2014 IEEE International Conference on Systems, Man, and Cybernetics

October 5-8, 2014, San Diego, CA, USA

BreadZip: a Combination of Network Traffic Data and
Bitmap Index Encoding Algorithm

Ge Ma' ¥, Zhenhua Guo *, Xiu Li ¥, Zhen Chen®, Junwei Cao ™", Yixin Jiang', Xiaobin Guo'
"Department of Automation, Tsinghua University, Beijing, China
“Research Institute of Information Technology, Tsinghua University, Beijing, China
*Shenzhen Key Laboratory of Information Science and Technology, Tsinghua University, Shenzhen, China
"Electric Power Research Institute, CSG
mage69699@gmail.com, zhenhua.guo@sz.tsinghua.edu.cn

Abstract—Nowadays, rapid evolution of computers and
mobile devices has caused the explosive increase in network
traffic. So it becomes more and more necessary to archive
network traffic for analyzing network events and a lot of
emerging applications. Compression is fundamental for traffic
archival solution to save the storage space, and indexing is
effective to accelerate search queries for archive of traffic data.
In this paper, we propose BreadZip (blocks row-reordering and
adaptive index zip), a combination of initial traffic data and
index compression. BreadZip has three main advantages. 1) to
improve compressing efficiency and reduce memory footprint,
traffic data is reordered in sequence and divided into fixed-size
blocks; 2) to accelerate queries, an improved bitmap indexes with
smaller volume than traditional will be introduced; 3) to save
space, both traffic blocks and bitmap indexes are compressed in
different simple run-length encoding methods respectively.
Finally, our empirical results on network traffic from CAIDA
(Cooperative Association for Internet Data Analysis) show that
our solution can significantly reduce the volume of traffic data,
while simultaneously preserving the ability to perform selectively
queries with response times in seconds.

Keywords—network traffic archives; row-reordering; bitmap
indexes; compression; bitmap encoding

I. INTRODUCTION

Since the 1970s when current Internet was initially created,
there is a rapid increase on network traffic. Cisco predicts that
from 2011 to 2016, the volume of network traffic will
quadruple and reach 1.3 ZettaBytes [1]. According to the
statistics of China Unicom, mobile traffic increases rapidly
with CAGR (compound annual growth rate) of 135%. From
the data of China Unicom in 2013, the number of records is

more than 2 trillion (2x10") per month, and the volume of
traffic is over 500 TBytes per month.

In many instances the traffic data is an aggregation of
records from varieties of sources and collected in a single
location. Network traffic is a history of the status of a system.
It is extremely useful to “look back in time” and trace the
causality of events. Thus, system administrators are reluctant
to delete it, opting to archive the traffic in case it is needed in
the future. Meanwhile, an increasing number of applications
need to efficiently search massive traffic archives. Good
network traffic archival solutions are suitable for the

The research was partly supported by National Natural Science Foundation of
China (NSFC, Project No.: 71171121) and National “863” High Technology
Research and Development Program of China. (863 Project No.:
2012AA09A408).

978-1-4799-3840-7/14/$31.00 ©2014 |IEEE

applications which need the following conditions:
o record high-speed traffic data efficiently;

e reduce the size of network traffic repositories without
severely impacting performance;

e support drill-down queries to find ‘“needles in a
haystack™;

e the time of search and query should be as short as
possible.

In the context of long-term traffic archiving, compression and
indexing are essential enabling techniques. Compression
substantially reduces the size of traffic archives and indexing
directly increases the speed of search and query.

Previous researches show that considerable benefits can be
obtained by designing a compression approach based on the
data and requirements in specific domains. F. Fusco et al. [3]
propose a high-performance approach for high-speed data
archiving and retrieval of network traffic flow information,
named NET-FLi (NETwork Flow Index). It can be used in
networking anomaly investigation, on demand traffic profiling
and customized reporting and visualization. TIFAflow [4]
(TImemachine FAstbit flow) is used for traffic acquisition and
aggregation for forensic analysis, which is software based
dection that combines TImemachine [5] with Fastbit [6]
indexing to provide flow granularity data storage.

A 10 Gbps network link can reach a maximum of 14.8
million packets per second. It is a big challenge to index these
packets in one second. For the majority of network operators,
they manage more than one links. Even when they only record
the network traffic data, the volume of resulting data
repository is rather huge. Thus, for the real-time systems, how
to accommodate and index such big data for further analysis
remains to be a major challenge.

Our work introduces an integrated method, called blocks
row-reordering and adaptive index zip (Breadzip), which is a
combination of compressed traffic data and indexes. In
particular, the values stored in a traffic archive often share a
common prefix (e.g., IP addresses), typically lie within a
particular range (e.g., port numbers) and have high repetition
level within a relatively short time window. And Breadzip also
leverages these characters to optimize the traffic data.
Breadzip first row-reorders the traffic blocks and performs a

3235

RLE compression scheme, while builds indexes using an
improved bitmap index and compresses the bitmap index
sequences into a new format. The main achievements of this
work are as follows:

Breadzip is a new design based on row-reordering RLE
and bitmap index, as we also improve the traditional bitmap
index algorithm to benefit more. Our method shows better
flexibility and can be easily implemented. In the end, we
compare BreadZip with RasterZip [17] and COMPAX [13] on
compression ratio and query response time, which are current
state-of-the-art network traffic archival solution and bitmap
compressor. And the experimental results show that BreadZip
has higher compression ratio and faster query response time.

The rest of this paper is organized as follows. Firstly,
related works are listed in Section II. The methodology of
BreadZip is described and discussed in Section III.
Performance comparison between BreadZip and
RasterZip+COMPAX is evaluated in Section IV. Finally, we
give a conclusion and future work in Section V.

II. RELATED WORKS

This section summarizes the most notable works related to
our reaearch.

A. Columnar Databases

During the development of flow record -collection,
columnar databases have been identified to be more suitable
for compression and indexing [7, 8]. Column-oriented
databases, such as MonetDB [9], Big Table [10] and CStore
[11], provide several advantages: 1) have more opportunities
for compression by storing distinct attributes of traffic records
in separate physical columns; 2) reduce the I/O bandwidth for
queries that are highly selective at the attribute level, e.g.,
queries require just a few fields of traffic records to be
accessed; 3) allow network operators to be implemented
directly over the compressed traffic data. So we also adapt
columnar databases, for example, we take IP addresses and
port numbers into two columns.

B. Reordering

Some previous works show that reordering database tables
before compressing improves the compression rate. D. Lemire
and O. Kaser [2] prove that reordering columns by increasing
cardinality first often maximizes compression. They stress that
selecting the right column order is important as the
compressibility can vary substantially. The compression of
bitmap indexes also greatly benefits from table sorting. In [12],
D. Lemire et al. show that in some situation, the size of bitmap
index is reduced by nearly an order of magnitude. In addition,
some other algorithms are used to attain sorting objective. In
[13], F. Fusco et al. describe a system where bitmap indexes
must be compressed on-the-fly to index network traffic. To
improve compressibility without sacrificing performance, they
cluster the rows using locality sensitive hashing (LSH), so that
their system can accommodate the insertion of more than a
million records per second.

C. Bitmap Index

A bitmap index is a structure that can accelerates search
queries for archival data. Its format is shown in Tab. 1.

Table 1. An example of Bitmap Index.

Column Bitmap Index

RowID value =1 =2 =3 =4
0 1 1 0 0 0
1 3 0 0 1 0
2 4 0 0 0 1
3 4 0 0 0 1
4 2 0 1 0 0
5 3 0 0 1 0

Tab. 1 shows that a bitmap index is a binary array that
indicates the row positions. Since bitmap index uses atomic
operations, such as ADD, AND, BITWISE, etc, the retrieval
efficiency is much higher. However, bitmap index sacrifices
space to save time. And with the number of data rows
increasing, bitmap index becomes larger and larger. For this
reason, compressed bitmap indexes emerge at the right
moment. Compared to tree-based index, compressed bitmap
indexes: 1) are more simple and compact; 2) offer high-speed
retrieval; 3) are optimized for read-only data.

Research from compressed bitmap index encoding
algorithms has been raised and some are widely used. WAH is
proposed by K. Wu et al [14]. It introduces the method of
dividing 31-bit chunks into fill chunks (all of 31 bits are 0)
and literal chunks (the rest), then encodes all fill chunks into a
single fill word. And it performs well when there are huge
amount of consecutive 0 in the bit sequence. F. Deliege et al.
propose PLWAH [15]. PLWAH tries to encode the fill word
and its next literal word together if the literal word is nearly-
identical to a O-fill word. As a result, PLWAH has higher
compression ratio than WAH in general. F. Fusco et al.
propose a novel algorithm, named COMPAX [13]. It also tries
to combine literal words and fill words after dividing them.
However, COMPAX introduces a codebook which enables the
algorithm to encode original bit sequence in more paths.
Actually, COMPAX divides bit sequence into F (fill), L
(literal), FLF (fill-literal-fill), and LFL (literal-fill-literal)
types and it is current state-of-art compressed bitmap index
encoding. Thus, by experiment we will compare our approach
with COMPAX in Sec. IV.

I[II. METHODOLOGY

In this section, we focus on introducing the main data
structure, encoding and compression methods used in
BreadZip. In particular, we summary the BreadZip
compressing and decompressing procedure in Sec. III-D.

A. Improved Bitmap Index

The traditional bitmap index needs large storage space,
which makes bitmap index have plenty of room to be
compressed. And there are really several algorithms which
have good compression ratio, like PLWAH and COMPAX.
But we should notice that every column of bitmap needs to be
compressed. For example, if a traffic archive is IP address, its
bitmap index has 256 column. We should repeat 256 times

3236

compressing process. Considering the whole traffic data, the
workload of compressing bitmap index is non-ignorable. Then,
we propose an improved bitmap to relieve this problem
substantially, which is described as follows.

The main idea of our method is that using two small
bitmaps replaces the traditional large bitmap. The original
bitmap is treated as an 72X 7 matrix of bits. We assume that

the size of two small bitmaps is 72X n, and m X n, separately.

And we can calculate the values of #,(i=1,2) through
Equation 1 and 2.

(n,=1)’ <n<n (1)
(n, =) xn, <n<nxn, ()
If in traditional bitmap the position of 72, row is n™ and in

small bitmaps the position is 7" and7," , the relationship of
them is represented in Equation 3.

n™ =n" xn, +n," 3)

What’s more, Tab. 2 gives us some examples of

comparison between traditional bitmap and improved bitmap.

And Tab. 3 illustrates a specific example of improved bitmap
thatn =7 .

Table 2. Some examples of comparison.

and space into consideration, the improved bitmap is
extremely deserved to use.

B. Row-reordering

It has been discussed in Sec. II-B that reordering results in
significantly better compression ratios not only for traffic data,
but also for the data index. And we adopt columnar databases
that row-reordering is necessary. Row-reordering could lead to
data blocks with lower entropy, reduce bitmap index and
archive sizes and accelerate query response time.

What we should notice is that the reordered data is difficult
to recover to the initial state without other information. For
instance, we can leverage the timestamp attribution to obtain
the initial data, but some archived data may have no similar
attributions. So we introduce a sorted table to record the
original positions, which also use our improved bitmap. And
we only reorder the data in each block, instead of the whole
traffic data. It is unordered among blocks. Compared to the
whole data reordering, data in blocks reordering has some
advantages:

e the size of sorted table is not large, so that it is
convenient to be compressed;

e the complexity of time and computation is low, so it is
realizable to use this approach in real-time systems.

In BreadZip, row-reordering is essential operation and a

n n n, Volume Reducing =w flowgraph is present in Fig. 1.
4 2 2 0
6 2 3 16.7% Initial data
128 11 12 82% ; %ﬂf:id[\ﬂhl:d)
4096 64 64 96.9% ‘ Rl oot onety Regrlered PRI
Scamenting| 1 I T 5 1 0
. . 2 2 - o 1 4
Table 3. An example of improved Bitmap Index. o o e ek 3 Romdorne 3 o 0o 0 1.
RowID Column Bitmap Index A Bitmap Index B 3 4 4 . o0 1.
value =0 | =1 [= =0 [=l =2 5 5 R I T
0 6 0 0 1 1 0 0 = =
1 5 0 1 0 0 0 1 Fig. 1. The flowgraph of row-reordering.
2 4 0 1 0 0 1 0
3 3 0 1 0 1 0 0 C. Run-length Encoding
4 2 1 0 0 0 0 1 . . .
5 | 1 0 0 0 1 0 We compress each reordered data and bitmap index in a
6 0 1 0 0 1 0 0 column manner using run-length encoding (RLE). There are
three variants of RLE: RLE1 for improved bitmap index,

From the examples in Tab. 2, we easily find that when # is
small, the volume reduces little, but with » increasing, the
result is quite considerable, e.g., when n=4096, we can save
about 96.9% space. In summary, our improved bitmap has the
following advantages over traditional bitmap:

e the volume of bitmap is reducing substantially and the
more number of column is, the better result of volume
reducing is;

e the repeat times are reduced and the workload of bitmap
compression becomes less heavy;

Because our improved bitmap replaces large bitmap with
two small bitmaps, the operation of retrieval will become
double. But the bitmap uses atomic operations, which are
pretty fast, and taking the significant trade-off between time

RLE2 for sorted table and RLE3 for reordered data. RLE1
offers a one-sided variant that compresses sequences of both
zeros and ones, whereas the two-sided RLE2 focuses on
sequences that the number of nonzero bits is fixed and small.
RLE3 is the most popular RLE. They offers different
codebooks and more details are provided below.

RLE1 is used to compress the improved bitmap. Its
codebook has two structures, the difference between which is
just the length. Fig. 2 depicts the codebook of RLEI.

0 1 000010/00001010

L The couunter of consecutive bits
Code length:1 or 2 bytes

Bit typei0 or 1

Fig. 2. RLEI codebook.

Second byt

RLEL

3237

From Fig. 2, we design RLE1 codebook that the first bit
encodes the current input stream type (0 means that bit type is
0, and 1 means that bit type is 1), the second bit encodes
current code length (0 means the length is 1 byte and 1 means
the length is 2 bytes) and the remaining 6 or 14 bits are used
as counter, counting the number of consecutive zero or
nonzero bits. In short, the first bit determines the bit type of
counter counting, and the second bit determines the length of
counter (when the length is less than 64 bits, the counter uses
6 bits to count; when the length is more than 64bits the
counter uses 14 bits to count). So the code in Fig. 2 represents
522 bits consecutive nonzero. And Fig. 3 gives some examples
that how an input stream is encoded.

24 bits)

00000000 ... 00000000 0:0:011000
1023 bits

00000000 ... 00000000 0:1:000001 | 11111111
1 e [ert:000001 | 11111111

18 bits)
11111111 ... 11111111 1:0:010010

1539 bits
11111111 ...11111111 1:1:000011 | 00000011
Fig. 3. The examples of RLE1 coding.

Since we set the block size to be 4096 (4K) rows, the

number of consecutive zeros or ones is less than 4096 (2').
So the RLE1 encoding doesn’t overflow in our blocks.

RLE?2 is used to compress the sorted table. The difference
between sorted table and bitmap is that each column in bitmap
could have uncertain quantity nonzero bits, while in sorted
table each column must have fixed small nonzero bits. Namely,
the nonzero bits in sorted table are more sparse.

Firstly, we define two formats of word:

e O-fill-word: when in consecutive 7 bits all the 7 bits are
zero, this sequence is called 0-fill-word, e.g.,0000000 ;

e dirty-word: when in consecutive 7 bits there is a nonzero
bit or more, this sequence is called dirty-word,
€.g2.,0001000 .

Then RLE2 also has two structures, one counts the amount of
0-fill-word before the position of a dirty-word and the other
records the dirty-word. And we set their length to be a byte (8
bits) and Fig. 4 depicts the codebook of RLE2.

8 bitd

re2 [0[000001 1

Word typer 0-fill-word
or dirly-word
Bit lvpe1Oor |

Fig. 4. RLE2 codebook.

In RLE2 codebook, 1% bit encodes the sequence type (0
means that this type as a counter encodes the number of 0-fill-
word, and 1 means that this type records a dirty-word) and the
rest of bits stands for the word type. Fig. 5 gives some
examples how RLE2 runs.

3238

28 bits

000000 ... 000000 0:0000100

14 bits
0100111 1100101 3 o
RLE? encoding 1:0100111{1:1100101
21 bits 7 bits
00000 ... 0000 [0001110 0:0000011{1:0001110

159*7 bits

00000 ... 0000 0:1111111{0:0100000

Fig. 5. The examples of RLE2 coding.

In the RLE2 encoding, it may occur that the last bits is less
than seven. On this occasion, we fill up them with zero bit
until reaching 7 bits. And in the process of decompression, we
only choose the top 4096 bits as the initial data.

RLES3 is used to compress reordered data. It is the most
common RLE without special parts that when there are
consecutive identical data value, they are encoded as a single
data value and count respectively, rather than as the original
data. In addition, we set the sum length of value and count to
be 2 bytes. Fig. 6 give examples of RLE3.

) 12 bytes valud]166) |, count(32)
166 [166] 166166 | &y 1 encoding 10100110 [00100000
) 288 bytey valug(166) 1 count(233)) value(166) | count(33)
166 | 166]. [166 [166 10100110 11111111 | 10100116 [00100001

Fig. 6. The examples of RLE3 coding.

Since we set the sum length of value and count to be 2
bytes, it is possible that the RLE3 encoding overflow in our
blocks and the second example in Fig. 6 describes how to deal
with such situation.

D. BreadZip compressing and decompressing process

An overview of our solution is depicted in Fig. 7. Our
solution compressing comprises the following procedures:

Step 1. The traffic archival data is separated into different
columnar databases. This step makes the same attribution
data into the same place, which increases the
opportunities for compression and reduces the 1/0
bandwidth for queries.

Step 2. In columnar databases, traffic archival data is divided
into equal blocks of 4K rows.

Step 3. Each column is row-reordered in order to achieve
better locality and boost compression. And we get an
additional sorted table, using our improved bitmap index,
to assist us to recover the initial data.

Step 4. Improved bitmap index is built for the reordered data
to accelerate search queries response time.

Step 5. For each block, the reordered data, sorted table and
bitmap index are compressed into corresponding format
by using RLE3, RLE2 and RLE1 respectively.

From above steps, we find that our solution can be easily
executed on the fly and in parallel, which improves the
performance substantially.

In addition, the decompressing process or the query
process is always regarded as the inverse process of
compression. For instance, if we want to find out the value a
in a block (assume blockID is N), we should first encode the

value a corresponding to the bitmap index (anssume bl.1

and bf). Then we only decompress the b, and bf columns of

bitmap index instead of the whole columns. And we use bit
operations to find out the reordered position (assume the
rowlD is ¢) of value a. Next we encode the rowlID c¢

corresponding to the sorted table (assume Bl.1 and sz.) and we

also only decompress the Bil and B? columns of sorted table.

Finally, we can find out the initial position (assume the rowID
is C) of value a through bit operations. The above procedures
are depicted in Fig 7 (b). Then through the information of
initial position C and value a, we can build connection of
different columnar databases as the data in different columnar
databases with the same blockID N belongs to the same record,
when these data shares a common initial position C.

Colunmar Database

|| 4086
SIP blocks| rows

ﬂk\:mm“ing
§17 Blocks

Reordered | | Sorted
data table

Colummar Database

Tilocks Division
| ||

Bituap ndey
Sortcd | i Building
Sorled| | Bilnia <::|
table || indext

(a) the encoding process

Tnitial Recordd
1P R D
TORTER 00

Tlows Columin
Scparalion]

1010219

Compressed 810 Bloeky

Comprossion
Compressod)
reordered datal

Compressed
sorted tahle

Comprosscd
bitmap inde

BlockID N

In our experiments, we extract the source IPs from 10
million IPv4 packets, meanwhile generate the reordered data,
sorted tables and bitmap indexes (we pick out each byte of IP
address, four bytes in all, and reorder and convert each byte
into bitmap respectively for further encoding). Then we
encode them by BreadZip and RasterZip + COMPAX
respectively to evaluate the encoding schemes and make
comparison between them, i.e., compression ratio and retrieval
efficiency. For portability reasons, we determine not to exploit
any specific instruction set.

A. Compression Ratio

In order to be compared with BreadZip, we use RasterZip
to compress the reordered data, and use COMPAX to encode
the sorted tables and indexes using improved bitmap. In Fig. §,
we illustrate simple and clear comparison results with
BreadZip and RasterZip+COMPAX. And detailed information
is reported in Tab. 4.

Table 4. An example of Bitmap Index.

RasterZip Compression

Field Initial + BreadZip Ratio of

COMPAX BreadZip
Bytel 80,000,000 4,125,840 3,794,488 4.75%
SIP Byte2 80,000,000 9,701,600 9,106,168 11.39%
(CAIDA) | Byte3 80,000,000 10,572,152 9,639,344 12.05%
/bit Byte4 80,000,000 11,095,288 9,952,624 12.45%
sum 320,000,000 35,494,880 | 32,492,624 10.16%
Sorted Table/bit | 5,120,000,000 | 38,645,565 | 24,434,312 0.48%
Bytel | 320,000,000 20,917,126 7,534,242 2.36%
Bitmap | Byte2 | 320,000,000 34,009,816 | 15,734,224 4.92%
Index Byte3 | 320,000,000 38,376,640 | 16,667,032 5.21%
/bit Byte4 | 320,000,000 42,767,560 | 17,199,200 5.38%
sum | 1,280,000,000 | 136,071,142 | 57,134,698 4.47%

Encoded Bitmap Index
i 2

]

Table 5. Disk consumption compared with RASTERZIP+COMPAX.

Encoding Bit ind Searching SIP Sorted Table Bitmap Index
Valuea =) ‘a“f,‘}? ‘bnz)e") Rowibe J L BreadZip 8.45% 36.77% -58.01%
27y
x 10
Encoded Sorted Table [] Encoding (I RasterZip+COMPAX Il BreadZip
Result Searching Sorted table ¢ : :

Reordered position ¢
Initial position C

— W r ¢(B,B)

(b) the decoding process

Fig. 7. An overview of Breadzip.

IV. NUMERICAL RESULTS

In this section, we will evaluate the implementation of our
approach. We investigate critical performance metrics of the
archival and retrieval process. In addition, we compare our
approach with RasterZip and COMPAX, which are current
state-of-the-art network traffic archival solution and bitmap
compressor respectively.

We use a real Internet traffic trace from CAIDA [16] in the
evaluation. This Internet traffic trace is anonymized and
captured from a core router of backbone network by CAIDA
in 2013. There are more than 10 million IPv4 packets in this
data set. And each packets is stored as six tuple <SIP, sport,
DIP, dport, proto, others>. In our experiments, we pick out
source IPs as an example.

N

Disc Comsumption/bit

SIP-b1 SIP-b2 SIP-b3 SIP-b4 Blb1 BIb2 BI-b3 Bl-b4 ST(*10)
Field
Fig. 8. The examples of RLE3 coding.

From Fig. 8, it clearly shows that BreadZip has a better
compression ratio and smaller disk consumption than
RasterZip+COMPAX in all three fields.

From Tab. 4 and Tab. 5, in the field of SIP, we note that
BreadZip is slightly better than RasterZip, but in the field of
sorted table and bitmap index, BreadZip is much better than
COMPAX. Then we learn that BreadZip substantially reduces
the disk consumption. In particular, the size of BreadZip-
encoded sorted tables are just 64% of COMPAX-encoded’s
and the size of BreadZip-encoded indexes are just 42% of that

3239

of COMPAX-encoded. It is because that BreadZip has a
simpler and more compact encoding mechanism than
RasterZip+COMPAX.

B. Retrieval Efficiency

Next, we measure the performance during query time,
which corresponds to evaluate the retrieval efficiency of both
index and archive (have been encoded). For the sake of
comparison, we record the cumulative index and archive time.
Then we do the following experiments in the dataset CAIDA.

Experiment 1 measures the index time. Each time we
randomly choose a block and judge whether this block
contains some specific SIPs that we select 1,000 random
source IP addresses in advance. And this procedure is repeated
10,000 times. The result is recorded in Tab. 6.

Experiment 2 evaluates the archive time. We choose 10,000
random source IP addresses, search each IP in the whole index
and retrieve the initial data from the archive respectively. The
result is recorded in Tab. 6.

Table 6. Comparison of retrieval efficiency.

Index Time Archive Time

t)
M 0.83 0.77

: ‘, tRH.S‘I(.’I‘Zi[} +COMPAX

From the Tab. 6, we find that BreadZip provides better
retrieval efficiency of not only index time, but also archive
time. We summarize the following two reasons: 1) the size of
BreadZip-encoding index is smaller; 2) the codebook of
BreadZip is more concise. Thus, Breadzip improves the
decompressing efficiency and accelerates the speed of search
and retrieval.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose BreadZip, a combination of
initial traffic data archive and index compression, which has
the following advantages over traditional methods:

1. BreadZip introduces partial row-reordering. Relative to
the overall ordering, it can easily recover the initial data
without bringing in severe performance damage. And we
introduce the sorted table so that we can finish the
recovering process not depending on other attributions,
like timestamp. In addition, it is not necessary when the
traffic archive shares large amounts of redundant prefix,
such as IP addresses in a LAN.

2. BreadZip introduces an improved bitmap, which
substantially reduces the volume of bitmap. Meanwhile,
the workload of bitmap compression is also reduced.

3. BreadZip has a simple and compact codebook, so it is
suitable for compression and decompression, the speed of
which is also improved.

4. Compared to the current state-of-the-art RasterZip and
COMPAX, BreadZip has better compression ratio and
higher retrieval efficiency.

5. BreadZip can be applied to real-time system and other
systems, such as library information retrieval system, etc.

We realize that the traffic archiving and retrieving is a very
sophisticated system, techniques described in this paper are
just the skeleton and some of them need to be further explored.
In the future, we will conduct more experiments to make all-
round evaluation on the new algorithm. What’s more, we will
realize BreadZip encoding in GPU to achieve higher
performance.

REFERENCES

[1] Cisco, I. "Cisco visual networking index: Forecast and methodology,
2011--2016." CISCO White paper (2012): 2011-2016.

[2] Lemire, Daniel, and Owen Kaser. "Reordering columns for smaller
indexes."Information Sciences 181.12 (2011): 2550-2570.

[3] Fusco, Francesco, Marc Ph Stoecklin, and Michail Vlachos. "Net-fli: on-
the-fly compression, archiving and indexing of streaming network
traffic."Proceedings of the VLDB Endowment 3.1-2 (2010): 1382-1393.

[4] Chen, Zhen, et al. "TIFAflow: Enhancing traffic archiving system with
flow granularity for forensic analysis in network security." Tsinghua
Science and Technology 18.4 (2013).

[5] Maier, Gregor, et al. "Enriching network security analysis with time
travel."ACM SIGCOMM Computer Communication Review. Vol. 38. No.
4. ACM, 2008.

[6] Wu, Kesheng, et al. "FastBit: interactively searching massive
data." Journal of Physics: Conference Series. Vol. 180. No. 1. IOP
Publishing, 2009.

[7] Deri, Luca, Valeria Lorenzetti, and Steve Mortimer. "Collection and
exploration of large data monitoring sets using bitmap
databases." Traffic Monitoring and Analysis. Springer Berlin Heidelberg,
2010. 73-86.

[8] Abadi, Daniel J., Samuel R. Madden, and Nabil Hachem. "Column-
stores vs. row-stores: how different are they really?." Proceedings of the
2008 ACM SIGMOD international conference on Management of data.
ACM, 2008.

[9] Boncz, Peter A., Martin L. Kersten, and Stefan Manegold. "Breaking the
memory wall in MonetDB." Communications of the ACM 51.12 (2008):
77-85.

[10] Chang, Fay, et al. "Bigtable: A distributed storage system for structured
data." ACM Transactions on Computer Systems (TOCS) 26.2 (2008): 4.

[11] Stonebraker, —Mike, et al. "C-store: a column-oriented
DBMS." Proceedings of the 31st international conference on Very large
data bases. VLDB Endowment, 2005.

[12] Lemire, Daniel, Owen Kaser, and Kamel Aouiche. "Sorting improves
word-aligned bitmap indexes." Data & Knowledge Engineering 69.1
(2010): 3-28.

[13] Fusco, Francesco, Michail Vlachos, and Marc Ph Stoecklin. "Real-time
creation of bitmap indexes on streaming network data." The VLDB
Journal—The International Journal on Very Large Data Bases 21.3
(2012): 287-307.

[14] Wu, Kesheng, Ekow J. Otoo, and Arie Shoshani. "Optimizing bitmap
indices with efficient compression." ACM Transactions on Database
Systems (TODS) 31.1 (2006): 1-38.

[15] Deliege, Frangois, and Torben Bach Pedersen. "Position list word
aligned hybrid: optimizing space and performance for compressed
bitmaps."Proceedings of the 13th International Conference on
Extending Database Technology. ACM, 2010.

[16] CAIDA. Archipelago measurement infrastructure. http://www.caida.org/

[17] Fusco, Francesco, Michail Vlachos, and Xenofontas Dimitropoulos.
"RasterZip: compressing network monitoring data with support for
partial decompression." Proceedings of the 2012 ACM conference on
Internet measurement conference. ACM, 2012.

3240

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

