
Enabling Distributed Computing Systems with elopTM

Junwei Cao Shuo Chen Yuxin Wan Wei Chen
Research Institute of Information Technology

Tsinghua National Laboratory for Information Science and Technology
Tsinghua University, Beijing 100084, P. R. China

e-mail: jcao@tsinghua.edu.cn

Abstract— In the era of Internet, one of the most ultimate goals
is that users can seamlessly access to any computing applica-
tion or service at anywhere anytime. Computing infrastruc-
turalization is the path to gradually address the challenge. In
this work, elopTM computing is proposed that encapsulates and
integrates various computing elements as services, benefiting
from existing advanced computing technology, e.g. virtualiza-
tion and SaaS. Higher levels of services are also provided, e.g.
metadata management, resource management and scheduling,
security and authorization, which can be utilized to build dis-
tributed computing systems in a scalable way. In this paper,
the architecture of elopTM computing is illustrated and corre-
sponding middleware implementation is introduced in details.
A typical scenario is given to demonstrate the potential of ena-
bling distributed computing systems with elopTM.

Keywords- Distributed Computing; Computing
Infrastructuralization; elopTM computing; Grid Computing;
Cloud Computing; Virtual Organizations; Internet of Things

I. INTRODUCTION
With several decades of development of distributed com-

puting and Internet technology, the whole IT industry has
evolved into an era of service-oriented and human-centric
computing. One of the most ultimate goals is that users can
seamlessly access to applications or services regardless of
locations, time and devices, which is the so called A4 (Any-
time Anywhere Any Application) issue. While many existing
computing paradigms, e.g. grid computing [13] and cloud
computing [2], can be utilized to partially address the A4
challenge, new computing architecture is required to provide
an uniform framework from a perspective of computing in-
frastructuralization.

Infrastructure is basic physical and organizational struc-
tures needed for the operation of a society or enterprise, or
the services and facilities necessary for an economy to func-
tion [15]. Typical infrastructures include transportation sys-
tems, power grids [12], telecommunication and Internet.
Well-designed infrastructure supports the distribution of ser-
vices in a safe, reliable, convenient and affordable way. All
the society supporting technology comes to infrastructure at
the end and the corresponding process is called infrastruc-
turalization. To enable knowledge economy in the 21st cen-
tury, new infrastructure requirements arise stimulated by
dramatic development of information technology, especially
distributed computing and communication technology. This
is so-called cyberinfrastructure (CI) [5] [17], proposed by the
US National Science Foundation (NSF) as the fundamental
driving force of science and technology innovation [3].

Resource infrastructuralization in cyberspace is becom-
ing an inevitable trend, with the development of grid and
cloud computing. While grid computing is focused more on
cross-domain resource sharing, the applications and services
are not able to be distributed efficiently. Main applications of
grid computing are high performance computing and mas-
sive data management in scientific research areas [1]. How-
ever, most of requirements for computing services are mas-
sive, various, small-scale services. These services should be
accessed anywhere, anywhere and regardless of types of
devices. Cloud computing is focused on service provisioning
but back-bone data centers cannot scale well without consid-
eration of resource infrastructuralization [18]. These chal-
lenges have to be addressed by new computing infrastructure
that can provide an uniform framework for both resource
infrastructuralization and service provisioning. In this work,
we propose elopTM computing from a perspective of comput-
ing infrastructuralization.

One of the most fundamental principles of infrastructure
is to standardize and encapsulate heterogeneous elements
that can be dynamically aggregated according to different
requirements. In this work, we propose elopTM computing
architecture, on which heterogeneous computing resources
are organized and shared for various applications. Comput-
ing resources are separately described and encapsulated in-
stead of using a traditional all-in-one model. These include
computing hosts (physical or virtual machines [4]), data and
storage [7], software packages [11] and displays (remote
displays or virtual desktops [16]). To solve the A4 problem,
the physical properties of computing elements are totally
abstracted and described in a logical way. Resource man-
agement and scheduling can be also fulfilled at the logical
layer [10]. In addition, dynamic construction of virtual or-
ganizations (VO) is supported for security, trust and privacy
management of various computing elements [8]. At a higher
level, process management is provided to enable aggregated
service provisioning and application development [9], which
is similar to workflow management for grid computing [6].

In Section II, the principle and architecture of elopTM
computing is illustrated. In section III, a reference software
implementation is given. Section IV demonstrates an exam-
ple application to show how we solve the A4 problem and
outline future application scenarios. The paper is concluded
in Section V.

II. PRINCIPLES AND ARCHITECTURE
The design of elopTM architecture is motivated by infra-

structuralization of computing services.

The main objective of elopTM computing is to integrate
heterogeneous computing resources as a new infrastructure
to provide computing capacity as services. The progress of
distributed computing has brought about valuable technology
to achieve this goal such as grid computing and cloud com-
puting. Grid computing is designed to integrate services ac-
ross distributed, heterogeneous, dynamic virtual organiza-
tions formed from the disparate resources to serve large-scale
applications such as e-business and e-science. It is applica-
tion oriented for tightly coupled, high performance comput-
ing. However, when it comes to less coupled, massive and
transaction based requests, grid computing is not a proper
solution. Cloud computing developed in recent years evolves
to be an option but is not focused on scalable resource man-
agement.

elopTM computing brings out a new perspective to de-
couple essential processes of computing services into various
elements, e.g. computing, storage, software and display.
When these elements are physically encapsulated and logi-
cally abstracted, the process of computing services becomes
a matter of on-demand dynamic reorganization of these ele-
ments. For example, we consider movie watching as a typi-
cal scenario. Virtual machines are provided to host the ser-
vice. Data management is responsible for storing movie files
and transmitting to the service host. The software service
manages decoding software to be installed on the service
host. The decoded video is streaming over the Internet and
displayed anywhere. The kernel of elopTM computing is to
manage and connect logical computing elements and to de-
velop platforms and interfaces for heterogeneous resources
allocation.

The concrete architecture of elopTM computing is shown
in Figure 1, including four layers (elements, logics, organiza-
tions, and processes). The functions of these layers are de-
scribed as follows.

Figure 1. elopTM Architecture.

• e(lement): This is the layer of elopTM computing. In
traditional all-in-one model, all data and software are
managed on one host with local display. For elopTM
computing, computing elements are separately en-
capsulated and managed in a distributed way. Ele-
ments offer interfaces to share specific description of
physical properties and dynamic resource status and
manage requests and return results. There could be
more elements according to different scenarios. For
cloud computing, the host can be extended to vmhost
(virtual machine hosts).

• l(ogic): Physical properties of elements are ab-
stracted to logical description. Functions and inter-
faces of elements are isolated from specific locations
and extended to the overlay of Internet. This pro-
vides an uniform interface for element access, with
optional additional supports, e.g. resource scheduling.
In this way, applications do not need to care about
details of basic elements such as their locations and
status.

• o(rganization): The logical elements are virtually or-
ganized in this layer. It offers several mechanism in-
cluding CA (certificate authority), VO (virtual or-
ganization) to guarantee access security, authoriza-
tion, and management of sharing.

• p(rocess): This is the application enabling layer of
elopTM computing. It offers interfaces to users to op-
erate and allocate elements for a given application,
to supervise the status of the elements, and to man-
age authorities. It also provides general tools for ap-
plication process template construction, process
modeling and runtime environments.

In this architecture, we do not put any extra limitation to
elements except the specification of interfaces and protocol
of communication. Therefore, these elements can be logi-
cally reallocated and described. The security mechanism is
built upon the description of elements and the authorization
of users.

Figure 2. Job Scheduling with elopTM.

Job scheduling is a typical scenario in traditional parallel
and distributed computing. The process of a job that a user
assigns to an elopTM system is as follows:

1) The user chooses a VO to execute the job.
2) The job information and the certificate of the user

are submitted to the logic layer. A job collector re-
ceives job requests and put them in a job queue.

3) At the logic layer, the monitor receives the element
list of the VO (resources sharing and user authoriza-
tion are enabled only within a VO) and checks the
status of elements. Each element has a managing
daemon or sensor running, submitting dynamic
status information to the logic layer periodically.

4) The collector sends all element information to the
scheduler that is pre-defined with a scheduling algo-
rithm or strategy.

processes

organizations

logics

elements Host Data Software Display

Metadata Monitoring

CA VO

Scheduling

Security Trust

Models Templates Execution

5) The scheduler collects both information of re-
sources and jobs and generates job execution sched-
ules.

6) The job is allocated to the targeting elements ac-
cording to the schedule.

7) The results are finally returned to the process layer.

III. A REFERENCE IMPLEMENTATION
According to the new architecture proposed above, we

started to provide a reference implementation at Tsinghua
University in 2010. Supporting technologies for elopTM im-
plementation are listed below.

• CA and digital signatures for identity authentication.
• Encrypted communication based on sockets and

X.509 certification1.
• Virtual machine management and elastic allocation

based on VirtualBox2 and KVM3.
• The RDP protocol4 implementation using rdesktop5

for virtual desktop implementation.
• Database management and access based on Unix

ODBC6.
• Web services implementation using gSAOP7.
The reference implementation is developed in the C++

language and compiled on the Linux platform. Every layer of
the elopTM architecture has its standalone software package
that can be separately installed on the different Linux servers.
Once these servers are interrelated by the application process,
they are virtually organized and required services can be
accessed via the overlay of network anywhere and anytime.

Any instance including users and stand-alone services
has its unique certificate to represent its identification. The
functions of the stand-alone servers in each layer are listed as
follows.
1) The CI of the organization layer

The CI maintains three database tables. One records
VO’s names and their description, the second records
relationships between VOs and users or elements, the
third records the certificate and corresponding authori-
zation.
Functions:
A. CI manages all the element information including

its name, certificate, description, and type (a user or
element). All the element servers contact with CI
when started.

B. CI accepts application for VO set up from users and
creates VO tables according to details of application
including VO name, VO description, and VO’s cer-
tificate name.

C. CI accepts requests for listing all VO names from
users.

1 http://www.ietf.org/rfc/rfc2459
2 https://www.virtualbox.org/
3 http://www.linux-kvm.org/
4 http://en.wikipedia.org/wiki/Remote_Desktop_Protocol
5 http://www.rdesktop.org/
6 http://www.unixodbc.org/
7 http://www.cs.fsu.edu/~engelen/soap.html

D. CI accepts requests for listing all VO names that an
user belongs to.

E. CI accepts requests for deleting VOs if the corre-
sponding sender is the administrator of the VO.

F. CI accepts requests for adding or removing ele-
ments into or from VOs, and the administrator of a
VO decides whether the element can be accepted
into or removed from a VO.

G. CI accepts requests for adding or deleting users into
or from VOs, and the administrator decides whether
the user can be accepted into or removed from a VO.

2) VOs of the organization layer
A VO maintains two database tables. One records all
the information of elements including certificates in the
VO, the other records the authorization of the elements
and users.
Functions:
A. A VO connects to the CI when started and submits

its IP address and port number to CI. The informa-
tion is transmitted cryptographically by CA public
key. In the connection process, VO will submit the
VO certificate. CI will judge whether the submitted
certificate matches the certificate of VO when it is
set up.

B. VO accepts requests from users for joining. But the
authorization of the user is null.

C. VO accepts requests for listing all the users’ au-
thorization.

D. VO accepts requests for listing all the elements’ in-
formation.

E. VO accepts requests for removing elements from
the administrator and reports updates to the CI.

F. VO accepts requests for removing users from the
administrator and reports updates to the CI.

G. VO accepts requests from the administrator for re-
vising authorizations of users in the VO.

H. VO accepts requests from the CI for adding ele-
ments. VO checks the user’s authorization whether
it can add elements. If the user has authorization,
VO will add this element and return results to the CI.

I. VO receives authorization verification requests
from logic servers.

3) Logics of the logic layer
Logic servers maintain two tables in general. One re-
cords dynamic information and the other records ele-
ment-specific information.
Functions:
A. Logic receives requests from applications and users.

The user should assign a certain VO first, and then
the logic server applies VO for authorization verifi-
cation for each request. The request includes user’s
certificate.

B. Logic acquires the dynamic status of elements peri-
odically.

C. Logic receives static description of elements.
4) Elements of the element layer

Functions:
A. Element connects to the CI when started and sub-

mits the name and certificate to the CI.

B. Element exchanges information with logics.
C. Element receives job requests from logics.
D. Element returns results directly to users.

Some basic computing elements have been developed in
the reference implementation. These include: host, vmhost,
database, software and display.

• The element host is used to encapsulate a physical
server. Dynamic information, e.g. CPU frequency,
RAM memory size and hard disk size, are monitored
and submitted to logics.

• The element vmhost is inherited from host. It encap-
sulates a physical server that operates multiple vir-
tual machines. Current implementation interfaces
with different virtualization technologies and corre-
sponding management tools, e.g. VirtualBox and
KVM.

• The element database is a specific inheritance of a
general element data. It provides uniform interfaces
for database access. Other specific data elements in-
clude file, xml, and sensor, which are under devel-
opment.

• The element software provides an encapsulation of
existing software repositories. It provides uniform
interfaces for software package management tools,
e.g. YUM. It also provides automatic tools for in-
stalling software into virtual machines.

• The element display is an encapsulation of existing
display servers. For example, an iPad can be consid-
ered as a display server that provides display ser-
vices to users. The display implementation provides
uniform interfaces to existing display access tools,
e.g. rdesktop, since most existing host servers, e.g.
Windows and VirtualBox, support the RDP protocol.

Besides layered implementation described above, some
common utilities have also to be implemented, which are
discussed in details below.
1) Communication

Both synchronous and asynchronous communication are
supported via sockets. Web service interfaces are imple-
mented using the C/C++ web service tool gSoap. Asynchro-
nous communication is utilized for interactions between
components of different layers among the elopTM architec-
ture. Synchronous communication is mainly used for users to
call for elopTM functionalities.
2) Security

The communication of the reference implementation is
built on X.509 encrypted socket communication which is a
strict hierarchical system of certificate authorities (CA) for
issuing the certificates. Thus, the unique identification for
any instance in a runtime system is set as the name of the
certificate. Requests and returns of every standalone server
are classified into two types, information and data.
3) Authorization

Authorization is managed via VOs. Users can set up their
own VO. In a VO, the owner can add and remove elements
and users. Users have authorization to operate the elements
in the same VO for resources sharing. A user can register to
many different VOs for different tasks. An element can also

belong to many VOs for resource sharing. There is only one
CI in the whole environment issuing certificates but there
could be many VOs. Elements and users can move among
different VOs, supporting dynamic VO management.
4) Database

Each layer has to maintain databases for information
management. All elements keep a record in CI, which issues
identifications for them. Each VO manages information of
elements and users belonging to it. Each logic manages
metadata for both dynamic and static information of regis-
tered elements. Scalable system implementation can be
achieved in this way, since not all interactions have to go
through a center, which otherwise may become a bottleneck.
5) APIs

The elopTM kernel is only a framework for better support-
ing distributed application development. Abundant applica-
tion programming interfaces (APIs) are provided. Basic
classes for every layer are developed and typical elements,
logics, VOs and the CI are implemented. System developers
just need to focus on application-specific issues and inherit
from basic classes of elopTM so as to benefit from existing
management that elopTM already provides.

IV. A CASE STUDY
In this section, a demonstration is provided as an exam-

ple system implementation using elopTM. A user can watch a
movie through a mobile device which is connected to a re-
mote desktop of a virtual machine running on a cluster man-
aged by elopTM. The scheme of this application is shown in
Figure 3.

Figure 3. A elopTM System Implementation

Different components of elopTM is deployed separately
on a CentOS Linux server cluster. The display server that
can open remote desktop of a virtual machine runs on the
ARM platform with an embedded Linux system. All the de-
vices are connected to an Ethernet switch.

From the elopTM point of view, the scenario above forms
a complete functional cluster, since all necessary layers of
elopTM are connected through networks. The CI server re-
cords and manages all elments. The VO server supervises to
identify authorization of virtual organization. All logic serv-
ers screen physical properties of its elements, transfer and
schedule instructions from the process layer. In this way, the
system can use a given software (video decoding in this case),
operate on given data (movies in this case), run it on a given
host (virtual machine hosts in this case), and display it on a
given terminal (mobile devices in this case).

The whole process of our experiment is scheduled on the
process server. It firstly opens the virtual machine on the

vmhost. Then it asks the element of data for the required
movie data file. The element of software has to provide
video decoder software for the virtual machine and to install
it and start the decoder to play the movie by SSH. Then, the
user can watch the movie through the display server. In this
case study, we somehow decouple basic computing elements
(hosts, data, software, and display) and manage them as net-
worked services.

The logics are also playing important roles in this sce-
nario. There could be multiple available virtual machines
that can host the movie watching service. How to select
among multiple resources is determined by the vmhost logic.
The required software and data could also be provided by
many repositories. There could be even multiple display
servers and users may require display as a service. This can
be easily handled by choosing a proper display by the dis-
play logic.

The elopTM architecture can be utilized for dynamic ag-
gregation of basic computing elements for a given distributed
application with users’ requirements. It is a middleware and
toolkit that can be utilized to provide basic supports (e.g.
communication, security, authorization, databases, and APIs)
for development of similar distributed computing systems.

V. CONCLUSIONS
In this paper, we first introduce the concept of infrastruc-

ture and point out computing infrastructuralization becomes
an inevitable trend. Thus, we propose the elopTM computing
architecture and demonstrate how it works with a typical
case study. Heterogeneous computing resources are decoup-
led and encapsulated as networked services, which can be re-
organized for a given application in a on-demand way. The
elopTM architecture features dynamic virtual organization
management for authentication and authorization control, in
a similar way to social networks.

More specific computing elements are under-
development to incorporate other heterogeneous resources,
e.g. sensors. Besides, elopTM reference implementation is
extended to both embedded systems and server environments.
With C/C++ implementation, the reference implementation
can achieve high performance on both embedded systems
and high performance cluster systems. Most cloud applica-
tions require terminal access to massive resources on the
cloud and elopTM can be used as a basis to provide a uniform
solution for cloud computing [14].

More application solutions based on the elopTM architec-
ture are under-development for various distributed scenarios,
e.g. Internet of Things (IoT)8. The element data can be ex-
tended to an element sensor, supporting continuous data
streaming [10]. In general, sensors play embedded between
cyber and physical spaces, enabling distributed computing
for IoT applications [14].

ACKNOWLEDGEMENT
This work is supported by Ministry of Science and Tech-

nology of China under National 973 Basic Research Program

8 http://en.wikipedia.org/wiki/Internet_of_Things

(grant No. 2011CB302805) and National 863 High-Tech
Program (grant No. 2011AA040501).

Contributors of elopTM development also include Zhen
Wang, Xiao Lin, Ziyang Li, Han Qian, Qin Lv, Yayu Ni,
Yan Huo, Yunhao Li, Fei Wang, Lei Jia, Jinliang Huang, Ye
Chen, Yaping Gu, and Miao Wang.

REFERENCES
[1] B. Allcock, A. Chervenak, I. Foster, C. Kesselman, M. Livny, “Data

Grid Tools: Enabling Science on Big Distributed Data”, J. Physics:
Conference Series, 16, 571-575, 2005.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, et, al, “Above the
clouds: A Berkeley View of Cloud Computing”, Technical Report No.
UCB/EECS-2009-28, University of California, Berkerley, 2009.

[3] D. E. Atkins, et al., “Revolutionizing Science and Engineering
through Cyberinfrastructure”, National Science Foundation Blue –
Ribbon Advisory Panel on Cyberinfrastructure, January 2003.

[4] P. Barham, B. Dragovic, K. Fraser, et. al., “Xen and the Art of
Virtualization”, Proc. ACM Symp. on Operating Systems Principles,
2003.

[5] J. Cao (Ed.), Cyberinfrastructure Technologies and Applications,
Nova Science Publishers, 2009.

[6] J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, “GridFlow: Workflow
Management for Grid Computing”, Proc. 3rd IEEE/ACM Int. Symp.
on Cluster Computing and the Grid, Tokyo, Japan, 198-205, 2003.

[7] J. Cao and J. Li, “Large-scale Real-time Data-driven Scientific
Applications”, Proc. 2nd Int. Conf. on Networking and Distributed
Computing, Beijing, China, 116-121, 2011.

[8] J. Cao and Z. Wang, “VOMES: a Virtual Organization Membership
Evaluation System”, Int. J. Networking and Virtual Organisations,
10(1), 88-108, 2012.

[9] J. Cao, F. Zhang, K. Xu, L. Liu, and C. Wu, “Formal Verification of
Temporal Properties for Reduced Overhead in Grid Scientific
Workflows”, J. Computer Science and Technology, 26(6), 1017-1030,
2011.

[10] J. Cao, W. Zhang and W. Tan, “Dynamic Control of Data Streaming
and Processing in a Virtualized Environment”, IEEE Trans.
Automation Science and Engineering, 9(2), 365-376, 2012.

[11] W. Chen, J. Cao, and Z. Li, “Customized Virtual Machines for
Software Provisioning in Scientific Clouds”, Proc. 2nd Int. Conf. on
Networking and Distributed Computing, Beijing, China, 240-243,
2011.

[12] M. Chetty and R. Buyya, “Weaving Computational Grids: How
Analogous are they with Electrical Grids?”, IEEE Computing in
Science and Engineering, Vol. 4, No. 4, pp. 61-71, 2002.

[13] I. Foster and C. Kesselman (Eds.), The Grid: Blueprint for a New
Computing Infrastructure, Morgan-Kaufman, 1999.

[14] K. Hwang, G. C. Fox, and J. J. Dongarra, Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things,
Morgan Kaufmann, 2012.

[15] Infrastructure from Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Infrastructure.

[16] X. Liao, H. Jin, L. Hu, H. Liu, “Towards Virtualized Desktop
Environment”, Concurrency and Computation: Practice and
Experience, Vol. 22, No. 4, pp. 419–440, 2010.

[17] J. Yin, J. Cao, Y. Wang, L. Liu, and C. Wu, “Scheduling Remote
Access to Scientific Instruments in Cyberinfrastructure for Education
and Research”, Proc. 7th IEEE/ACM Int. Symp. on Cluster
Computing and the Grid, Rio de Janeiro, Brazil, 426-433, 2007.

[18] F. Zhang, J. Cao, C. Hong, J. J. Mulcahy, and C. Wu, “Provisioning
Virtual Resources Adaptively in Elastic Compute Cloud Platforms”,
Int. J. Web Services Research, 8(3), 54-69, 2011.

