figures 9(a) and 9(b) is to further zoom in
the performance comparison with RRA and pure
SMCA / COI approach in Figure 9(c).

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

4800

p11 p12 p2 p3 p41 p42 p43 p44

ms Time for R11
Time for R12
Time for R13
Time for SF1
Time for RRA

(a)

0

800

1600

2400

3200

4000

4800

5600

6400

7200

8000

p11 p12 p2 p3 p41 p42 p43 p44

ms

Time for R11
Time for R12
Time for R13
Time for SF1
Time for RRA

(b)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000
180000
190000

SM
CA'

SM
CA

COI

Dyn
am

ic

BMC(1
0)

ms Ti me f or R11
Ti me f or R12
Ti me f or R13
Ti me f or SF1
Ti me f or RRA

(p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44)

(c)

0

75000

150000

225000

300000

375000

450000

525000

600000

675000

750000

SM
CA'

SM
CA

COI

Dyna
mic

BMC(10)

ms Ti me f or R21
Ti me f or R22
Ti me f or SF2
Ti me f or RRA

(p1 – p43) (p1 – p43) (p1 – p43) (p1 – p43) (p1 – p43)

MAX

(d)

50000

120000

190000

260000

330000

400000

470000

540000

610000

680000

750000

SMCA'

SMCA COI

Dynam
ic

BMC(5)

ms Ti me f or R31
Ti me f or R32
Ti me f or SF3
Ti me f or RRA

(p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44)

MAX

(e)

Figure 9. Performance evaluation of verification
time for SF1, SF2 and SF3

10

20

30

40

50

60

70

80

SMCA'

SMCA COI

Dynam
ic

BM
C(10

)

Mb Peak Mem f or R11
Peak Mem f or R12
Peak Mem f or R13
Peak Mem f or SF1
Peak Mem f or RRA

(p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44)

(a)

10

60

110

160

210

260

310

360

410

460

510

560

SMCA'

SMCA COI

Dyn
am

ic

BMC(10
)

Mb Peak Mem f or R21
Peak Mem f or R22
Peak Mem f or SF2
Peak Mem f or RRA

(p1 – p43) (p1 – p43) (p1 – p43) (p1 – p43) (p1 – p43)

(b)

150

200

250

300

350

400

450

500

550

SM
CA'

SM
CA

COI

Dyn
am

ic

BM
C(5)

Mb Peak Mem f or R31
Peak Mem f or R32
Peak Mem f or SF3
Peak Mem f or RRA

(p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44) (p11 – p44)

(c)

Figure 10. Performance evaluation of perk memory
usage for SF1, SF2 and SF3

From results included in Figures 9 and 10, it can be

found that due to the complexity of grid workflows
SF2 and SF3 (which contains 2^14.5 and 2^15.4
reachable states, respectively), direct verification of
these workflows with none of the compared methods
shows satisfactory performance. Based on SMCA and
COI, verification time exceeds 250s and 500s
respectively; peak memory usage exceeds 400Mb and
480Mb respectively. Based on Dynamic and BMC,
verification time even exceeds the upper limit and peak
memory assumption exceeds 290Mb, 510Mb, 349Mb
and 511Mb, respectively. Poor performance of the
BMC approach is partially due to the use of the simple
Mini-SAT solver. Performance comparison between
BMC and SMCA is out of the scope of this paper.

Based on our proposed RRA approach, the
verification time is reduced to over 60s, 160s, 590s and
480s for SF2 and SF3 in combination with the SMCA,
COI and BMC method respectively. The peak memory
usage is dramatically reduced to 230Mb, 196Mb,
171Mb, and 360Mb for SF2 and 270Mb, 232Mb,
236Mb, 290Mb for SF3. Here for RRA with the
Dynamic method, the verification time for the first
standard region in SF2 and SF3 still exceeds the upper
limit. This is because the Dynamic method is in
essential a memory saving optimization technique
which may worsen the verification efficiency.

By applying the RRA approach, memory usage are
reduced since RRA enables partial loading and
verification of grid workflows. Since state spaces of
separated regions are also reduced compared to the
global workflow, the proposed RRA approach not only
reduces verification time, but also the time for BDD
operation, Boolean satisfiability solving, memory
operations, etc in the implementation of SMCA and
BMC approaches. These result in global performance
optimization using the proposed RRA approach.

5. Conclusions

In this work, the decomposition strategy for
standard regions based verification of grid workflows
is proposed to enhance the performance in formal
verification of grid workflow correctness. The RRA
approach can effectively decompose a grid workflow
into separate standard regions with parallel branches.
Consequently, costly global reasoning of a grid
workflow can be decomposed into light-weight local
reasoning of its standard regions, each with a reduced
state space.

The proposed approach is implemented in our
GridPiAnalyzer automatic formal verification system.
Detailed experimental results show that by applying
our RRA approach both CPU time and peak memory
usage can be dramatically reduced compared to using
various traditional formal verification algorithms.
Ongoing work includes refinement of the
GridPiAnalyzer system, implementation of more grid
workflow verification modules, and applying the RRA
approach to more real world applications.

Acknowledgement

This work is supported by Ministry of Science and
Technology of China under the national 863 high-tech
R&D program (grant No. 2006AA10Z237) and
National Science Foundation of China (grant No.
60604033).

Junwei Cao would like to express his gratitude to
Professor Erotokritos Katsavounidis of LIGO (Laser
Interferometer Gravitational-wave Observatory)
Laboratory at Massachusetts Institute of Technology
for his long-term collaboration supports.

References

[1]. D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B.

Johnson and J. McNabb, “A Case Study on the Use
of Workflow Technologies for Scientific Analysis:
Gravitational Wave Data Analysis”, in I. J. Taylor,
D. Gannon, E. Deelman and M. S. Shields (Eds.),
Workflows for e-Science: Scientific Workflows for
Grids, Springer Verlag, pp. 39-59, 2007.

[2]. J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd,
“GridFlow: Workflow Management for Grid
Computing”, in Proc. 3rd IEEE/ACM Int. Symp. on
Cluster Computing and the Grid, Tokyo, Japan, pp.
198-205, 2003.

[3]. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani and A.
Tacchella, “NuSMV2: an Open Source Tool for
Symbolic Model Checking”, Computer Aided

Verification, LNCS Vol. 2404, Springer Verlag, pp.
359-364, 2002.

[4]. E. M. Clarke, O. Grumberg and D. A. Peled, Model
Checking, MIT Press, 1999.

[5]. E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L.
Pearlman, K. Blackburn, P. Ehrens, A. Lazzarini, R.
Williams and S. Koranda, “GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave
Scientists”, in Proc. 11th IEEE Int. Symp. on High
Performance Distributed Computing, Edinburgh,
Scotland, pp. 225-234, 2002.

[6]. I. Foster and C. Kesselman, The GRID: Blueprint for
a New Computing Infrastructure, Morgan-
Kaufmann, 1998.

[7]. O. Grumberg and D. E. Long, “Model Checking and
Modular Verification”, ACM Trans. on
Programming Languages and Systems, Vol. 16, No.
3, pp. 843-871, 1994.

[8]. R. Milner, Communicating and Mobile Systems: the
Pi Calculus, Cambridge University Press, 1999.

[9]. Z. Nemeth and V. Sunderam, “Characterizing Grids:
Attributes, Definitions, and Formalisms”, J. Grid
Computing, Vol. 1, No. 1, pp. 9-23, 2003.

[10]. G. Salaun, L. Bordeaux and M. Schaerf, “Describing
and Reasoning on Web Services Using Process
Algebra”, in Proc. IEEE Int. Conf. on Web Services,
San Diego, USA, pp. 43-50, 2004.

[11]. S. Wang and M. P. Armstrong, “A Quadtree
Approach to Domain Decomposition for Spatial
Interpolation in Grid Computing Environments”,
Parallel Computing, Vol. 29, No. 10, pp. 1481-1504,
2003.

[12]. K. Xu, Y. Wang and C. Wu, “Ensuring Secure and
Robust Grid Applications - From a Formal Method
Point of View”, Advances in Grid and Pervasive
Computing, LNCS Vol. 3947, Springer Verlag, pp.
537-546, 2006.

[13]. K. Xu, Y. Wang and C. Wu, “Aspect Oriented
Region Analysis for Efficient Equipment Grid
Application Reasoning”, in Proc. 5th IEEE Int. Conf.
on Grid and Cooperative Computing, Changsha,
China, pp. 28-31, 2006.

[14]. K. Xu, Y. Wang, and C. Wu, “Formal Verification
Technique for Grid Service Chain Model and its
Application”, Science in China Series F –
Information Sciences, Vol. 50, No. 1, pp. 1-20, 2007.

[15]. J. Yu and R. Buyya, “A Taxonomy of Workflow
Management Systems for Grid Computing”, J. Grid
Computing, Vol. 3, No. 3-4, pp. 171-200, 2005.

