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Abstract— In the era of Internet, one of the most ultimate goals 
is that users can seamlessly access to any computing applica-
tion or service at anywhere anytime. Computing infrastruc-
turalization is the path to gradually address the challenge. In 
this work, elopTM computing is proposed that encapsulates and 
integrates various computing elements as services, benefiting 
from existing advanced computing technology, e.g. virtualiza-
tion and SaaS. Higher levels of services are also provided, e.g. 
metadata management, resource management and scheduling, 
security and authorization, which can be utilized to build dis-
tributed computing systems in a scalable way. In this paper, 
the architecture of elopTM computing is illustrated and corre-
sponding middleware implementation is introduced in details. 
A typical scenario is given to demonstrate the potential of ena-
bling distributed computing systems with elopTM. 
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I.  INTRODUCTION 
With several decades of development of distributed com-

puting and Internet technology, the whole IT industry has 
evolved into an era of service-oriented and human-centric 
computing. One of the most ultimate goals is that users can 
seamlessly access to applications or services regardless of 
locations, time and devices, which is the so called A4 (Any-
time Anywhere Any Application) issue. While many existing 
computing paradigms, e.g. grid computing  [13] and cloud 
computing  [2], can be utilized to partially address the A4 
challenge, new computing architecture is required to provide 
an uniform framework from a perspective of computing in-
frastructuralization. 

Infrastructure is basic physical and organizational struc-
tures needed for the operation of a society or enterprise, or 
the services and facilities necessary for an economy to func-
tion  [15]. Typical infrastructures include transportation sys-
tems, power grids  [12], telecommunication and Internet. 
Well-designed infrastructure supports the distribution of ser-
vices in a safe, reliable, convenient and affordable way. All 
the society supporting technology comes to infrastructure at 
the end and the corresponding process is called infrastruc-
turalization. To enable knowledge economy in the 21st cen-
tury, new infrastructure requirements arise stimulated by 
dramatic development of information technology, especially 
distributed computing and communication technology. This 
is so-called cyberinfrastructure (CI)  [5] [17], proposed by the 
US National Science Foundation (NSF) as the fundamental 
driving force of science and technology innovation  [3]. 

Resource infrastructuralization in cyberspace is becom-
ing an inevitable trend, with the development of grid and 
cloud computing. While grid computing is focused more on 
cross-domain resource sharing, the applications and services 
are not able to be distributed efficiently. Main applications of 
grid computing are high performance computing and mas-
sive data management in scientific research areas  [1]. How-
ever, most of requirements for computing services are mas-
sive, various, small-scale services. These services should be 
accessed anywhere, anywhere and regardless of types of 
devices. Cloud computing is focused on service provisioning 
but back-bone data centers cannot scale well without consid-
eration of resource infrastructuralization  [18]. These chal-
lenges have to be addressed by new computing infrastructure 
that can provide an uniform framework for both resource 
infrastructuralization and service provisioning. In this work, 
we propose elopTM computing from a perspective of comput-
ing infrastructuralization. 

One of the most fundamental principles of infrastructure 
is to standardize and encapsulate heterogeneous elements 
that can be dynamically aggregated according to different 
requirements. In this work, we propose elopTM computing 
architecture, on which heterogeneous computing resources 
are organized and shared for various applications. Comput-
ing resources are separately described and encapsulated in-
stead of using a traditional all-in-one model. These include 
computing hosts (physical or virtual machines  [4]), data and 
storage  [7], software packages  [11] and displays (remote 
displays or virtual desktops  [16]). To solve the A4 problem, 
the physical properties of computing elements are totally 
abstracted and described in a logical way. Resource man-
agement and scheduling can be also fulfilled at the logical 
layer  [10]. In addition, dynamic construction of virtual or-
ganizations (VO) is supported for security, trust and privacy 
management of various computing elements  [8]. At a higher 
level, process management is provided to enable aggregated 
service provisioning and application development  [9], which 
is similar to workflow management for grid computing  [6]. 

In Section II, the principle and architecture of elopTM 
computing is illustrated. In section III, a reference software 
implementation is given. Section IV demonstrates an exam-
ple application to show how we solve the A4 problem and 
outline future application scenarios. The paper is concluded 
in Section V. 

II. PRINCIPLES AND ARCHITECTURE 
The design of elopTM architecture is motivated by infra-

structuralization of computing services. 



The main objective of elopTM computing is to integrate 
heterogeneous computing resources as a new infrastructure 
to provide computing capacity as services. The progress of 
distributed computing has brought about valuable technology 
to achieve this goal such as grid computing and cloud com-
puting. Grid computing is designed to integrate services ac-
ross distributed, heterogeneous, dynamic virtual organiza-
tions formed from the disparate resources to serve large-scale 
applications such as e-business and e-science. It is applica-
tion oriented for tightly coupled, high performance comput-
ing. However, when it comes to less coupled, massive and 
transaction based requests, grid computing is not a proper 
solution. Cloud computing developed in recent years evolves 
to be an option but is not focused on scalable resource man-
agement. 

elopTM computing brings out a new perspective to de-
couple essential processes of computing services into various 
elements, e.g. computing, storage, software and display. 
When these elements are physically encapsulated and logi-
cally abstracted, the process of computing services becomes 
a matter of on-demand dynamic reorganization of these ele-
ments. For example, we consider movie watching as a typi-
cal scenario. Virtual machines are provided to host the ser-
vice. Data management is responsible for storing movie files 
and transmitting to the service host. The software service 
manages decoding software to be installed on the service 
host. The decoded video is streaming over the Internet and 
displayed anywhere. The kernel of elopTM computing is to 
manage and connect logical computing elements and to de-
velop platforms and interfaces for heterogeneous resources 
allocation. 

The concrete architecture of elopTM computing is shown 
in Figure 1, including four layers (elements, logics, organiza-
tions, and processes). The functions of these layers are de-
scribed as follows. 
 

 
Figure 1.  elopTM Architecture. 

• e(lement): This is the layer of elopTM computing. In 
traditional all-in-one model, all data and software are 
managed on one host with local display. For elopTM 
computing, computing elements are separately en-
capsulated and managed in a distributed way.  Ele-
ments offer interfaces to share specific description of 
physical properties and dynamic resource status and 
manage requests and return results. There could be 
more elements according to different scenarios. For 
cloud computing, the host can be extended to vmhost 
(virtual machine hosts). 

• l(ogic): Physical properties of elements are ab-
stracted to logical description. Functions and inter-
faces of elements are isolated from specific locations 
and extended to the overlay of Internet. This pro-
vides an uniform interface for element access, with 
optional additional supports, e.g. resource scheduling. 
In this way, applications do not need to care about 
details of basic elements such as their locations and 
status. 

• o(rganization): The logical elements are virtually or-
ganized in this layer. It offers several mechanism in-
cluding CA (certificate authority), VO (virtual or-
ganization) to guarantee access security, authoriza-
tion, and management of sharing. 

• p(rocess): This is the application enabling layer of 
elopTM computing. It offers interfaces to users to op-
erate and allocate elements for a given application, 
to supervise the status of the elements, and to man-
age authorities. It also provides general tools for ap-
plication process template construction, process 
modeling and runtime environments. 

In this architecture, we do not put any extra limitation to 
elements except the specification of interfaces and protocol 
of communication. Therefore, these elements can be logi-
cally reallocated and described. The security mechanism is 
built upon the description of elements and the authorization 
of users. 

 

 
Figure 2.  Job Scheduling with elopTM. 

Job scheduling is a typical scenario in traditional parallel 
and distributed computing. The process of a job that a user 
assigns to an elopTM system is as follows: 

1) The user chooses a VO to execute the job. 
2) The job information and the certificate of the user 

are submitted to the logic layer. A job collector re-
ceives job requests and put them in a job queue. 

3) At the logic layer, the monitor receives the element 
list of the VO (resources sharing and user authoriza-
tion are enabled only within a VO) and checks the 
status of elements. Each element has a managing 
daemon or sensor running, submitting dynamic 
status information to the logic layer periodically. 

4) The collector sends all element information to the 
scheduler that is pre-defined with a scheduling algo-
rithm or strategy. 
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5) The scheduler collects both information of re-
sources and jobs and generates job execution sched-
ules. 

6) The job is allocated to the targeting elements ac-
cording to the schedule. 

7) The results are finally returned to the process layer. 

III. A REFERENCE IMPLEMENTATION 
According to the new architecture proposed above, we 

started to provide a reference implementation at Tsinghua 
University in 2010. Supporting technologies for elopTM im-
plementation are listed below. 

• CA and digital signatures for identity authentication. 
• Encrypted communication based on sockets and 

X.509 certification1. 
• Virtual machine management and elastic allocation 

based on VirtualBox2 and KVM3. 
• The RDP protocol4 implementation using rdesktop5 

for virtual desktop implementation. 
• Database management and access based on Unix 

ODBC6. 
• Web services implementation using gSAOP7. 
The reference implementation is developed in the C++ 

language and compiled on the Linux platform. Every layer of 
the elopTM architecture has its standalone software package 
that can be separately installed on the different Linux servers. 
Once these servers are interrelated by the application process, 
they are virtually organized and required services can be 
accessed via the overlay of network anywhere and anytime. 

Any instance including users and stand-alone services 
has its unique certificate to represent its identification. The 
functions of the stand-alone servers in each layer are listed as 
follows. 
1) The CI of the organization layer 

The CI maintains three database tables. One records 
VO’s names and their description, the second records 
relationships between VOs and users or elements, the 
third records the certificate and corresponding authori-
zation. 
Functions: 
A. CI manages all the element information including 

its name, certificate, description, and type (a user or 
element). All the element servers contact with CI 
when started. 

B. CI accepts application for VO set up from users and 
creates VO tables according to details of application 
including VO name, VO description, and VO’s cer-
tificate name. 

C. CI accepts requests for listing all VO names from 
users. 

                                                           
1 http://www.ietf.org/rfc/rfc2459 
2 https://www.virtualbox.org/ 
3 http://www.linux-kvm.org/ 
4 http://en.wikipedia.org/wiki/Remote_Desktop_Protocol 
5 http://www.rdesktop.org/ 
6 http://www.unixodbc.org/ 
7 http://www.cs.fsu.edu/~engelen/soap.html 

D. CI accepts requests for listing all VO names that an 
user belongs to. 

E. CI accepts requests for deleting VOs if the corre-
sponding sender is the administrator of the VO. 

F. CI accepts requests for adding or removing ele-
ments into or from VOs, and the administrator of a 
VO decides whether the element can be accepted 
into or removed from a VO. 

G. CI accepts requests for adding or deleting users into 
or from VOs, and the administrator decides whether 
the user can be accepted into or removed from a VO. 

2) VOs of the organization layer 
A VO maintains two database tables. One records all 
the information of elements including certificates in the 
VO, the other records the authorization of the elements 
and users. 
Functions: 
A. A VO connects to the CI when started and submits 

its IP address and port number to CI. The informa-
tion is transmitted cryptographically by CA public 
key. In the connection process, VO will submit the 
VO certificate. CI will judge whether the submitted 
certificate matches the certificate of VO when it is 
set up. 

B. VO accepts requests from users for joining. But the 
authorization of the user is null. 

C. VO accepts requests for listing all the users’ au-
thorization. 

D. VO accepts requests for listing all the elements’ in-
formation. 

E. VO accepts requests for removing elements from 
the administrator and reports updates to the CI. 

F. VO accepts requests for removing users from the 
administrator and reports updates to the CI. 

G. VO accepts requests from the administrator for re-
vising authorizations of users in the VO. 

H. VO accepts requests from the CI for adding ele-
ments. VO checks the user’s authorization whether 
it can add elements. If the user has authorization, 
VO will add this element and return results to the CI. 

I. VO receives authorization verification requests 
from logic servers. 

3) Logics of the logic layer 
Logic servers maintain two tables in general. One re-
cords dynamic information and the other records ele-
ment-specific information. 
Functions: 
A. Logic receives requests from applications and users. 

The user should assign a certain VO first, and then 
the logic server applies VO for authorization verifi-
cation for each request. The request includes user’s 
certificate. 

B. Logic acquires the dynamic status of elements peri-
odically. 

C. Logic receives static description of elements. 
4) Elements of the element layer 

Functions: 
A. Element connects to the CI when started and sub-

mits the name and certificate to the CI. 



B. Element exchanges information with logics. 
C. Element receives job requests from logics. 
D. Element returns results directly to users. 

Some basic computing elements have been developed in 
the reference implementation. These include: host, vmhost, 
database, software and display. 

• The element host is used to encapsulate a physical 
server. Dynamic information, e.g. CPU frequency, 
RAM memory size and hard disk size, are monitored 
and submitted to logics. 

• The element vmhost is inherited from host. It encap-
sulates a physical server that operates multiple vir-
tual machines. Current implementation interfaces 
with different virtualization technologies and corre-
sponding management tools, e.g. VirtualBox and 
KVM. 

• The element database is a specific inheritance of a 
general element data. It provides uniform interfaces 
for database access. Other specific data elements in-
clude file, xml, and sensor, which are under devel-
opment. 

• The element software provides an encapsulation of 
existing software repositories. It provides uniform 
interfaces for software package management tools, 
e.g. YUM. It also provides automatic tools for in-
stalling software into virtual machines. 

• The element display is an encapsulation of existing 
display servers. For example, an iPad can be consid-
ered as a display server that provides display ser-
vices to users. The display implementation provides 
uniform interfaces to existing display access tools, 
e.g. rdesktop, since most existing host servers, e.g. 
Windows and VirtualBox, support the RDP protocol. 

Besides layered implementation described above, some 
common utilities have also to be implemented, which are 
discussed in details below. 
1) Communication 

Both synchronous and asynchronous communication are 
supported via sockets. Web service interfaces are imple-
mented using the C/C++ web service tool gSoap. Asynchro-
nous communication is utilized for interactions between 
components of different layers among the elopTM architec-
ture. Synchronous communication is mainly used for users to 
call for elopTM functionalities. 
2) Security 

The communication of the reference implementation is 
built on X.509 encrypted socket communication which is a 
strict hierarchical system of certificate authorities (CA) for 
issuing the certificates. Thus, the unique identification for 
any instance in a runtime system is set as the name of the 
certificate. Requests and returns of every standalone server 
are classified into two types, information and data. 
3) Authorization 

Authorization is managed via VOs. Users can set up their 
own VO. In a VO, the owner can add and remove elements 
and users. Users have authorization to operate the elements 
in the same VO for resources sharing. A user can register to 
many different VOs for different tasks. An element can also 

belong to many VOs for resource sharing. There is only one 
CI in the whole environment issuing certificates but there 
could be many VOs. Elements and users can move among 
different VOs, supporting dynamic VO management. 
4) Database 

Each layer has to maintain databases for information 
management. All elements keep a record in CI, which issues 
identifications for them. Each VO manages information of 
elements and users belonging to it. Each logic manages 
metadata for both dynamic and static information of regis-
tered elements. Scalable system implementation can be 
achieved in this way, since not all interactions have to go 
through a center, which otherwise may become a bottleneck. 
5) APIs 

The elopTM kernel is only a framework for better support-
ing distributed application development. Abundant applica-
tion programming interfaces (APIs) are provided. Basic 
classes for every layer are developed and typical elements, 
logics, VOs and the CI are implemented. System developers 
just need to focus on application-specific issues and inherit 
from basic classes of elopTM so as to benefit from existing 
management that elopTM already provides. 

IV. A CASE STUDY 
In this section, a demonstration is provided as an exam-

ple system implementation using elopTM. A user can watch a 
movie through a mobile device which is connected to a re-
mote desktop of a virtual machine running on a cluster man-
aged by elopTM. The scheme of this application is shown in 
Figure 3. 

 
Figure 3.  A elopTM System Implementation 

Different components of elopTM is deployed separately 
on a CentOS Linux server cluster. The display server that 
can open remote desktop of a virtual machine runs on the 
ARM platform with an embedded Linux system. All the de-
vices are connected to an Ethernet switch. 

From the elopTM point of view, the scenario above forms 
a complete functional cluster, since all necessary layers of 
elopTM are connected through networks. The CI server re-
cords and manages all elments. The VO server supervises to 
identify authorization of virtual organization. All logic serv-
ers screen physical properties of its elements, transfer and 
schedule instructions from the process layer. In this way, the 
system can use a given software (video decoding in this case), 
operate on given data (movies in this case), run it on a given 
host (virtual machine hosts in this case), and display it on a 
given terminal (mobile devices in this case). 

The whole process of our experiment is scheduled on the 
process server. It firstly opens the virtual machine on the 



vmhost. Then it asks the element of data for the required 
movie data file. The element of software has to provide 
video decoder software for the virtual machine and to install 
it and start the decoder to play the movie by SSH. Then, the 
user can watch the movie through the display server. In this 
case study, we somehow decouple basic computing elements 
(hosts, data, software, and display) and manage them as net-
worked services. 

The logics are also playing important roles in this sce-
nario. There could be multiple available virtual machines 
that can host the movie watching service. How to select 
among multiple resources is determined by the vmhost logic. 
The required software and data could also be provided by 
many repositories. There could be even multiple display 
servers and users may require display as a service. This can 
be easily handled by choosing a proper display by the dis-
play logic. 

The elopTM architecture can be utilized for dynamic ag-
gregation of basic computing elements for a given distributed 
application with users’ requirements. It is a middleware and 
toolkit that can be utilized to provide basic supports (e.g. 
communication, security, authorization, databases, and APIs) 
for development of similar distributed computing systems. 

V. CONCLUSIONS 
In this paper, we first introduce the concept of infrastruc-

ture and point out computing infrastructuralization becomes 
an inevitable trend. Thus, we propose the elopTM computing 
architecture and demonstrate how it works with a typical 
case study. Heterogeneous computing resources are decoup-
led and encapsulated as networked services, which can be re-
organized for a given application in a on-demand way. The 
elopTM architecture features dynamic virtual organization 
management for authentication and authorization control, in 
a similar way to social networks. 

More specific computing elements are under-
development to incorporate other heterogeneous resources, 
e.g. sensors. Besides, elopTM reference implementation is 
extended to both embedded systems and server environments. 
With C/C++ implementation, the reference implementation 
can achieve high performance on both embedded systems 
and high performance cluster systems. Most cloud applica-
tions require terminal access to massive resources on the 
cloud and elopTM can be used as a basis to provide a uniform 
solution for cloud computing  [14]. 

More application solutions based on the elopTM architec-
ture are under-development for various distributed scenarios, 
e.g. Internet of Things (IoT)8. The element data can be ex-
tended to an element sensor, supporting continuous data 
streaming  [10]. In general, sensors play embedded between 
cyber and physical spaces, enabling distributed computing 
for IoT applications  [14]. 
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