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Does Explicit Prediction Matter in Energy
Management Based on Deep Reinforcement
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Abstract—As a model-free optimization and decision-making
method, deep reinforcement learning (DRL) has been widely
applied to the filed of energy management in energy Internet.
While, some DRL-based energy management schemes also incor-
porate the prediction module used by the traditional model-based
methods, which seems to be unnecessary and even adverse. In this
work, we present the standard DRL-based energy management
scheme with and without prediction. Then, these two schemes
are compared in the unified energy management framework.
The simulation results demonstrate that the energy management
scheme without prediction is superior over the scheme with
prediction. This work intends to rectify the misuse of DRL
methods in the field of energy management.

Index Terms—Deep reinforcement learning, energy manage-
ment, prediction, recurrent neural network.

I. INTRODUCTION

AS alternative to conventional fossil fuels, there have been
large-scale integration of the renewable energy sources

(RESs) including solar power and wind power into power
system [1]. Although RESs have advantages including sus-
tainable and environmental friendly, it is intractable to conduct
energy management with the penetration of high-proportional
RESs due to the uncertainty and stochasticity of renewable
generation output [2]. Moreover, the challenges for energy
management are further exacerbated by the varying power
demands and fluctuating electricity prices [3], [4]. Therefore,
it is of great importance to develop the advanced energy
management scheme to accommodates various disturbances
from RESs, power demands and electricity prices.

Tremendous research effort has been dedicated in devel-
oping the model-based energy management schemes [5], [6],
[7], [8]. A typical model-based approach is model predictive
control (MPC), in which control signals are decided by solving
an optimization problem with a finite time horizon, following
a receding horizon approach. The formulated optimization
problem generally relies on the access to full knowledge of
the system model and parameters. Put differently, the optimal
energy management scheduling is estimated using forecasted
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exogenous parameters, including the power demands, elec-
tricity prices and weather-dependent PV production. As a
result, the performance of the consequent energy management
schemes is significantly dependent to the accuracy of the em-
ployed system model and the forecasting method. Therefore,
massive advanced predictive models and approaches have been
developed [9], [10]. A novel hybrid modeling method using
both deep neural networks (DNNs) and stochastic differential
equations is proposed to To obtain accurate power models
of photovoltaic panels and loads in [9]. The long short-
term memory recurrent neural network (RNN) is employed
to address the short-term residential load forecasting issue in
[10].

By contrast, the model-free energy management schemes
do not require the explicit system model and the predictive
exogenous parameters, regarded as a potential alternative to
model-based schemes [11], [12]. For example, the model-free
reinforcement learning (RL) can gradually learn the optimal
or near-optimal strategies by utilizing experiences collected
from massive interactions with the environment, without a
priori knowledge of the environment. Moreover, with the
booming development of deep learning (DL) technologies,
the deep reinforcement learning (DRL) has attracted great
attention [13]. The DRL can be viewed as the combination of
DL and RL. The powerful representation capability of DNNs
enables DRL to address the continuous and high-dimensional
state spaces and action spaces [14]. An energy management
algorithm based on deep deterministic policy gradient (DDPG)
is proposed to minimize the energy cost of smart home in
[15]. Authors in [16] develop an vectorized DRL algorithm
based on advantage actor-critic (A2C) to reduce the operation
cost and improve user experience without some users’ private
information.

Although the DRL-based methods do not rely on the
predictive models and parameters, some works still integrate
the forecasting methods into model-free DRL, such as [17],
[18]. Authors in [17] use feedforward DNNs to predict the
future electricity prices which are served as the part of
observation in DRL. Similarly, authors in [18] establish a
price forecasting model using multilayer perceptron (MLP)
used for the decision-making of DDPG algorithm. Prediction
is indeed a dimensionality reduction processing of the original
information, in this sense, the information received by the
agent of DRL is not complete. Consequently, the powerful
feature extraction capability cannot fully utilized. Despite the
essential role of prediction in model-based methods, adding
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prediction to model-free methods may undermine the control
effect.

In this work, we investigate the performance comparison
of energy management schemes with and without explicit
prediction. First, we formulate the general energy management
problem of a microgrid as a Markov decision process (MDP).
Second, we realize the energy management scheme with
prediction, by training the forecasting models with SL and the
policy with DRL respectively. Third, we implement the energy
management scheme without prediction, by training the end-
to-end policy network consisting of MLP and RNN. Finally,
we conduct the simulation experiments to compare the effects
of these two schemes. The main contributions of this paper
can be summarized as follows.

• We investigate the effects of prediction in the DRL-
based energy management scheme. To the best of our
knowledge, this is the first paper to make a rigorous
comparison between the DRL-based scheme with and
without prediction.

• We establish the unified energy management framework
under which the comparison between DRL-based scheme
with and without prediction can be conducted fairly.

• Simulation results demonstrate that the DRL-based
scheme without prediction outperforms over the scheme
with prediction. Moreover, we intuitively explain how the
prediction undermines the control effect of DRL.

II. PROBLEM FORMULATION

A. System Decription

In this work, wo consider a general energy management
problem of a microgrid. As shown in Fig. 1, the microgrid is
comprised of RESs, non-adjustable loads, battery energy stor-
age devices (BESs) and energy management system (EMS).
The RESs could be solar panels and wind generators. The
power demands of non-adjustable loads must be satisfied
completely without delay. We suppose that the microgrid
hourly operates in discrete time, i.e., t ∈ {0, 1, . . . , T} where
T is the time horizon. Each time step begins at the beginning
of the current hour and expires at the beginning of the next
hour. For example, the period from 0:00 to 1:00 is time step
1, the period from 1:00 to 2:00 is time step 2, and so on.
Moreover, the electricity price is announced hourly by the
utility grid.

At the beginning of each hour, the EMS observes the
renewable generation output and power demand during last
hour, receives current state of charge (SOC) from BESs and
hour-ahead electricity price from the utility grid. Then, the
EMS determines the charging/discharging power of BESs.
After the decision of EMS, if energy shortage occurs during
this hour, the microgrid will purchase appropriate energy from
the utility gird; while the excess energy will be abandoned.

B. Markov Decision Process Formulation

In this work, the energy management scheme is formulated
as a MDP. A general MDP can be described as a tuple
(S,A,P, R), where S,A,P, R are the state space, action

BESBESLoad

Microgrid

Energy Management systemEnergy Management system

RES Utility grid

Power flowInformation flow

Fig. 1. Illustration of considered microgrid.

space, transition dynamics and reward function. At each time
step t, the agent observe a state st from the state space S, and
selects an action at from action space A. After performing
action at, state st transitions to state s+ 1t with probability
distribution P(st, at). Additionally, the agent receives a scalar
reward rt = R(st, at). The goal of the MDP is to maximize
the cumulative discount reward R0 =

∑T
t=0 γ

trt. In the
remainder of the section, the state, action, dynamics and
reward will be specified.

1) State: At each time step t, the state available to EMS
includes the renewable generation output and power demand
at last time step, the current SOC of BESs and the hour-ahead
electricity price.

st = [bt, gt−1, dt−1, pt] , (1)

where bt, gt−1, dt−1 and pt are the SOC of BESs, renewable
generation output, nonshiftable power demand and electricity
price, respectively.

2) Action: The action at denotes the charging/discharging
power at time step t, constrained by

−dmax ≤ at ≤ cmax, (2)

where dmax and cmax are the maximum discharging power
and charging power, respectively.

3) Dynamics: Normally, the dynamics of generation output,
power demand and electricity price are difficult to describe
precisely. In this work, the real historical data is directly
utilized, including power data [19] and price data [20].

The dynamics of SOC is presented as follows

bt+1 = f (bt, at) , (3)

where f(·) denote the transition function of SOC with respect
to current SOC and charging/discharging power.

The power balance is guaranteed by purchasing energy from
the utility grid.

et =

{
dt − gt + bt, if dt − gt + bt > 0,

0, otherwise,
(4)
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where et is the power drawn from the utility grid at time step
t.

4) Reward:

rt = −pt · et − g (bt, at) , (5)

where g(·) is the degradation cost function of BESs with
respect to current SOC and charging/discharging power.

III. DRL-BASED ENERGY MANAGEMENT SCHEME

In this section, we present the DRL-based scheme with and
without prediction. First, SL is applied to train a RNN to
conduct the prediction. Then, the DRL-based scheme with the
prediction module is realized. Finally, the end-to-end DRL-
based scheme without prediction is proposed.

A. SL for Prediction

The target of SL is to learn a function f parameterized
by φ such that y = f(x;ϕ). Here, x and y denote the input
and the label, respectively. Under our scenario, we intend to
predict the future renewable generation output, power demand
and hour-ahead price, which belongs to time series prediction
problem. Considering the outperformance of RNNs with the
processing of temporal sequence, in this work, gated recurrent
units (GRUs), a gating mechanism in RNNs, are employed to
represent the forecasting models.

The training process of SL is shown in Algorithm 1. The
input xt could be generation output gt, power demand dt
and electricity price pt. The GRUs are trained with back-
propagation such that the mean square error (MSE) between
the outputs of GRUs and the target values is minimized.

Algorithm 1 SL for k-step prediction
Initialize parameter ϕk
for epoch = 1 to N do

for time step t = 0 to T do
x̂t+k, ht+1 = GRU(xt, ht;ϕk)
dϕk ← dϕk +∇ϕk

(x̂t+k − xt+k)2

Perform update of ϕk using dϕk

B. DRL-Based Scheme with Prediction

Given the trained forecasting models, in this subsection, the
DRL-based scheme with prediction is presented.

First, the observation of DRL is the concatenation of state
and prediction as follows,

ot = st ∪
[
ĝt, d̂t, p̂t+1, . . . , ĝt+k, d̂t+k, p̂t+k

]
, (6)

where the expanded part is predicted by the forecasting
models.

Then, the policy of DRL is trained by PPO algorithm [21]
which maintains the actor network π (at|ot; θ) parameterized
by θ and the critic network V (ot;φ) parameterized by φ. The
parameters of actor are updated by minimizing following loss
function,

La(θ) = Et
[
min

(
wtÂt, clip (wt, 1− ε, 1 + ε) Ât

)]
, (7)

RNN MLPObservationState Prediction Policy

Reinforcement LearningSupervised Learning

RNN MLPState Policy

Reinforcement Learning

(a) Energy manage scheme with prediction

(b) Energy manage scheme without prediction

Fig. 2. Overview of energy management schemes.

where Ât denotes the advantage calculated as

Ât =

T∑
t′=t

(γλ)
t′−t

(−V (ot′ ;φ) + rt + γV (ot′+1;φ)) , (8)

and wt is the probability ratio defined as

wt =
π(at|ot; θ)
π(at|ot; θold)

. (9)

Accordingly, the parameter of critic is updated by minimizing

Lc(φ) = Et
[(
V (ot;φ)− R̂t

)2]
. (10)

The detail of the training is presented in Algorithm 2.

Algorithm 2 PPO for scheme with prediction
Initialize parameter θ and φ for actor and critic
Load parameter ϕ for GRUs
for episode = 0 to N do

h0 ← 0
for t = 0 to T do

Perform prediction xt, ht+1 = GRU(st, ht;ϕ)
ot ← [st, xt]
P ← π(·|ot; θ), vt = V (ot;φ)
Sample action at according to distribution P
Execute action at and observe st+1

Compute the probability poldt ← P(at)
ÂT ← 0, vT ← 0
for t = T − 1 to 0 do

R̂t ← γλÂt+1 + rt + γvt+1

Ât ← R̂t − vt
for k = 1 to K do
La ← 0,Lc ← 0
for t = 0 to T − 1 do

wt ← π(at|ot; θ)/poldt
La+ = min

(
wtÂt, clip (wt, 1− ε, 1 + ε) Ât

)
Lc+ =

(
V (ot;φ)− R̂t

)2
Update θ and φ with gradient ∇θLa and ∇φLc
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C. DRL-Based Scheme without Prediction

As shown in Fig. 2, under the scheme with prediction, the
RNN and MLP are trained with SL and RL, respectively.
While the scheme without prediction performs end-to-end
training. Put differently, the networks of actor and critic
are comprised of RNN and MLP, rather than only MLP.
In this sense, during the training process, the RNN could
automatically learn appropriate parameters such that the most
important information at previous time steps could be captured
for decision.

The detail of DRL-based scheme without prediction is
express in Algorithm 3. The state st is directly served as
input to generate the policy and estimated value function.
Simultaneously, the hidden states for actor and critic are
generated for the next calculation.

Algorithm 3 PPO for scheme without prediction
Initialize parameter θ and φ for actor and critic
for episode = 0 to N do

hπ0 ← 0, hV0 ← 0
for t = 0 to T do
P, hπt+1 = π(st, h

π
t ; θ)

Sample action at according to distribution P
poldt ← P(at)
vt, h

V
t+1 = V (st, h

V
t ;φ)

Execute action at and observe st+1

ÂT ← 0, vT ← 0
for t = T − 1 to 0 do

R̂t ← γλÂt+1 + rt + γvt+1

Ât ← R̂t − vt
for k = 1 to K do
La ← 0,Lc ← 0, hπ0 ← 0, hV0 ← 0
for t = 0 to T − 1 do
P, hπt+1 = π(st, h

π
t ; θ)

Vt, h
V
t+1 = V (st, h

V
t ;φ)

wt ← P(at)/poldt
La+ = min

(
wtÂt, clip (wt, 1− ε, 1 + ε) Ât

)
Lc+ = (Vt − R̂t)2

Update θ and φ with gradient ∇θLa and ∇φLc

IV. PERFORMANCE EVALUATION

In this section, the performances of DRL-based energy
management scheme with and without prediction are com-
pared. First, the simulation environment settings and algorith-
mic implementation are provided. Then, the performances of
prediction used for energy management scheme are evaluated.
Finally, the simulation results of comparisons between two
schemes and corresponding explanation are given.

A. Environment Setup

We consider the energy management problem during one
day, such that the time horizon T is 24. The transition

functions and cost function are specified as follows [16].

f (b, a) =

{
b+ ηc

C a, if a ≥ 0,

b+ 1
Cηd

a, otherwise,
(11)

g (b, a) =

{
λ1|a|, if b < 0.5,

λ2|a|, otherwise,
(12)

where C, ηc and ηd denotes the capacity, charging and
discharging efficiency coefficients of BESs, λ1 and λ2 are
the maximum and minimum degradation cost per kWh, cor-
responding to low SOC and high SOC, respectively. The
parameter settings are provided in Table I.

TABLE I
ENVIRONMENT AND ALGORITHMIC PARAMETER SETTINGS

Parameter Value Parameter Value Parameter Value

dmax 400 kW cmax 400 kW C 2000 kWh
ηd 0.95 ηc 0.95 λ1 0.013
λ2 0.005 ε 0.2 K 3

We employ 10 parallel threads to interact with the environ-
ment. We use the historical data from 2015-01-05 to 2018-
12-17 for the SL training, while the data from 2018-12-18 to
2020-03-23 is used for the test of prediction performance. For
the training of DRL, the discount factor γ is set to be 0.95,
The learning rate of actor and critic is set to be 3× 10−4 and
1×10−3, respectively. Other important algorithmic parameters
are shown in Table I.

B. Performance of Prediction

During training process of SL, The MSE losses of the
prediction for renewable generation output, power demand
and electricity price are shown in Fig. 3, Fig. 4 and Fig.
5, respectively. It can be observed from these three figures
that the MSE losses rapidly decrease and eventually converge,
which demonstrates the stable training of RNNs.
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Fig. 3. Loss curve of prediction for renewable generation output.

The prediction effects during two days are shown in Fig.
6, Fig. 7 and Fig. 8. It can be observed from these three
figures that the 1-step prediction is more accurate than 2-step
prediction, which is also revealed by the loss curves during
training.
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Fig. 4. Loss curve of prediction for power demand.
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Fig. 5. Loss curve of prediction for electricity price.
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Fig. 6. Prediction for renewable generation output.
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Fig. 7. Prediction for power demand.
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Fig. 8. Prediction for electricity price.

We adopt two metrics to evaluate the performances of
prediction: mean absolute percentage error (MAPE) and root-
mean-square error (RMSE). The evaluation results are shown
in Table II.

TABLE II
TEST PERFORMANCE FOR PREDICTION

1-step 2-step

Metrics MAPE RMSE MAPE RMSE

Renewable generation output 17.7% 31.0 31.0% 47.0
Power demand 3.0% 13.3 5.7% 22.8

Electricity Price 8.2% 0.0046 11.4% 0.0058

C. Performance of Energy Management Schemes

The evaluate the performances of these two schemes during
the training process of PPO, we depict the mean episode
reward (R =

∑T
t=0 rt) in Fig. 9. We can see that the energy

management scheme without prediction has higher episode
reward than scheme with prediction.
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Fig. 9. Training curve.

Under the energy management scheme without prediction,
the curves of charging/discharging power of BESs with elec-
tricity price are shown in Fig. 10. One can observe that the
scheme without explicit prediction learns to charge when the
electricity price is low and to discharge when the price is
on-peak. These charging/discharging patterns demonstrate the
DRL-based energy management scheme can accommodates
the varying electricity price without explicit prediction.
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Fig. 10. Charging/discharging power of the scheme without explicit prediction
over 4 consecutive days.

V. CONCLUSION

In this paper, we investigate whether the prediction matters
in DRL-based energy management scheme. We present the
standard energy management scheme with and without explicit
prediction. The former is implemented with both SL and
DRL, while the latter is directly implemented with end-to-
end DRL. The simulation results demonstrate that end-to-end
DRL enables the EMS to learn better control policies without
explicit prediction sessions. This work can clarify the misuse
and misunderstanding for DRL methods in the field of energy
management.
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