Implementation of Clean NDN with Network
Virtualization

Junwei Cao™?, Shuo Chen'?, Zhen Chen*?, Ge Ma'?, Ziwei Hu*, Jing Zhou*, Jing-
hong Guo*

!Research Institute of Information Technology, Tsinghua University, Beijing, 100084, China
?Tsinghua National Lab for Information Science and Technology, Beijing, 100084, China
®Department of Automation, Tsinghua University, Beijing, 100084, China
“State Grid Smart Grid Research Institute, Beijing 102209, China

Corresponding email: jcao@tsinghua.edu.cn

Abstract. Content dissemination is the main usage of current Internet. Named
Data Networking (NDN) is a paradigm shift from the traditional host-to-host
network to the named content based network by entirely new designed network
architecture and protocol. The data retrieval and routing are just based on the
name of the data, instead of the location of the data. CCNXx, which is the most
popular realization of NDN, is designed based on TCP or UDP. While current
implementation of NDN is an overlay TCP/IP based network, the major contri-
bution of this paper is to propose a clean implementation of NDN by using
Ethernet frame directly to encapsulate named data and a scheme for large-scale
deployment of clean NDN over Software Defined Networking (SDN) based
virtualized network platform. This paper demonstrate pure named content ar-
chitecture design, the concrete implementation using Ethernet frame, large-
scale deployment over SDN based virtualized network, and its brief evaluation
compared with overlay based CCNx.

Keywords: Internet Architecture, Information-centric Networking, Named Da-
ta Networking, Content-Centric Networking, Software Defined Network, Net-
work Virtualization.

1 INTRODUCTION

The original motivation of network is to guarantee point to point conversation be-
tween two entities. However, the functions of Internet and applications which run on
it have changed dramatically and mainly converged to data distribution. Today’s In-
ternet is based on to ossifying TCP/IP protocol stack and static host-to-host conversa-
tion model to disseminate content whose volume grows rapidly. Information-centric
networking (ICN) is a clean-slate approach to the architecture of network which fo-
cuses on the data itself rather than the specific physical location. Named Data Net-

mailto:jcao@tsinghua.edu.cn

working (NDN), also called Content Centric Networking (CCN), is one of the most
popular architectures of ICN proposed by PARC [1]. Some related designs are
DONA, TRIAD, PSIRP and etc [2]. NDN is a new network architecture that rede-
signs the model of network communication, from today's focus on where - addresses
and hosts, to what - the content that users and applications care about. Because of this
key feature, basic network functions such as routing, forwarding and security are
named data based instead of address and connection based.

The common implementation of NDN, for example, CCNx is deployed upon tradi-
tional TCP/IP network. This overlay design is easy to be deployed, adapts to current
Internet implementation and could utilize some mature strength of current network
architecture including reliable communication, abundant routing optimization algo-
rithms and so on. However, this overlay design deepens the protocol stack and pro-
duces some unnecessary overheads. In CCNXx, content trunks are split and reassem-
bled through TCP/IP stack. Besides, the routing process is executed twice in both
NDN router and common IP router. We propose an implementation of NDN trunks
over Ethernet frame protocol and name it as clean NDN implementation. The prin-
ciple of clean NDN is that NDN protocol directly runs on layer 2 link protocol with-
out IP address, corresponding with the original motivation of NDN to shift where to
what model. In our work, CCNx code is modified to let content trunk be carried in
Ethernet frame directly. The brief comparison between overlay NDN and clean NDN
is shown as following table and figure 1. Figure 1 shows that the NDN trunk, which
is the named data packet, is directly encapsulated in Ethernet frame.

Table 1. Comparison between overlay based NDN and clean NDN

Overlay Clean NDN
NDN
Deployment | Easy Hard
Overhead Much Little
Protocol Deep Shallow
stack
Routing Twice Once

Large-scale testbed for network emulation is important for function validation and
performance evaluation. In our implementation, the clean NDN is deployed over
virtualized emulation platform. The technology of virtualization provides fast and
elastic methods to deploy large-scale network testbed.

Overlay NDN

NDN Chunks:
TCP or UDP-

1P
1P

Link Layer-
Physical Layer:

Host 1 l Host 2

NDN Chunks:

Physical Layer:

Host 1 Clean NDN Host 2

Fig. 1. Clean NDN model

The rest of paper is organized as follows. Section 2 gives some background about
our research and experiment. Section 3 describes concrete implementation of clean
NDN and the design of clean NDN network. Section 4 demonstrates deployment of
clean NDN on virtualized network testbed. Section 5 shows simple function valida-
tion, performance evaluation. Section 6 concludes the paper and addresses the future
work.

lib

~ cend

~ cend

Fig. 2. NDN application development framework

2 BACKGROUND

2.1 CCNx

CCNx' is an open source project developed by PARC and a software prototype
which implements NDN architecture. NDN focuses on named content, and the func-
tionality of NDN is guaranteed by name based routing property. The specification of
CCNx realizes the notion of NDN. It prescribes the format of interest and content
object, naming and encoding specification of NDN packets, CCNx node model and
so on. The CCNx node model implements three main data structure of NDN: Content
Store (CS), Forwarding Information Base (FIB) and Pending Interest Table (PIT).
The FIB structure is the forwarding table in NDN, while the basic structure of IP
routing table is the set of destination IP and the next hop. Similarly, the FIB of NDN
maintains the prefix of the name and the next hop. Content Store is the local cache of
NDN node, which records the recent hot NDN packets. PIT keeps track of upstream
data requests so that returned data can be sent back to the requesters. The CCNx node
runs as a daemon named ccnd to process NDN protocol, take charges of forwarding
interest referring to FIB table, cache NDN packets in CS and response to interest with
content object according to PIT.

Current implementation of CCNXx is an overlay network over TCP or UDP. The
configuration of FIB is done by program named ccndc. It can bind NDN face with
TCP or UDP socket. The transmission of interest and content object is through NDN
face. In CCNX, the formatted NDN packet is sent through TCP and UDP sockets.

The NDN application development framework is shown as Figure 2. The configu-
ration command program of CCNXx, such as ccndc, CCNx applications bound with
CCNx project, such as ccnr, which is the repository of files in NDN node model, are
all based on CCNXx client library named libccn. The CCNXx client is a local socket
communication program. The command or application message will be encapsulated
as CCNXx interest or content object and sent by local CCNXx client with local socket
communication to ccnd. The CCNx client will register in ccnd as face enstry in FIB.
The ccnd daemon is the only communication portal among different CCNx hosts. If a
developer wants to develop a new application of CCNx, he or she just needs to call
the CCNXx client library to connect with ccnd daemon and follows the CCNx naming
and interest specifications. Thus the modification of ccnd exterior communication
mechanism will not influence CCNx commands and applications.

2.2 Related Work

Van Jacobson et al. [1] firstly proposed NDN architecture in 2009. Principles of NDN
are illustrated in this paper, which could be treated as the guideline of NDN research.
In the evaluation section of this paper, the NDN implemented over Ethernet is briefly
mentioned. However, no open-source code of NDN directly over Ethernet is ever

! Http://ww.ccnx.org/

released up till now. Yuan, Haowei et al provides detailed analysis of CCNx code and
evaluation of CCNx code function efficiency in [11].

Junxiao Shi et al. [4] proposed a link protocol for NDN, NDNLP. NDNLP runs
between the NDN chunks and underlying network protocol including TCP, UDP and
Ethernet links. The NDNLP protocol receives NDN packets and sends it to lower
links. NDNLP provides two main features: fragmentation and reassembling to sup-
port different size of packet, acknowledgement and retransmission to support reliable
transmission. Current implementation is the mode of proxy which means that an in-
dependent daemon receives and forward NDN packets for ccnd. The daemon ndnld
receives CCNx packets from ccnd, encapsulates and sends out them in the format of
NDNLP, receives remote NDNLP packets, decodes them and sends them to local
cend.

BJ Ko et al. [5] proposed an ICN based data center network architecture to resolve
many pain points of current data center network. It also decouples the control plane
and data plane. Luca Veltri et al. [6] discussed the integration of ICN and SDN and
considered how OpenFlow architecture could be modified to support ICN function.
Jing Ren et al. [7] discussed the role of virtualization in ICN deployment. They dem-
onstrated that network virtualization could enable coexistence of different architec-
ture of ICN. Dimitris Syrivelis et al. [13] proposed an ICN architecture with SDN
support in forwarding functions but their work is also in the early step.

3 IMPLEMENTATION OF CLEAN NDN

In this section we will present the implementation of clean NDN and design of clean
NDN network.

NDN face is bound with practical Network Interface Card (NIC) or virtual NIC.
Different faces are directly connected by L2 link. We implement this work by revis-
ing CCNx code and build the virtual switched network on Linux servers. In the fol-
lowing section, we will first introduce the supporting technology and briefly demon-
strate the modification of CCNx codes and configuration on the Linux server.

3.1 Enabling Techniques

3.1.1 Jumbo frame.

Although the default Maximum transmission unit (MTU) of Ethernet frame is 1500
bytes in most operation systems, the MTU can be changed. In the protocol of CCNX,
the default size of packet is 4096 bytes. If the size of MTU is less than the size of
CCNx pakcet, the CCNx packet will be split into different Ethernet frames. However,
the Ethernet protocol does not support reorganization. Many NICs support larger
Ethernet frames, which are called jumbo frames. Jumbo frames are Ethernet frames
with MTU 1500 bytes. Conventionally, jumbo frames can carry up to 7000 bytes of
MTU. Most Gigabit Ethernet NICs support jumbo frames.

3.1.2 AF_PACKET, Raw socket and libpcap

In our implementation, we use two methods to send and receive Ethernet frame:
socket and libpcap. To make socket function support layer 2 communication, the
configuration is shown as follows. AF_PACKET is the first parameter of function
socket(int socket_family, int socket_type, int protocol). This AF_PACKET socket is
used to receive or send raw packets at device driver (OSI Layer 2). The socket_type
could be SOCK_RAW for raw sockets or SOCK_DGRAM for cooked packets with
the link level header removed.

Our implementation of clean NDN also supports libpcap? for transmitting Ethernet
frame. Libpcap is developed for low-level packet capture and filter. It is supported by
Linux and UNIX platform.

3.2 Implementation

In this section, we will demonstrate how to build a one-hop clean NDN network with
two Linux hosts over Ethernet frame. CCNx code is enhanced to support Ethernet
frame socket transmission and clean NDN face configuration.

3.2.1 CCNx code modification.

Unlike current NDNLP [4] implementation, we directly modified CCNx code. The
major work can be summarized into two parts. The first part is to revise ccnd related
code to support raw socket communication. The destination MAC address is set to be
broadcast because there is no protocol like ARP to get the destination address. The
second part is to revise ccndc related code to add clean NDN face support. We just
add some flags or macros to decide the type of protocol or faces and extra Ethernet
frame transmitting functions. The practical modification is case branch and the mount
of modification is rather little.

Our modification of CCNx code is based on version 0.7.0 and is under develop-
ment. The current released code could support Ethernet face registration and basic
communication. Transmission efficiency and other functions such as neighbor dis-
covery and synchronization will be developed in the future research. Our code is
released on Github®.

3.2.2 One-hop configuration.

This section will demonstrate the configuration for one-hop direct connection of two
Linux hosts.

We choose Ubuntu Server 13.04 as the experiment platform. Our server’s CPU is
Intel Core i7-3770 3.4 G @ 3.40GHz and RAM is 4G. NIC is Intel 82579 GbE which
supports 1000M Ethernet. Key points of configuration are listed as follows:

2 http://www.tcpdump.org/
% http://github.com/chenatu/ccnx-underlay

¢ NIC should support jumbo frame of larger MTU, for example 7000.

e The clean NDN should be detached from TCP/IP protocol stack, in case that the
NIC would receive TCP/IP packets that clean NCN face could not handle.

e The installation process of clean CCNXx is the same as the common CCNXx. The
configuration of Ethernet face and processes of basic communication experiment
could be referred in the README of the released codes on Github.

3.3 Clean NDN Network Design

The clean NDN nodes cannot run on conventional TCP/IP network, because common
router or switch does not support Ethernet frame without MAC address. Bong Jun Ko
et al. proposed an information-centric architecture for data center networks. It demon-
strates a design of local area network for clean NDN network cluster. We propose a

local area network design for clean NDN referring to this work, shown as figure 3.
Control Plane

. Name . .
Routing Mgmt Policy Security
NDN Com NDN Repo
NDN L2 Router NDN L2 Router

NDN Core
Router

Fig. 3. Local area clean NDN network design

In this local area clean NDN network (LACNN), all the nodes are ccnd nodes,
which follow the same NDN protocol specification. The NDN trunk underlying link
is direct link layer. Routing, forwarding, security, and other network problems are
resolved in NDN architecture itself. Although all the nodes run ccnd, they focus on
different usage and their roles in the network are different.

o For NDN core router, it takes charge of routing and forwarding NDN packets from
the border NDN nodes. Its main job is routing, so it may have better FIB lookup
performance and have larger forwarding buffer.

e For NDN level 2 router, it is the bridge between border and core network. It may
have relatively poorer FIB lookup performance than NDN Core Router but have
larger Content Store (CS), for caching hot content locally for better content deli-
very speed. Here level 2 does not mean link layer.

o Applications of NDN are deployed at the border of the network. NDN Com node
is common client following NDN protocol. NDN Repo is server model for public
storage.

e The upper control plane takes charge of configuration of ccnd FIB, monitors states
of important routers, manages the naming and dynamically controls data traffic.
[14] The control model will be illustrated in next section.

The design above is the simplest model of LACNN. It covers the brief design prin-
ciples of clean NDN network and illustrates a blueprint of large-scale clean NDN
network deployment. The practical deployment could follow this layered architecture
and LACNN will be deployed over virtual network.

4 VIRTUALIZED DEPLOYMENT OF CLEAN NDN

Network virtualization and OpenStack technology give a more programmable and
flexible approach to control states of network. The deployment of clean NDN over
virtualized platform has the following advantages:

o Elastic and large-scale deployment: The large-scale experiment is hard to conduct
and costs much before the SDN era. With the help of virtualization technology,
several physical hosts could virtualize thousands of virtual hosts according to the
experiment needs. Furthermore, new virtual hosts and virtual network components
can be created quickly based on the virtual template.

e Programmable network: The flow table of virtual L2 switch is programmable.
Thus, we could easily change the topology and link state of the network. This fea-
ture is important for clean NDN deployment because there is no protocol like ARP
in clean NDN network now and the virtual ccnd host could not know the destina-
tion MAC address. Thus all the Ethernet frames in clean NDN are broadcast. Net-
work routing is processed by upper ccnd based on CS, FIB and PIT. The pro-
grammable flow table controls the topology of virtual ccnd nodes and plays the
role as multiple network wires.

In our virtualized network testbed, we use a series of virtualized techniques. We
choose KVM (Kernel-based Virtual Machine) as the virtualization infrastructure for
creating virtual hosts. The overall platform is based on OpenStack® project. In our
testbed, we mainly focus on computing component for virtual hosts and network
component for virtual network.

OpensStack is a series of cloud computing management components to provide an
infrastructure as a service (IAAS). Computing, network and storage of data center
can be virtualized as a pool which can be monitored and controlled conveniently by
administrator through dashboard.

Component Nova is used as the controller of KVM virtual hosts. It mainly handles
the requests for creation, deletion and configuration of virtual hosts.

* http://www.openstack.org/

http://www.openstack.org/

Component Neutron is used as controller of virtual network. It mainly handles the
control command of the network. OpenvSwitch® is the virtual switch software we
choose to connect the virtual hosts. It supports OpenFlow protocol to control the flow
table. We use Neutron to control the whole virtual network, change the topology and
link state of network as we need. Figure 4 shows the basic deployment of virtual net-
work testbed.

The design of the virtualized testbed follows the principle of SDN, which separates
control plane and data plane. Jing Ren et al. proposes a short term and a long term
approach to use OpenFlow architecture to support ICN. In our deployment, we also
refer to this two-step approach. In short term, the L2 virtual switch is the conventional
Ethernet Switch. The Neutron Service controls the flow table of the virtual Switch to
set the topology and link state of the data network. The management network is based
on IP network. The NDN routing is handled by upper NDN virtual node according to
CS, PIT and FIB. The virtual switch just focuses on forwarding Ethernet frames based
on the flow table. The common virtual switch just handles the NDN packet as Ethernet
Frame. The process of forwarding in Ethernet layer and routing in ccnd are still redun-
dant.

In long term approach, the open-source OpenvSwitch will be modified to integrate
with ccnd. The flow table will be modified to be FIB in ccnd. The virtual switch could
resolve the Ethernet frame, extract the prefix of the NDN packet, and submit to ccnd to
forward this packet according to CS, PIT and FIB. In this case, the MAC address of
Ethernet frame is useless, because the flow table is replaced by FIB in NDN model.
The spanning tree protocol (STP) is useless because NDN resolves the loop problem in
its own architecture. In control plane of SDN, IP network is replaced by clean NDN
network. The OpenFlow protocol is extended by clean NDN network configuration
APl including [6] :

Namespace broadcast and configuration

Face registration, deletion

Real time FIB, PIT monitor and controller

CS monitor, policy controller and cache manager
Public key management

The brief comparisons between short term and long term approach are listed in table
2.

The control commands listed above do not mean to replace the distributed network
model of NDN. It is easy to control FIB using SDN. However, PIT is not suitable for
central control because large amount of and volatile state of entries in PIT. NDN still
operates in distributed mode, but if needed, it can be controlled by SDN. Some of the
problems are hard to be resolved by distributed solutions. For example, name prefix is
distributed among the network by name flooding in NDN. Obviously, it is troublesome
to broadcast some public service name prefix to the whole network. In this case, the
central control plane name broadcast is a good option. For another example, in case of
the fluctuation of network flow, it is easy to deal with load balance by central control.

% http://openvswitch.org/

http://openvswitch.org/

Table 2. Comparison between short term and long term approach

Short term Long term

Virtual No Yes
switch NDN
FIB support

Manage- IP NDN
ment network
protocol

OpenFlow No Yes
NDN API

In current research stage, the short term approach is adopted and the evaluation in
the following section is based on the short term approach. The physical host is HP
Z220 with Intel Core i7-3770 3.4 G, RAM 16G, Intel 82579 GbE, OS Ubuntu-desktop
13.04 and KVM. The virtual OS is Ubuntu-server 12.04 because of the requirement of
OpenStack. We choose oneStack® which is a tool to fast deploy OpenStack service.
The virtual network is deployed over 5 physical hosts which emulates 16 virtual hosts.

5 EVALUATION

5.1 Experiment Setting

Two cases are discussed in short term approach. The further evaluation will be done
in future work based on long term approach.

e Case 1 - internal hosts: Two NDN vNodes in the same physical host are connected
with one NDN vSwitch.

e Case 2 - crossing hosts; Two NDN vNodes in different physical hosts are con-
nected with one physical switch through NDN vSwitch.

5.2 Bulk Data Transmission

Clean NDN and NDN over TCP are compared on network throughput in the two
cases above. CCNXx repository ccnr is used to store the bulk data and command
cengetfile is used to fetch file from ccnr. Because the network throughput is only
concerned, the bulk data is first cached in local memory. This can be done by using
ccngetfile locally first. The data then will be cached in local CS.

Two cases run successfully over the testbed. The concrete evaluation of clean
NDN and overlay based NDN will be discussed in future paper.

® https://code.google.com/p/onestack/

https://code.google.com/p/onestack/

6 CONCLUSIONS AND FUTURE WORK

In today's Internet, high efficiency of data transmission is still very difficult and im-
portant. We design and implement the clean NDN model. It decouples from tradition-
al address related infrastructure. As we know, it is the first prototype of clean NDN
stack based on SDN. The reduction of the protocol stack also improves the network
transmission efficiency.

The experimental deployment of NDN with SDN gives us the flexibility to utilize
central and distributed control of network. Network virtualization helps us to fast and
easily deploy large-scale testbed. It makes us to create an assigned network as we
need with commodity machines.

Future work of clean NDN will be summarized in three sections. 1) We will con-
tinue to develop CCNx codes on more functions, extending faces on other link proto-
cols and optimizing efficiency. 2) We will modify OpenvSwitch and OpenStack to
integrate ccnd and to extend OpenFlow protocol in long term approach. Evaluation
of long term approach will be done in future paper. 3) The naming mechanism of
NDN can integrate networking, storage and computing. A new architecture of distri-
buted computing will be proposed in future.

Nova Service Neutra;{siervice
Management Network
=
NDN vSwitch
Data Network

= = =2 T

o = == £= |

|

| I
NDN vNode 1 NDN vSwitch NDN vSwitch NDN vswitch NDN vNode 3

|
NDN vNode 2 NDN vNode 4

Fig. 4. Virtualized deployment of NDN

7

ACKNOWLEDGMENTS

This work was supported in part by Ministry of Science and Technology of China
under National 973 Basic Research Program (No. 2013CB228206), National Natural
Science Foundation of China (grants No. 61472200 and No. 61233016), and State
Grid R&D project "Research on the Architecture of Information Communication
System for Internet of Energy" (grant No. SGRIXTKJ[2015]253).

8

10.

11.

12.

13.

REFERENCES

. Jacobson, V., et al.: Networking named content. In: Proceedings of the 5th international

conference on Emerging networking experiments and technologies. ACM, pp. 1-12.
Rome, Italy (2009)

Ahlgren, B., et al.: A survey of information-centric networking. Communications Maga-
zine. IEEE 50.7, pp. 26-36(2012)

Feamster, N., Jennifer, R., Ellen, Z.: The Road to SDN: An Intellectual History of Pro-
grammable Networks. ACM SIGCOMM Computer Communication Review. pp. 87-
98(2014)

. Shi, J.X., Zhang, B.C.: NDNLP: A Link Protocol for NDN. NDN Technical Report NDN-

0006 (2012)

Ko, BJ., et al. An information-centric architecture for data center networks.
In: Proceedings of the second edition of the ICN workshop on Information-centric net-
working. ACM, New York (2012)

Veltri, L., et al.: Supporting information-centric functionality in software defined net-
works. In: Communications (ICC), 2012 IEEE International Conference on. IEEE, Ottawa
(2012)

Ren, J., et al.: The Role of Virtualization in Information-centric Network Deployment. E-
LETTER. Vol. 8, No. 4 (2013)

McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review 38.2. pp. 69-74 (2008)

Pfaff, B., et al.: Extending Networking into the Virtualization Layer. In: The Workshop on
Hot Topics in Networks, Hotnets (2009)

Braun, S., et al.: CCN & TCP co-existence in the future Internet: Should CCN be compat-
ible to TCP?. In: IFIP/IEEE International Symposium on Integrated Network Manage-
ment : 5th International Workshop on Management of the Future Internet (ManFl), Ghent,
Belgium (2013)

Yuan, HW., Tian, S., and Patrick, C.: Scalable NDN forwarding: Concepts, issues and
principles. In: Computer Communications and Networks (ICCCN), 2012 21st International
Conference on. IEEE, Munich, Germany (2012)

Koponen, T., et al.: Architecting for innovation. ACM SIGCOMM Computer
Communication Review 41.3. pp. 24-36 (2011)

Syrivelis, D., et al.: Pursuing a software defined information-centric network.
Software Defined Networking (EWSDN), 2012 European Workshop on. IEEE
(2012)

14. Cao, JW., Wen, Z., and Wei, T.: Dynamic control of data streaming and
processing in a virtualized environment. Automation Science and Engineering.
IEEE Transactions on 9.2, pp. 365-376 (2012)

	INTRODUCTION
	BACKGROUND
	2.1 CCNx
	2.2 Related Work

	IMPLEMENTATION OF CLEAN NDN
	3.1 Enabling Techniques
	3.1.1 Jumbo frame.
	3.1.2 AF_PACKET, Raw socket and libpcap

	3.2 Implementation
	3.2.1 CCNx code modification.
	3.2.2 One-hop configuration.

	3.3 Clean NDN Network Design

	VIRTUALIZED DEPLOYMENT OF CLEAN NDN
	EVALUATION
	5.1 Experiment Setting
	5.2 Bulk Data Transmission

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

