State Estimation of Energy Internet Using SCADA
and PMU Data Based on Graph Convolutional
Networks

Xian Wu, Huaying Zhang
New Smart City High-quality Power Supply
Joint Laboratory of China Southern Power Grid
Shenzhen Power Supply Co., Ltd
Shenzhen, China

Abstract—The real-time state estimation is crucial to guarantee
the stable operation of energy Internet (EI) which has variable
loads and distributed power generations. Therefore, this paper
proposes a real-time transient state estimation method for EI
based on graph convolutional networks (GCN). Using data of
SCADA and limited phasor measurement unit (PMU), the GCN
in the proposed method fuses the heterogeneous data of EI buses
with the adjacency matrix that represents the topology of EI.
Then the transient states of EI buses without PMU measurement
are estimated by SCADA data and adjacent PMU data through
the training of GCN model. The case study on the simulation
data of an IEEE 9 bus system that considers fault injection and
disturbances verifies the effectiveness of the proposed approach.
The result shows that the proposed approach achieves fast and
accurate state estimation of all EI buses during the transient
process of faults and disturbances.

Index Terms—Energy Internet, graph convolutional networks,
phasor measurement unit, state estimation.

I. INTRODUCTION

ITH the ability of absorbing distributed energy re-

sources and achieving effective energy management,
the research on energy Internet (EI) develops rapidly in recent
years. Meanwhile, the increase of distributed energy resources
brings EI more prone to stability problem. Therefore, the real
time state estimation becomes an important aspect to ensure
the safe and stable operation of EI.

In the practical power system, the real-time monitoring
data usually comes from supervisory data acquisition sys-
tem (SCADA), which mainly includes active power, reactive
power, voltages amplitude and so on. The interval of data
acquisition is second level, and the real-time and accuracy of
voltage phase angles are poor due to the error during the data
transmission process. Therefore, the transient process during
faults and disturbances cannot be monitored only through
SCADA.

With the emergence and development of phase measurement
unit (PMU), the synchronous phase can be measured in real
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time using GPS for timing. PMU transmits data quickly and
has phase angle measuring device, which ensures the real-
time of the data acquisition. Meanwhile, with the sampling
rate higher than 100Hz, PMU is able to collect the transient
data during faults [1]. Based on PMU data, many applications
have been proposed, such as event detection [2] and fault
diagnosis [3]. However, compared with SCADA, the high cost
and difficult maintenance make it difficult to guarantee the
installation of PMU measurement on every bus [4]. Therefore,
the fusion of the data from limited PMUs and SCADA for state
estimation has been a major research subject in recent years.

With the rapid development of artificial intelligence in
recent years, artificial intelligence has been applied to many
subjects in EI, such as reactive power consumption [5],
energy management [6] and renewable energy storage [7].
To achieve the state estimation of power system, some data-
driven methods have been proposed [8], [9]. However, the
aforementioned methods that only combine monitoring data
as artificial intelligence input are totally data-driven. The
topology that serves as domain knowledge of EI has not
been considered properly, which results in the poor robustness
of deep learning methods, especially under variable power
generations in EI. The EI topology can indicate the intercon-
nection between buses and further facilitate the precise state
estimation of EI. With the topology, the monitoring data of
EI can be regarded as data with graph structure. Motivated
by applying convolutional neural networks (CNN) to data
with graph structure, graph convolutional networks (GCN) is
proposed by defining convolution operations on a graph [10]
with the adjacency matrix, and has been successfully applied in
many fields such as traffic prediction [11] and virtual network
embedding [12].

Therefore, to fully utilize the multi-source monitoring data
and domain knowledge of EI, GCN is introduced to the state
estimation of EI during transient process in this paper, and
a novel GCN-based state estimation method is proposed for
EI using SCADA and PMU data. With the EI topology repre-
sented by the adjacent matrix, the multi-source monitoring data



of each EI bus and its adjacent buses are extracted and fused
by the graph convolution operation in GCN. Then the transient
states of all EI buses are obtained by the multiple output of
GCN. The main contributions of this paper are summarized as
follows:

1) GCN is first introduced to state estimation of EI in this
paper. By considering EI topology, GCN achieves the
fusion of SCADA and PMU data with the adjacency
matrix and graph convolution operations.

2) Multiple output batches are constructed in GCN. Thus,
transient states of all EI buses can be obtained simulta-
neously.

3) The case study on an IEEE 9 bus system shows that the
proposed method achieves fast transient state estimation
and more accuracy transient voltages during faults than
the state-of-the-art methods.

The rest of the paper is organized as follows. Section
Il presents the basic principles of GCN and its advance
edition for state estimation. Section III introduces the proposed
transient state estimation method for EI. Section IV verifies the
proposed method on the simulation of an IEEE 9 bus system.
Section V concludes the paper.

II. GRAPH CONVOLUTIONAL NETWORKS FOR STATE
ESTIMATION

A. Graph Convolutional Networks

In recent years, CNN has been successfully applied in many
fields, since it has strong feature extraction ability on data
in array form [13], [14]. Meanwhile, the system with graph
structure are more common in our daily life, such as Internet,
social network and power grid, the topology of which is
significant for the feature exaction and state estimation of these
systems.

To apply convolution operation in CNN on data with graph
structure, GCN is proposed by deriving graph convolution
operation with the adjacency matrix of the graph [15]. GCN is
composed of several graph convolutional layers. Considering
an undirected graph G = (V,€) with N nodes v; € V,
K edges (v;,v;) € E. An adjacency matrix 4 € RNV*V
is constructed to indicate the topology, and a degree matrix
D=3 j A; ; is constructed to indicate the degree of nodes.
Then a normalized Laplacian matrix L of the graph is obtained
by combining A and D [16]:

L=D"3*D—-AD 2 =UAUT (1)

where A is the matrix of eigenvalues, U is the matrix of
eigenvectors, and T is matrix transposition operation. Then
graph convolution operation is defined by:

y=o0(go(L)z) = U(Ugg(A)UTm> )

where y is the output features of nodes, go is the graph
convolutional kernels. gg(A) represents the graph convolution
operation on A. x are the input features of nodes, o(-) is the
activation function.

Fig. 1: Structure of a graph convolutional layer.

As shown in Fig. 1, a graph convolutional layer fuses the
features of graph nodes with adjacency matrix to obtain the
extracted features of nodes. x; and y; are the input and output
features of the :th node, respectively.

Furthermore, to fuse the node feature and the features of
adjacent nodes with a larger distance, a Chebyshev polynomial
is operated on A by [16]:

k—1
9o(A) = BrTr(A) 3)
0

where Tj(-) is a Chebyshev polynomial of order k, f3 is
the convolutional kernels for features in k-th order, A =
2A/Amaz — I is the rescaled A to [—1,1]. Apeq is the
maximum of A, and [ is the identity matrix. Therefore, the
final formula of a graph convolutional layer is defined by:

k—1
y=0o(UY BT ) 4)
0

In a graph convolutional layer, features of nodes in different
distance of a node are extracted and summed to obtain the
output feature of the node. Then several graph convolutional
layers can be put in sequence to construct GCN.

B. Graph Convolutional Networks for State Estimation of EI
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Fig. 2: Structure of a local microgrid in EIL

As shown in Fig. 2, with the power lines connecting buses,
EI system is in a typical graph structure. The power flow on
power lines indicate the connections between buses, and af-
fects the operation state of EI. Therefore, the consideration of
the relationship between the states of nodes is very important
for the state estimation of EI. In face of the limited PMU
installation, GCN that can explore the potential connection



between the data of nodes is a natural choice for EI state
estimation based on the correspondence between graph nodes
and EI buses.

To make full use of the SCADA data and limited PMU
data, the multi-source data should be combined as the input of
GCN. The SCADA data is used as the input of nodes without
PMU, and the real-time PMU data is used as input of nodes
with PMU. Then with SCADA data as initial values, the states
of nodes without PMU can be updated by fusing with data
of adjacent nodes through the graph convolution operation in
GCN.
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Fig. 3: Structure of GCN for state estimation.

Estimation Result

Meanwhile, to obtain the state of nodes without PMU
measurement, multiple batches are constructed to generate
multiple outputs. As shown in Fig. 3, a mask layer is added
after the last graph convolutional layer to indicate the nodes
without PMU measurement. Then multiple regression outputs
are constructed, and the loss function during the training
process is defined as follows:

Loss—zz (li

where s is the number of nodes without PMU measurement, ¢
is the number of data channel, /; ; and o; ; are the true value
and output value for the j-th data channel of the i-th node.

— 0i5) ®)

III. THE PROPOSED STATE ESTIMATION METHOD FOR EI

With the increase of distributed energy resources connected
to EI, transient fluctuations often occurs, which affects power
quality. It is necessary to monitor the fluctuation of each bus
in the transient process. However, the insufficient installation
of PMU makes it difficult to obtain transient information of all
buses. To solve the problem, based on GCN that can discover
the relationship between EI buses, a novel state estimation
method is proposed using SCADA and PMU data. Fig. 4
shows the flow chart of the proposed method, the detail steps
of which are described as follows:

PMUs SCADA ]

Data Acqulsltlon

Offline Tramlng

- ]
[ J

[ Online Implementation J

Fig. 4: Flow chart of the proposed state estimation method for
EL

1) Acquisition of EI Monitoring Data: Obtain SCADA
monitoring data of buses without PMU and real-time PMU
data in high sampling frequency of buses with PMU mea-
surement, which consist of active power, reactive power, fre-
quency and three-phase voltages. Then the state of EI system
S € RNX6 is constructed by combining the SCADA and
PMU data. N is the number of EI buses. During the transient
process, the PMU data in S changes in real-time and SCADA
data remains unchanged.

2) Construction of GCN for State Estimation of EI:
Construct the GCN model for state estimation according to
the topology of EI. The adjacency matrix of corresponding
graph structure is established based on the connection of power
lines between buses. Then, considering the size of the EI, the
structure parameters of GCN are set, and the input and output
forms are defined according to the position of PMU nodes.

3) Offline Training of State Estimation Model: Select the
data during the transient process of EI with faults and distur-
bances, Taking state of EI system S as input, and the transient
data of non-configured PMU buses as output, the constructed
GCN model for state estimation is trained.

4) Online Implementation for Real-time State Estimation:
Implement the trained state estimation model of EI buses based
on GCN online. Obtain the real-time state estimation results
of all EI buses with the input of the SCADA data of all buses
and real-time PMU data of some buses obtained online.

IV. CASE STUDY AND RESULT ANALYSIS

To verify the effectiveness of the proposed method, a case
study based on an IEEE 9 bus system [17] is carried out in
this section.

A. Simulation of EI system

Based on the IEEE 9 bus system shown in Fig. 5, the sim-
ulation model of the EI system is constructed using PSD/BPA
software. The EI system operates at 230 kV, 50 Hz. Gen 1,
Gen 2 and Gen 3 are three generators. Bus A, bus B, bus C
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Fig. 5: EI based on the IEEE 9 bus system.

and bus 2 are buses with ZIP loads with different factors. Bus
A, bus B, bus C and Gen 2 are mounted with PMUs.

Disturbances and faults are injected using PSD/BPA soft-
ware to simulate the transient processes in EI system. Dis-
turbances include sudden increase of load on nodes. Faults
include one-phase ground, two-phase short circuit, two-phase
ground and three-phase short circuit on the power lines be-
tween buses. There are 180 transient processes in faults and
disturbances conditions totally. Fig. 6 shows the voltage curves
of EI nodes when a two-phase ground on phase B and phase
C of the power line between bus A and bus 2. The fault
occurs at 0.01 seconds, and the protection device actions at
0.02 seconds.
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Fig. 6: Voltage curves of buses during a two-phase ground

fault.

B. Parameter Setup and Offfine Training

To construct the GCN model for the specific EI system,
firstly, the graph of EI system is built by taking EI buses as
graph nodes and taking power lines in EI as edges of graph.
Then, an adjacency matrix with the size of 6 x 6 is built
to describe the EI topology. The GCN model is structured
with three graph convolutional layers, and two fully connected
layers are followed to extract the features of each node. The
detail parameters of the GCN model are list in Table I. The
features of the last graph convolutional layer are masked to
output of the five buses without PMU measurement. Voltage,
frequency and active power are the three channels to be
estimated.

With the sampling rate of 100Hz, PMU data of 0.3 seconds,
which contains 300 samples, is selected for training. Totally,

TABLE I: Parameters of GCN for State Estimation

No. Layer Type Input Size Parameters Output Size
1 Graph Convolutional layer 9 X 6 6 X 10 X 3 9 X 10
2 Graph Convolutional layer 9 X 10 10 X 10 x 3 9 X 10
3 Graph Convolutional layer 9 X 10 10 X 5 X 3 9 X5
4 Mask layer 9 X5 9x1 5X%X5
5 Fully connected layer 5X%X5 5x10/5 5 x 10
6 Fully connected layer 5 x 10 10 X 3/5 5% 3

42000 samples are used in the offline training, while 12000
samples are used to evaluate the trained GCN state estimation
model. The training of GCN model is processed by Tensorflow
in Python environment on a computer with a GTX 1070 GPU
and 16 GB memory. The learning rate is set as 0.001. During
about 290 minutes, the training of GCN model achieves
convergence after 5000 epochs. The loss curves for three
channels during the training process are shown in Fig. 7, which
is relatively stable. The training speed of GCN is slower than
CNN, since it GCN the topology of graph and has strong
robustness.
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Fig. 7: Loss curves during the training process.

C. Results and Analysis

The average root mean square errors (RSMEs) of the
training and test Set for the 3 estimated channels are listed
Table II. It can be seen that all the RSME of the voltage,
frequency and active power are small compared to the true
values, which shows the effectiveness of the method in state
estimation.

TABLE II: Average RSMEs of Training and Test Set for 3
Estimated Channels

Voltage (pu) Frequency (Hz) Active Power (MW)

Data Set
RSME RSME RSME
Training 0.058 0.273 1.954
Test 0.073 0.439 2.495

Fig. 8 shows the state estimation result of bus 1 and Gen
1 during the transient process in Fig. 6. It can be seen that
the proposed method can obtain accurate estimation for the
voltages, frequency and active power of bus 1 and Gen 1. The



fluctuations in the curve after protection action is well fitted.
The estimation error mainly comes from the fault injection
process when the impedance of lines changes dramatically.
The influence of impedance variations on GCN model is worth
further study.
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Fig. 8: State estimation results.

V. CONCLUSION

This paper proposed a state estimation method for EI based
on GCN using SCADA and PMU data. Considering the
topology EI, GCN fuses the multi-source data of EI buses
based on the adjacency matrix. Then multiple task batches are
constructed to obtain the transient state of EI buses with PMU
measurement in real-time. The case study on an EI system
shows that the proposed method can achieve real-time state
estimation of EI during faults and disturbances. In future work,
with natural multi-output structure of GCN, the optimization
problems in EI with multi-agents can be solved by considering
EI topology.
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