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Abstract—Bitmap indexing is flexible to conduct boolean 

operations in data retrieval. Besides, the query processing 

based on bitmap indexing is also very fast. Therefore it has 

been widely used in various big data analytics platforms, such 

as Druid and Spark etc. However, bitmap index can consume 

a large amount of memory, which leads to the invention of 

different kinds of bitmap index compression algorithms 

without sacrificing temporal performance. In practice, we are 

often discommoded by choosing a proper algorithm when 

handling specific problems. Besides, after devising a new 

algorithm that may outperform existing ones, it is essential to 

evaluate its performance in theory. Without appropriate 

theoretical analysis, the deficit of a new algorithm can only be 

spotted until final experimental results are drawn, thus 

wasting much time and effort. In this paper, we propose a 

general analytical model to analyze both the spatial and 

temporal performance for bitmap index compression 

algorithms, which can be applied to analyze all kinds of 

algorithms derived from WAH (word-aligned hybrid). In this 

model, two types of distributed bitmaps, uniformly distributed 

bitmaps and clustered bitmaps, are used separately. In order 

to illustrate this model, several bitmap index compression 

algorithms are analyzed and compared with each other. 

Algorithms herein are COMBAT (COMbining Binary And 

Ternary encoding), SECOMPAX (Scope Extended COMPAX) 

and CONCISE (Compressed ‘n’ Composable Integer Set), 

which are all derived from WAH. Evaluation results by 

MATLAB simulation about these algorithms are also 

presented. This paper paves the way for further researches on 

the performance evaluation of various bitmap index 

compression algorithms in the future. 

Keywords—bitmap index; Big Data; COMBAT; 

SECOMPAX; CONCISE; data compression, performance 

evaluation. 

I. INTRODUCTION 

Nowadays streaming data, such as sensing data from IoT 
devices, network traffic and machines’ operational logs etc., 
are soaring and many applications are experiencing hardness 
in querying and searching such big data. In order to solve 
this problem, bitmap indexing [1-7] has been widely used in 
Big data platforms. An example of bitmap index is shown in 
Fig. 1. However, since bitmap indexing consumes a large 
amount of memory and disk space, a series of bitmap index 
compression algorithms have been proposed, such as 
BBC[8], WAH [9-10], UCB [11], RLH [12], VLC [13], 
PLWAH [14], EWAH [15], PWAH [16] , COMPAX [17], 
GPU-WAH [18-19], GPU-PLWAH [20], SECOMPAX [21], 
PLWAH+[22], DFWAH [23], roaring bitmap[24], 

BREAD[25], VAL-WAH [26], CONCISE[27], 
COMBAT[28] etc. A detailed survey is presented in [29].  

In practice, a proper bitmap index compression 
algorithm often matches a specific problem and the process 
of choosing often discommodes us. Besides, a theoretical 
evaluation for a newly devised algorithm is indispensable. 
For this purpose, an theoretical model is developed for 
analyzing both the spatial and temporal performance of 
bitmap index compression algorithms by using two kinds of 
bitmaps, i.e. uniformly distributed bitmaps and clustered 
bitmaps. Based on appropriate assumptions, some 
indispensable procedures compose this analytical model, 
including calculating Basic Probabilities (defined in Section 
III), listing all compressible word combinations, calculating 
probabilities of each codewords and working out final 
expected values of compressed size and decompression time 
in each algorithm. This model is proved by analyzing spatial 
and temporal performance of SECOMPAX, COMBAT, and 
CONCISE.  

This paper is organized as follows. In Section II, specific 
encoding schemes of SECOMPAX, COMBAT and 
CONCISE are given. In section III, specific analysis 
procedures of these algorithms referred above are presented, 
which are composed of both the spatial and temporal 
analyses in two kinds of bitmap indexes. In Section IV, 
evaluation results on memory consumption and 
decompression time are given to show their comparison 
explicitly.  

II. ALGORITHM 

A. Basic Definitions 

For convenience in analysis, basic terms in bitmap 
indexing are introduced and are listed in TABLE I. Based on 
these definitions, all kinds of codewords in SECOMPAX, 
COMBAT as well as CONCISE are introduced. Since these 
coding schemes are all operated after WAH encoding, the 
codewords in WAH are introduced firstly. Two types of 
codewords are used in WAH, i.e. fill and literal. A Fill 
represents the number of consecutive fills of the same kind. 

tpye=1 type=2 type=3 type=4 type=5

1 2 0 1 0 0 0

2 1 1 0 0 0 0

3 4 0 0 0 1 0

4 3 0 0 1 0 0

5 1 1 0 0 0 0

6 1 1 0 0 0 0

7 5 0 0 0 0 1

RowID type
bitmap index

 
Fig.  1 An example of bitmap index  
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A MSB recording the type of these consecutive fills in 
compressed fill after WAH encoding. A Literal is the same 
definition shown in TABLE I. 

B. Codewords in SECOMPAX 

In SECOMPAX, new types of [LFL] and [FLF] 
codewords are devised for further compression after WAH 
encoding. If three consecutive chunks are fill, L and fill 
separately, then they can be merged into a chunk belonging 
to [FLF] codeword. Likewise, the [LFL] codeword can also 
be defined. Specific compositions of these two codewords 
are shown in Fig. 2 and Fig. 3 separately. 

TABLE I. Terminology and corresponding explanations 

Terminology Explanations 

unset bit A bit that is “0” 

set bit A bit that is “1” 

chunk Consecutive 31 bits in a bit sequence 

Fill 

Defined as a chunk composed of the same kinds of bit.  

A 0-fill is defined as a fill only composed of unset bits. 

A 1-fill is defined as a fill only composed of set bits. 

literal A chunk that is not fill. 

dirty byte 

Defined as a byte in a chunk containing set bits or unset bits 
exclusively. 

A 0-dirty is defined as a byte in a chunk containing set bits 
exclusively. 

A 1-dirty is defined as a byte in a chunk containing unset 
bits exclusively. 

L 

Defined as a chunk with one dirty byte 

A 0-L is defined as a chunk with a 0-dirty 

A 1-L is defined as a chunk with a 1-dirty 

NI2-L 

Defined as a chunk with two dirty bytes 

0-L is defined as a chunk with two 0-dirtys 

1-L is defined as a chunk with two 1-dirtys 

C. Codewords in COMBAT 

COMBAT is derived from SECOMPAX which includes 
all codewords of SECOMPAX and beyond. Furthermore, 
some special codewords are also introduced to improve the 
compression ratio. If there already exist two continuous 
chunks, L and fill (but without another L following), these 
two continuous chunks can be merged into a new compact 
one. This merge creates a new kind of codeword named [LF]. 
Besides, if an NI2-L just locates in front of a fill after WAH 
encoding, then these two chunks can be merged into a new 
one, called [NI2-LF]. The composition of [LF] and [NI2-LF] 
is also listed in Fig. 4 and Fig. 5 repectively.  

D. Codewords in CONCISE 

CONCISE is a bitmap index compression algorithm 
which is also extended from WAH. CONCISE introduces a 
new type of codeword based on fill (defined as NL-F). It 
aims at compressing a fill and a special literal which 
includes only one set bit in a literal. This compressible 
literal is defined as N-fill here. In a NL-F, besides the 

number of fill, the position of the only set bit in N-fill is also 
recorded. The [NL-F] codeword is shown in Fig. 6. 

Intuitively, since COMBAT provides more possibilities 
to compress an uncompressed bit sequence comparing to  
SECOMPAX and CONCISE, it can be expected that the 
compressed size after COMBAT encoding is smaller than 
SECOMPAX and CONCISE. In terms of decompression 
time, due to shorter compressed bit sequence in COMBAT, 
it can take less time to load this compressed bitmap into 
memory and CPU. Thus shorter process time can also be 
expected. However, more process time can be expected 
when processing a single compressed chunk in COMBAT, 
because it uses more codewords,. As a whole, these three 
algorithms can share nearly the same decompression time.  

III. SPATIAL AND TEMPORAL ANALYTICAL MODEL  

A. Compression of uniformly distributed bitmaps 

1) Assumptions 
In this analysis model, we assume that only three chunks 

exist in raw bitmap indexes so that they can be compressed 
by COMBAT, SECOMPAX and CONCISE at the same 
time. It is convenient for the following analyses and this case 
can be generalized to other complex cases.  

Before conducting analysis, some assumptions are listed 
below: 

 The density of set bits is denoted by a variable d. 

 The variable d is independent from the distribution of 

set bits in uniformly distributed bitmaps.  

 The value of d can be considered very small, 

approaching to zero.  

 
Fig.  2. [FLF] codeword in SECOMPAX 

 
Fig.  3. [LFL] codeword in SECOMPAX 

 
Fig.  4. [LF] codeword in COMBAT 

 
Fig.  5. [NI2-LF] codeword in COMBAT 

 
Fig.  6. [NL-F] codeword in CONCISE 



 

 For computational convenience, Taylor expansion 

can be applied since the value of d approaches zero. 

After Taylor expansion, only terms of the first and 

the second degree are retained.  

 The execution time of an assignment statement and 

a conditional statement (if or else statement) in 

programs are consistent and denoted by variables 

t1 and t2 separately. 
There are some explanations about the value of d. 

According to listed assumptions, d is approaching zero, 
which is reasonable in real network environment. For 
example, since each byte composing an IP address ranges 
from 0 to 255, the average value of d is 1/256, less than 0.5% 
in each bitmap. In general network environment, the value 
of each byte is a random integer between 0 and 255 because 
a website can be accessed by millions even billions of 
different users with various IP address. So the value of d in 
each bitmap is very small, approaching to zero. 

2) Size of compressed uniformly distributed bitmaps 

a) Step 1: calculating Basic Probabilities 

Based on assumptions above, the probabilities of fill, 
literal, L and NI2-L (defined as Basic probabilities) can be 
calculated out separately. The probabilities of each 
codeword can be denoted by the value of Basic probabilities 
simplified through Taylor Expansion. 

In order to generalize this model to other algorithms 
based on WAH, the basic probabilities are separated into 
two parts, some are general ones for all algorithms derived 
from WAH while others are special ones for specific 
algorithms 

 General Basic probabilities for all algorithms based 
on WAH: 

Since in a 0-fill 31 bits are all unset bits, the probability 

(denoted by p
1
) will be 

 p
1
= (1 - d )31

≈1 - 31d + 465d
2
  

Likewise, the probability of 1-fill (denoted by p
2
) can 

deduced out according to symmetrical characteristic 
(replacing d with 1-d in equation (1)). 

 p
2
= d 

31
≈ 0  

After getting the value of p
1
 and p

2
, the probability of 

literal (denoted by p
7
) can be written below: 

 p
7
=1 - p

1
- p

2
= 1- (1 - d)

31
- d31

 ≈ 31d - 465d
2  

 Special Basic probabilities for SECOMPAX and 
COMBAT: 

In terms of the probability of 0-L (denoted by p
3
) it can 

be deduced below: 

 p
3
 = C3

1(1 - (1 - d)
8
) (1 - d)23+ (1 - (1 - d)

7
) (1 - d)

24 

≈ 31d - 825d
2 

 

The first term in equation (4) denotes the case that the 
dirty byte lies in the leftmost position while the second term 
denotes the case that the dirty byte locates in one of the other 
three bytes in this 0-L. 

Similarly, according to symmetrical characteristic, the 

probabilities of 1-L (denoted by p
4
) can be denoted below. 

 p
4
 =  C3

1(1 - d
8
) d23

+ (1 - d7
) d24

≈ 0  
 The results of the probabilities of 0-NI2-L and 1-NI2-L 

(denoted by p
5

 and p
6

 separately) are shown below and 

their derivation process is similar to the former one. 

 p
5
 ≈ 360d

2
  

 p
6
=3((1 - d8

)
2
+3(1 - d7

)(1 - d8
)) d23

≈ 0  

 Special Basic probabilities for CONCISE: 

When it comes to the probability of N-fill in CONCISE, 

since only a set bit exists, the probability (denoted by p
8
) 

can be denoted as follows by binomial theorem. 

 p
8
= C31

1 d (1 - d )
30

≈ 31d - 930d
 2  

b) Step 2: calculating probabilities of all 

compressible codewords 

TABLE II lists probabilities of all compressible three-
continuous-word combinations and corresponding 
compressed sizes after COMBAT encoding. Based on these 
probabilities, the expected value of compressed size in 

COMBAT (denoted by LCOMBAT) can be calculated out and 
detailed derivation processes of these probabilities are 
shown in Appendix (see Proof 1). 

TABLE II. Probability and corresponding compressed size of 

each word combination in COMBAT 

word combination compressed 

size 

Symbol Probability 

value 

0-fill+0-fill+0-fill 1 q
1
 1-93d+4278d

2
 

1-fill+0-fill+0-fill 2 q
2
 0 

0-fill+0-fill+1-fill 2 q
3
 0 

1-fill+1-fill+0-fill 2 q
4
 0 

0-fill+1-fill+1-fill 2 q
5
 0 

1-fill+1-fill+1-fill 1 q
6
 0 

fill + L + fill ([FLF]) 1 q
7
 31d - 2747d

2
 

L + fill + L([LFL]) 1 q
8
 961d

2
 

Literal(not L) + L + 

fill([LF]) 

2 q
9
 961d

2
 

L + fill + literal(not 

L,[LF]) 

2 q
10

 961d
2
 

fill + fill + literal 2 q
11

 31d - 2387d
2
 

Literal (not L) + fill + 

fill 

2 q
12

 360d
2
 

L+ fill + fill 1 q
13

 31d - 2747d
2
 

NI2-L + fill +literal 

([NI2-LF]) 

2 q
14

 360d
2
 

NI2-L + fill +fill 
([NI2-LF]) 

1 q
15

 360d
2
 

Any type + NI2-L + 

fill ([NI2-LF]) 

2 q
16

 360d
2
 

Other cases 3 q
17

 601d
2
 

Since all kinds of codewords in SECOMPAX are 
covered by COMBAT, there is no need to create an 
independent table for SECOMPAX. 

Similarly, TABLE III lists probabilities and 
corresponding compressed sizes of all possible compressed 
codewords in CONCISE. Detailed derivation processes of 
them can be seen in Appendix (see Proof 2). 



 

TABLE III. Probability and corresponding compressed size 

of each word combination in CONCISE 

Word combination compressed 

size 

Symbol Probability 

value 

0-fill+0-fill+0-fill 1 q
1
c 1 - 93d + 4278d

2
 

1-fill+1-fill+1-fill 1 q
2
c 0 

0-fill+0-fill+1-fill 2 q
3
c 0 

1-fill+0-fill+0-fill 2 q
4
c 0 

1-fill+1-fill+0-fill 2 q
5
c 0 

0-fill+1-fill+1-fill 2 q
6
c 0 

fill + fill + literal 2 q
7
c 31d - 2387d

2
 

literal(not N-fill) + 

fill + fill (the same 
type of fill) 

2 q
8
c 465d

2
 

N-fill+0-fill+ 0-fill 1 q
9
c 31d - 2852d

2
 

N-fill+0-fill+ 1-fill 2 q
10
c  0 

N-fill+1-fill+ 0-fill 2 q
11
c  0 

N-fill+1-fill+1-fill 2 q
12
c  0 

Any type of word + 

N-fill + 0-fill 

2 q
13
c  31d - 1891d

2
 

Other cases 3 q
14
c  2387d

2
 

c) Step 3: calculating expected values of compressed 

size 

According to TABLE II, the value of LCOMBAT can be 
derived below: 

 
LCOMBAT = q

1
+ 2q

2
+2q

3
+2q

4
+2q

5
+q

6
+q

7
+q

8
+2q

9
+2q

10
+2q

11
 

+2q
12

+q
13

+2q
14

+q
15

+2q
16

+3q
17

 

 ≈ 1 + 31d +496d
 2

 



Similar processes can be conducted to work out the 
expected values of compressed size with SECOMPAX  

(denoted by LSECOMPAX ). Since COMBAT includes all of 
the codewords of SECOMPAX, corresponding derivation 
processes are similar. In SECOMPAX, the probabilities, 
q

11
, q

12
, q

16
, q

17
 and q

18
, do not exist. Besides, the 

compressed size of q
15

 is 2 in SECOMPAX, because this 

word combination cannot be fully compressed due to lack of 

the codeword [LF]. Therefore the value of LSECOMPAX  is 
shown as follows. 

 LSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ≈ 1 + 62d - 210d

2  

According to the analysis above, the value of LCONCISE  
can be calculated and shown below. 

 LCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 1 + 62d + 1922d

2  
Detailed derivation processes of the equation (10) and 

(11) are shown in Appendix (see Proof 3) 

3) Decompression time complexity 
The practical executing time of decompression process 

will be influenced by many factors like CPU load, free 
memory size and the programming language etc. Therefore 
the numbers of statements in decompression are used to 
approximate the decompression time.  

a) Step 1: listing estimated decompression time in 

all kinds of codewords 

 A decompression process is usually composed of two 
steps: one is judgment and the other is assignment. In 
practice, assignment statements and conditional statements 
will be executed alternatively during the decompression 
process. 

Let’s take an example to illustrate this process, if a 
compressed word (e.g. [FLF] codeword in COMBAT) is 
ready to be decoded, it would take 3t1 + 5t2 because three 
assignment statements are needed to split it into three 
separate words and 5 judgment statements are needed to 
judge the type of two fills and the both the type and position 
of the dirty byte in this L. This decompression process is 
shown in Fig. 7. 

Similarly, estimated decompression time of all the 
codewords in COMBAT, SECOMPAX and CONCISE can 
be calculated and listed in TABLE IV (“All” means that this 
codeword’s decompression time is the same for all the three 
algorithms).  

TABLE IV. Decompression time estimation of all the 

codewords 

Codewords  Time Algorithms 

Fill t1 + t2 All 

Literal t1 + t2 All 

[FLF] 3t1 + 5t2 COMBAT, SECOMPAX 

[LFL] 3t1 +6t2 COMBAT, SECOMPAX 

[LF] 2t1 +4t2 COMBAT 

[NI2-LF] 3t1 +6t2 COMBAT 

NL-F 2t1 + 3t2 CONCISE 

b) Step 2: calculating the expetected decompression 

time 

Taking the probabilities calculated in Section 1) into 
consideration, we can calculate the expected values of 
decompression time (denoted by TCOMBAT

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 

TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  separately) in a three-word combination and 
detailed derivation process is shown in Proof 4 in Appendix. 

 TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ (1 + 124d)t1+ (1 + 248d)t2  

 
Fig.  7. An example of time evaluation in the process of decompression 



 

 TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ (1 + 124d)t1+ (1 + 248d)t2 

  TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ (1 + 124d)t1+ (1 + 186d)t2 

From equation (12) to (14), when d is approaching to 
zero, although the decompression time consumed in 
CONCISE is less than that in SECOMPAX and COMBAT, 
however, it can be considered that querying time of the three 
algorithms at least stay in the same order of magnitude. 

B. Compression of clustered bitmaps 

1) Assumptions 
Further assumptions are made that bitmap indexes 

follow two-state Markov process. Still only three chunks 
exist in the raw bit sequence and Taylor expansion can be 
applied to simplify our analysis. Besides, the first bit in a 
chunk is considered to be independent from the former 
chunk. 

Variable p is introduced to represent the probability that 
a set bit is followed by an unset bit and q represents the 
probability that an unset bit is followed by a set bit. 

 Then the relationship between d, p and q can be 
established because two type of bits are both likely to appear 
preceding a set bit. After simplification, an equation about 
variable d, p and q can be written as follows. 

 d = 
q

p + q
⟺ q = (

d

1 - d
) ∙ p  

According to equation (15), it is obvious that the value 
of q approaches zero since d approaches zero. It can be 
assumed that p approaches one since the distribution of set 
bits is very sparse and continuous set bits are also very rare. 
This assumption is logical since busty network traffic is 
actually rare in general case. 

In order to be more convenient, another variable r is 
introduced and it is assigned with the value of (1 - p). So r 
approaches zero. It can be further assumed that when q and 
r approach zero, they share the same convergent speed. 

2) Size of compressed clustered bitmap 

a) Step 1: calculating Basic probabilities 

In order to calculate the expected values of compressed 
size, Basic probabilities should be recalculated. 

 P1, P2, P7 

It is easy to calculate the values of p
1
, p

2
 and p

7
, 

which are shown below. 

 p
1
= (1 - d ) (1 - q)

30
=

p

p + q
 (1 - q)

30
≈ 1-31q+466q2-q r  

   p
2
= d (1 - p)

30 ≈ 0  
 p

7
 = 1 - p

1
- p

2
≈ 31q - 466q2+q r  

The derivation processes of equation (16) and (17) are 
shown in Proof 5 in Appendix. 

 P3 AND P4 

It would be much more complex to calculate the values 
of p

3
 and p

4
 because dirty byte may be dependent on the 

former bits and have influence on the following ones. 

In this case, three kinds of subcases should be considered 
according to the position of dirty byte. In the following 

analyses, 0-dirty and 0-L will be considered at first. And in 
order to be more convenient to analyze, the bytes in a chunk 
are numbered. The leftmost byte is numbered as the zeroth 
byte and from leftmost to rightmost bytes, the number is in 
ascending order. 

Case (1): In this case, the first or second byte in a chunk 
is 0-dirty. That means this 0-dirty would be influenced by 
the zeroth byte in this chunk and have impact on the third 
one.  

Before calculating probabilities in this case, some 
auxiliary probabilities should be calculated at first. 

According to the properties of Markov process, a basic 
recursive formula can be established as follows. 

 (
p

n
(0)

p
n
(1)

) = (
1-q 1-r

q r
) (

p
n-1

(0)

p
n-1

(1)
)  

Variables p
n
(0)  and p

n
(1)  represent the probability 

when the n-th bit in a chunk is unset bit or set bit separately. 
After iterative process and omitting terms of higher degree, 
the results will be (detailed derivation process is shown in 
Proof 6 in Appendix): 

 (
p

n
(0)

p
n
(1)

) = (
1-q+q2-q r 1-q+q2-q r

q - q2+q r q - q2+q r
) (

p
0
(0)

p
0
(1)

) (n>2)  

When n = 8, the result is: 

 (
p

8
(0)

p
8
(1)

) = (
1-q+q2-q r

q - q2+q r
)  

Another auxiliary variable is introduced here. If a group 
of bits ends with an unset bit and contains at least one set bit, 
the probability will be denoted by p

0
(n) . Variable n 

represents the number of containing bits.  

This probability can be further divided into two parts 
according to the type of the (n-1)-th bit. When the (n-1)-th 
bit is an unset bit, then probability is p

0
(n -1) (1-q). When the 

(n-1)-th bit is a set bit, at least one set bit has appeared and 
the probability is p

n-1
(1) p. Since p

n-1
(1) equals q - q2+q r, a 

recursive formula can be established as follows. And its 
general formula is also shown below. 

 p
0
(n) = p

0
(n -1) (1-q) + (q - q2+q r) p  

Since the first term p
0
(2)  equals p∙ q  and p  equals 

1- r, the general term of p
0
(n) can be written as follows 

after iterative process,. 

 p
0
(n) = (1 - r)(1 - q + r) - (1- q)n-2(1 - r)(1 - 2q + r)  

When n equals eight, the result of p
0
(n) is needed in the 

following calculation and shown below: 

 p
0
(8) ≈ 7q - 27q2 - q r  

Similarly, we can use variable p
1
(n)  to represent the 

probability of a group of bits ending with an unset bit and 
containing at least one set bit. Obviously, this probability 

equals p
n
(1), q - q2+q r. 

Based on these auxiliary variables, the probability of 0-
L in this case (denoted by p

dirty, 1
) is shown below and the 

derivation process is presented in Proof 7 in Appendix: 

 p
dirty, 1

= C2
1(1-d) (1- q)21(p

0
(8) (1-q)+p

1
(8) p)   



 

≈16q - 422q2-2q r 

Case (2): If 0-dirty is the zeroth byte in a 0-L, then the 
first bit will not be influenced by the former bytes. In this 
case, variable p

n
(0), p

n
(1), p

0
(n) and p

1
(n) still work, 

but their values get changed.  

Because this 0-dirty is not affected by the former bytes, 
the values of p

8
(0) and p

8
(1) are d and 1 - d separately. 

In order to be distinct, p
0
(n) is redefined as p*

0
(n) in this 

case. When n equals seven, the value of p*
0
(n) is: 

 p*
0
(7) ≈  6q - 21q2  

The value of p
1
(7)  still equals q - q2+q r . Based on 

these values, the probability of 0-dirty (denoted by p
dirty, 2

) 

is: 

 p
dirty, 2

= p
0
(7)(1- q)24+p

1
(7)p(1-q)23 ≈ 7q - 189q2+q r  

Case (3): The third byte in 0-L is 0-dirty. This 0-dirty 
will have no influence on the following bytes. Before 
calculating the probability, another variable p

k
(n)  is 

introduced to denote the probability that a group of bits 
(composed of n bits) contain at least one set bit. Then 
another recursive formula will be established as follows. 
Since the first term p

k
(1) equals q, its general term is also 

shown below. 

 p
k
(n) =p

k
(n-1)+ (1 - q)n-1q  

 p
k
(n) =1 - (1 - q)n  

So the probability p
dirty, 3

in this case is: 

 p
dirty, 3

= (1 - d) (1 - q)22p
k
(8) ≈ 8q - 212q2  

Finally, the value of p
3
 is the sum of probabilities in the 

three cases discussed above: 

 p
3
 = p

dirty, 1
 + p

dirty, 2
+p

dirty, 3
 ≈ 31q - 823q2 - q r  

Similarly, the value of p
4
 can be calculated out. But it 

is obvious that p
4
 can be divided by the expression r22 

which is an item of high degree. So its approximate value is: 

 p
4
≈ 0  

 P5 AND P6 

The values of p
5

 and p
6

 will be calculated here. 

Likewise, p
5
 will be considered at first. And several cases 

are discussed below. In order to distinct the two dirty bytes 
existing in a chunk, they are named as left 0-dirty (or 1-dirty) 
and right 0-dirty (or 1-dirty) according to their positions in 
this chunk. 

Case (1) - two dirty bytes are not adjacent: 

Subcase (1): If the zeroth byte is the left 0-dirty in this 
chunk, this case is just extended from subsection A. So the 
probability (denoted by p

2-dirty, 1
) can be derived as follows. 

 
p

2-dirty, 1
= p*

0
(7) (1- q)8(p

0
(8) (1-q)8+ p

1
(8) p (1-q)7) 

+ p*
1
(7) p(1 - q)7(p

0
(8) (1 - q)8+ p

1
(8) p (1-q)7) ≈ 56q2 

 

Subcase (2): if the first byte in this chunk is the left 0-
dirty, the probability (denoted by p

2-dirty, 2
) is: 

 p2-dirty, 2
= (1 - d)(1 - q)7(p

0
(8) (1 - q)8+p

1
(8) p (1 - q)7)p

d 
8   

   ≈ 64𝑞2  
Case (2) - two dirty bytes are adjacent: 

This is the case that two dirty bytes are adjacent in a 0-
NI2-L codeword. A probability should be calculated at first. 
In order to be distinct, the variable p

0
(n) is redefined as 

𝑝'
0
(n)  here. Obviously 𝑝'

0
(n)  shares the same recursive 

formula with p
0
(n) but they have different first terms. The 

first term, 𝑝'
0
(2) is (1 - p) p . After iterative process, the 

general term is: 

 p'
0
(n) = (1 - r) (1 - q + r) - (1 - r) (1 - q)

n-1
  

When n equals eight, the value is (after simplification): 

 p'
0
(8) = 6q - 21q2 + r - 6q r  

Subcase (1): If the zeroth byte is the left 0-dirty, the 
derivation process is similar to the former cases. Then after 
simplification, the probability (denoted by p

2-dirty, 3
) is 

shown below and detailed derivation process is shown in 
Appendix (see Proof 8): 

 p
2-dirty, 3

≈ 55q2 +q r  
Subcase (2): When the first byte is the left 0-dirty 

similarly, the following equation can be drawn. The 
probability is denoted by p

2-dirty, 4
. 

 
p

2-dirty, 4
= (1 - d) (1- q)

8
(p

0
(8) (p

0
(8)(1 - q)

8
+p

1
(8) p(1 - q)

7
) 

+p
1
(8) (p'

0
(8) (1 - q)

8
+p

1
(8) p(1 - q)

7
)) ≈ 63q2  

 

Subcase (3): Then the case that the second byte is the left 
0-dirty is discussed. Before this discussion, another variable 

p*
k
(n) is introduced. It shares the same recursive formula 

with p
k
(n). But it denotes the case that a group of bits follow 

a set bit. The value of first term p*
k
(1) is 1 - p . So the 

general term is: 

 p*
k
(n) = 1- (1 - q)n + r - q  

When n equals eight, the value is: 

 p*
k
(8) = 7q - 28q2 + r  

So when the left 0-dirty is the second byte, 
corresponding probability can be derived in the same way. 
The probability in this case is denoted by p

2-dirty, 5
 and it is 

shown as follows. 

 
 P2-dirty, 5= (1- d)(1 – q)15(p

0
(8) p

d 
8 + p

1
(8) p

d
8*

)  

≈ 63q2+q r 
 

Finally, the value of p
5
 is: 

 
p

5
 =  p

2-dirty, 1
+ p

2-dirty, 2
+ p

2-dirty, 3
+ p

2-dirty, 4
+ p

2-dirty, 5
 

 ≈ 307q2+2q r 
 

In terms of p
6
, there exist at least 14 continuous set bits. 

This is a term of high degree, which can be divided by the 

expression r14. When the value of r approaches zero, this 
value can be also considered to approach zero. 

 P8 

Since only a set bit exists in an N-fill, according to the 
position of the only set bit, the calculation of p

8
 should be 

divided into three cases and the results are shown below. 

 p
8
=d q30+C29

1 (1-d)p q (1-q)
28

+(1-d) q (1-q)
29  



 

≈ q - 28q2 

The first term denotes that the only set bit lies in the 
leftmost bit and the third denotes that the only set bit lies in 
the rightmost bit. The second term denotes other possible 
positions. 

b) Step 2: calculating probabilities of each 

codeword 

After calculating Basic probabilities, similar to 
Subsection A, the probabilities listed in TABLE II and 
TABLE III can be recalculated and listed in TABLE V and 
TABLE VI respectively. 

TABLE V. Probabilities in COMBAT 

Denotation Probability 

q
1
 1-93q+4281q2-3q r 

q
2
 31q - 2745q2- q r 

q
3
 961q2 

q
4
 961q2 

q
5
 0 

q
6
 31q - 2388q2+q r 

q
7
 357q2+2q r 

q
8
 31q -2745q2- q r 

q
9
 301q2 

q
10

 301q2 

q
11

 301q2 

q
12

 415q2- 4q r 

TABLE VI. Probabilities in CONCISE 

Denotation Probability  

q
1
c 1- 93q + 4281q2-3q r 

q
2
c 0 

q
3
c 0 

q
4
c 0 

q
5
c 0 

q
6
c 0 

q
7
c 31q - 2388q2+q r 

q
8
c 435q2+30q r 

q
9
c 31q -2823q2-29q r 

q
10
c  0 

q
11
c  0 

q
12
c  0 

q
13
c  31q -1862q2-29qr 

c) Step 4: calculating expected values of compressed 

size 

Similar to subsection A, the expected values of 
compressed size using COMBAT, SECOMPAX and 
CONCISE can be calculated and shown as follows 
respectively. And the derivation process is similar to that in 
subsection A. 

 LCOMBAT ≈ 1 + 31q + 362q2 - q r  
 LSECOMPAX

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈1 + 62q - 218q2 + 6q r  
 LCONCISE ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 1 + 62q + 899q2 + 62q r  

As shown in equations of (44) to (46), the coefficient of 
monomial term in COMBAT is also smaller than that in 
SECOMPAX and CONCISE, when q and r approach zero. 
It can be predicted that COMBAT can provide more spatial 
savage comparing to SECOMPAX and CONCISE. 

3) Decompression time complexity 
Similar to subsection A, decompression time can be also 

estimated and values in TABLE IV still hold. The values of 

TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TSECOMPAX

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  can be recalculated 

and their results are also shown below. Their derivation 
processes are similar to those in subsection A. 

 TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ t1(1+124q)+t2(1+252q)  

 TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ t1(1+124q)+t2(1+188q)  

 TCONCISE  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ t1(1+124q)+t2(1+126q)  
By comparing results above, the decompression time is 

at least in the same order of magnitude. Although the coding 
scheme in COMBAT contains more operations, querying 

time is still acceptable.  

IV. EVALUATION RESULTS 

In this section, evaluation results including both the 
spatial and the temporal performance are presented. 

A. Evaluation results on spatial performance 

When bitmap indexes are uniformly distributed, Fig. 8 
shows evaluation results where the density interval ranges 
from 0 to 0.01. When bitmap indexes are clustered, 
corresponding evaluation results are shown in Fig. 9 to Fig. 
11.  

As shown in these figures, COMBAT has a higher 
compression ratio comparing to the other two algorithms, 
which confirms the analysis results in Section III. It is 
concluded that COMBAT has a better spatial performance 
than the other two algorithms whether a bitmap index is 
uniformly distributed or clustered.  

 
Fig.  9. Compressed size 

in COMBAT 

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
0.9

1

1.1

1.2

1.3

1.4

the value of x

compressed length in COMBAT

the value of q

c
o

m
p

re
ss

e
d

 l
e
n

g
th

 
Fig.  10. Compressed 

size in SECOMPAX 
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Fig.  11. Compressed size 

in CONCISE 
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Fig.  8. Simulation results with 

uniformly distributed bitmaps 
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B. Evaluation results on temporal performance 

When evaluating the temporal performance, since final 
results contains up to four variables, i.e. q, r, t1, t2, some 
variables should be set constant values to facilitate our 
evaluation in advance. For example, the values of t1 and t2 
can be constant within a CPU, it is necessary to set proper 
values for them.  

For convenience, t1 is set as one unit of time, denoted 
as t and t2 as 0.2 unit of time, that is, 0.2t. These values 
are reasonable because a certain conditional statement will 
be often followed by more than one non-conditional 
statements. More execution time on assignment operations 
is expected. Based on this assumption, evaluation results in 
uniformly distributed bitmaps are presented in Fig. 12. 
When d varies in the interval of (0, 0.01), temporal 
performance is actually almost the same among the three 
algorithms, at least in the same order of magnitude, which is 
in accordance with analytical results in Section III. 

Corresponding results in clustered bitmap are shown in 
Fig. 13-15. As shown in these figures, with the change of the 
values of r and q, the three algorithms share the nearly the 
same trend as well as similar decompression time values, 
which also concurs with analytical results in Section III.  

V. CONCLUSION  

In this paper, a general analytical model is proposed to 

analyze spatial and temporal performance of three bitmap 

index compression algorithms, i.e., COMBAT, 

SECOMPAX and CONCISE. When a bitmap index is 

sparse, COMBAT achieves the best improvement in spatial 

performance, which is proved by both the theoretical 

analysis and evaluation results. Besides, this analytical 

model can not only be applied in these three algorithms, but 

also be used to any bitmap index compression algorithms 

that are derived from WAH. Based on appropriate 

assumptions, the general analysis procedures are similar, 

including listing all kinds of possible compressed word 

combinations, calculating the probabilities of each 

codeword and then working out the expected values of 

compressed size after encoding and corresponding 

decompression time. This model can contribute to analyzing 

both the spatial and temporal performance results of a new 

invented bitmap compression algorithm before conducting 

real experiments. 

REFERENCES 

[1] I. Spiegler and R. Maayan, Storage and retrieval considerations of 
binary data bases, Information Processing and Management, vol. 21, 
no. 3, pp. 233-254, 1985. 

[2] P. E. O’Neil, Model 204 architecture and performance, in High 
Performance Transaction Systems. Springer Berlin Heidelberg, 1989, 
pp.39-59 

[3] P. Cheng, “bitmap index techniques and its research advancement,” 
Science and technologies information, Vol. 026, pp.134-135, 2010. 

[4] J. Li, Research in bitmap index in data warehouse, (in Chinese), PhD 
diss, Shandong University, 2007. 

[5] Z. Huang, W. Lv, and J. Huang, “Improved BLAST algorithm based 
on bitmap indexes and B+ tree,” Computer Engineering and 
Applications, 49(11), pp.118-120, 2013. 

[6] B. Yang, Y. Qi, Y. Xue, and J. Li, “Bitmap data structure: Towards 
high-performance network algorithms designing,” Computer 
Engineering and Applications, 45(15), 2009. 

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database System 
implementation, Second Edition, Prentice Hall, 2009. 

[8] G. Antoshenkov, “Byte-aligned bitmap compression,” Data 
Compression Conference, 1995. 

[9] K. Wu, Ekow J. Otoo , and A. Shoshani, “Compressing bitmap 
indexes for faster search operations.” In Scientific and Statistical 
Database Management, 2002. Proceedings. 14th International 
Conference on, pp. 99-108. IEEE, 2002. 

[10] K. Wu, Ekow J. Otoo , and A. Shoshani, “Optimizing bitmap indexes 
with efficient compression,” in ACM Transactions on Database 
Systems (TODS), 31(1), 2006, pp.1-38. 

[11] C. Guadalupe, M. Gibas, and H. Ferhatosmanoglu, “Update 
conscious bitmap indexes,” 19th IEEE International Conference on 
Scientific and Statistical Database Management SSBDM’07, pp. 15-
15, 2007. 

[12] M. Stabno, and R. Wrembel. “RLH: Bitmap compression technique 
based on run-length and Huffman encoding,” Information Systems 
34, no. 4, 2009, pp.400-414. 

[13] F. Corrales, D. Chiu, and J. Sawin, “Variable Length Compression 
for Bitmap Indexes,” in DEXA’11, Springer-Verlag, pp.381-395, 
2011. 

[14] F. Deli`ege and T. B. Pedersen, “Position list word aligned hybrid: 
optimizing space and performance for compressed bitmaps,” In 
Proceeding of the 13th International Conference on Extending 
Database Technology, 2010. 

[15] D. Lemire, O.Kaser, and K. Aouiche, “Sorting improves word-
aligned bitmap indexes,” Data & Knowledge Engineering, 69(1), 
pp.3-28, 2010. 

[16] S. J. van Schaik and O. de Moor, “A memory efficient reachability 
data structure through bit vector compression,” In Proceedings of the 

 
 Fig.  12. Simulation results with 

uniformly distributed bitmaps 

 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

the density of set bit

d
e
c
o

m
p

re
s
s
io

n
 t

im
e

 

 

COMBAT

SECOMPAX

CONCISE

 
Fig.  13. Decompression 

time evaluation in COMBAT 

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

the value of x

decompression time in COMBAT

the value of q

d
e
c
o

m
p

re
ss

io
n

 t
im

e

 
Fig.  14. Decompression time 

evaluation in SECOMPAX 

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1

1.5

2

2.5

3

the value of x

decompression time in SECOMPAX

the value of q

d
e
c
o

m
p

re
ss

io
n

 t
im

e

 
Fig.  15. Decompression time 

evaluation in CONCISE 

 

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1

1.2

1.4

1.6

1.8

2

2.2

2.4

the value of x

decompression time in CONCISE

the value of q

d
e
c
o

m
p

re
ss

io
n

 t
im

e



 

2011 ACM SIGMOD International Conference on Management of 
data, pp. 913-924. ACM, 2011. 

[17] F. Fusco, M. P. Stoecklin, and M.Vlachos, “Net-fli: on-the-fly 
compression, archiving and indexing of streaming network traffic,” 
Proceedings of the VLDB Endowment, 3(1-2), pp.1382-1393, 2010. 

[18] W.Andrzejewski, and R.Wrembel, “GPU-WAH: Applying GPUs to 
compressing bitmap indexes with word aligned hybrid,” In Database 
and Expert Systems Applications, Springer Berlin Heidelberg, 
January, pp. 315-329, 2010. 

[19] F. Fusco, M. Vlachos, X. Dimitropoulos, and L. Deri, “Indexing 
million of packets per second using GPUs,” In Proceedings of the 
2013 conference on Internet measurement conference, pp.327-332. 
ACM, 2013. 

[20] W. Andrzejewski, and R. Wrembel, “GPU-PLWAH: GPU-based 
implementation of the PLWAH algorithm for compressing bitmaps,” 
Control & Cybernetics, 40(3), pp. 627-650, 2011.  

[21] Y. Wen, Z. Chen, G. Ma, J. Cao, W. Zheng, G. Peng, and W. L. 
Huang, “SECOMPAX: A bitmap index compression algorithm,” In 
23rd International Conference on Computer Communication and 
Networks (ICCCN), IEEE, pp. 1-7, 2014. 

[22] J. Chang, Z. Chen, W. Zheng, Y. Wen, J. Cao, and W. L. Huang, 
“PLWAH+: a bitmap index compressing scheme based on PLWAH,” 
In Proceedings of the tenth ACM/IEEE symposium on Architectures 
for networking and communications systems, ACM, pp. 257-258, 
2014. 

[23] A. Schmidt, D. Kimmig, and M. Beine, “DFWAH: A Proposal of a 
New Compression Scheme of Medium-Sparse Bitmaps,”  in the 
Third International Conference on Advances in Databases, 
Knowledge, and Data Applications (DBKDA 2011), pp. 192-195. 

[24] S. Chambi, D. Lemire, O. Kaser, and R. Godin, “Better bitmap 
performance with Roaring bitmaps,” arXiv preprint arXiv:1402.6407 
(2014). 

[25] G. Ma, Z. Guo, X. Li, Z. Chen, J. Cao, Y. Jiang, and X. Guo. 
"BreadZip: a combination of network traffic data and bitmap index 
encoding algorithm." In Systems, Man and Cybernetics (SMC), 2014 
IEEE International Conference on, pp. 3235-3240. IEEE, 2014. 

[26] R. Slechta, J. Sawin, B. McCamish, D. Chiu and G. Canahuate, A 
tunable compression framework for bitmap indices, In Data 
Engineering (ICDE’ 2014), pp. 484-495. IEEE. 

[27] A. Colantonio, and R. Di Pietro, “Concise: Compressed ‘n’ 
composable integer set,” In Information Processing Letters, 110(16), 
2010, pp.644-650. 

[28] Yinjun Wu, Zhen Chen, Yuhao Wen, Junwei Cao, “COMBAT: a 
new bitmap index compression algorithm for Big Data”, in 
submission. 

[29] Z. Chen, Y. Wen, J. Cao, W. Zheng, J. Chang, Y. Wu, G. Ma, M. 
Hakmaoui, G. Peng, “A Survey of Bitmap Index Compression 
Algorithms for Big Data,” Tsinghua Science and Technology, 20(1), 
February 2015

APPENDIX  

Proof 1. This is to prove the probabilities listed in TABLE II. 
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Proof 2. This is to prove the probabilities in TABLE III. 

q
1
c  = p

1
p

1
p

1
 ≈ (1 - 31d + 465d

 2
)
3
≈ 1 - 93d + 4278d

 2
 q

2
c  = p

2
p

2
p

2
 = d

 93
 ≈ 0 q

3
c  = q

4
c  = p

1
p

1
p

2
 = d

 31
(1 - d )

62
 ≈ 0  

q
5
c  = q

6
c  = p

1
p

2
p

2
 = d

 62
(1 - d )

31
 ≈ 0 q

7
c= (p

1
+p

2
) (p

1
+p

2
) p

7
 ≈ 31d - 2387d

2
 q

8
c= (p

1
+p

2
) (p

1
+p

2
) (p

7
- p

8
) ≈  465d
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q
9
c= p

1
p

1
p

8
 ≈ 31d - 2852d

2
 q

10
c  = q

11
c  = p

8
p

2
p

1
 = (31d - 930d

 2
) d

 31
(1 - d )

31
 ≈ 0 q
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c  = p

8
p

2
p

2
 = (31d - 930d
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) d

 62
 ≈ 0 

q
13
c  = p

8
(p

2
+ p

1
) ≈ (31d - 930d

 2
) (1 - 31d + 465d

 2
) ≈ 31d - 1891d
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Proof 3. This is to prove the equation of (10) and (11) 

 LSECOMPAX ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =q
1
+ 2q

2
+2q

3
+2q

4
+2q

5
+q

6
+q

7
+q

8
+2q

11
+2q

12
+2q

13
+3(1- q

1
- q

2
- q

3
- q

4
- q

5
- q

6
- q

7
- q

8
- q

11
- q

12
- q

13
) ≈ 1 + 62d - 210d

2 

LCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = q

1
c  + q

2
c  + 2 q

3

c  +2 q
4

c+2 q
5

c  + 2 q
6
c  + 2 q

7

c+2 q
8

c  + q
9
c+ 2 q

10

c + 2 q
11

c +2 q
12

c + 2 q
13

c +3q
14
c ≈ 1 + 62 d + 1922d

2
 

 

Proof 4. This is to prove the equation of (12) 

TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   =  q

1
(t1 + t2) + 2q

2
(t1+ t2) + 2q

3
( t1+ t2) + 2q

4
(t1+ t2) + 2q

5
(t1 + t2) + q

6
(t1 + t2)+ q

7
(3t1 + 5t2) + q

8
(3t1 + 6t2) 

 + q
9
(2t1 + 4t2+ t1+ t2) + q

10
(t1 + t2 + 2t1+ 4t2)+ q

11
(t1 + t2 + t1 + t2)+ q

12
(t1 + t2 + t1+ t2) + q

13
(2t1 + 4t2) + q

14
(3t1 + 6t2 + t1+ t2) 

 + q
15

(3t1+ 6t2) + q
16

(t1+ t2 + 3t1+ 6t2)+3q
17

(t1+ t2)≈ (1 + 124d)t1+ (1 + 248d)t2 

TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  q

1
(t1 + t2) + 2q

2
(t1+ t2) + 2q

3
( t1+ t2) + 2q

4
(t1+ t2) + 2q

5
(t1 + t2) + q

6
(t1 + t2)+ q

7
(3t1 + 5t2) + q

8
(3t1 + 6t2) 

+ q
11

(t1 + t2 + t1 + t2)+ q
12

(t1 + t2 + t1+ t2) + q
13

(2t1 + 2t2) 

+3(1- q
1
- q

2
- q

3
- q

4
- q

5
- q

6
- q

7
- q

8
- q

9
- q

10
- q

13
- q

14
- q

15
)(t1+ t2) ≈ (1 + 124d )t1+ (1 + 248d )t2 

TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  q

1
c(t1 + t2) + q

2
c(t1+ t2) + 2q

3
c( t1+ t2) + 2q

4
c (t1+ t2) + 2q

5
c(t1 + t2) + 2q

6
c(t1 + t2) + 2q

7
c(t1+t2) + 2q

8
c(t1 + t2) 

+ q
9
c(2t1 + 3t2) + q

10
c (3t1 + 3t2) + q

11
c (3t1 + 3t2) + q

12
c (2t1 + 2t2) + q

13
c (3t1 + 4t2) 

+ (1 - q
1
c- q

2
c  - q

3 
c - q

4
c  - q

5
c  - q

6
c  - q

7
c  - q

8
c  - q

9
c  - q

10
c - q

11
c - q

12
c - q

13
c ) (3t1 + 3t2) ≈ (1 + 124d)t1+ (1 + 186d )t2 

 

Proof 5. This is to prove the equation of (16) and (17) 

In a 0-fill, the first bit is an unset bit and it can be considered an independent bit. So the value of it is (1 - d). Then the rest 30 continuous bits 

are also unset bits. Since they all follows an unset bit, the probability is (1 - q)
30

. So the final result of p
1
 is  (1 - d ) (1 - q)

30
. Using the 

equation of (15) and replacing p with r, the following equation can be deduced: p
1
=

1 - r

1 - r + q
 (1 - q)

30
. After using Taylor expansion and omitting 

terms of high degree, the final approximate result is p
1
≈ 1-31q+466q2-q r. 



 

In a 1-fill, the first bit is set bit and this bit is followed by 30 continuous set bits. The probability is  d (1 - p)
30

. After replacing d with variable 

q and r and replacing p with r, the result is 
1 - r

1 - r + q
 r30. Obviously,  r30 is a term of high degree and 

1 - r

1 - r + q
 is a finite value. So when r 

approaches zero, the result can be seen as p
2

→ 0 

 

Proof 6. This is to prove the equation of (20) 

Mathematical induction is applied to prove this conclusion. The matrix (
1 - q 1 - r

q r
) is denoted by A 

When n equals 3, A3 = (
1- q 1 - r

q r
)

3

= (
1-q+q2-q3-q r+2q2r - q r2 1- q+q2- q r - q2r +2q r2-r3

q -q2+q3+q r -2q2r +q r2 q -q2+q r +q2r -2q r2+r3
) 

After omitting items of higher degree, the result is (
1-q+q2-q r 1-q+q2-q r

q -q2+q r q -q2+q r
), which is in agreement with the conclusion. 

Now assuming that when n equals k (an integer which is bigger than three), the conclusion is still established.  

Then when n equals k+1, Ak + 1 =  Ak A = (
1-q +q2 - q r 1- q+q2-q r

q - q2+q r q - q2+q r
) (

1- q 1-r

q r
) = (

1-q+q2- q r 1 - q +q2- q r

q - q2+q r q - q2+q r
) 

So this equation is proved. 

 

Proof 7. This is to prove the equation of (25) 

In this case, 0-dirty can locate in either the first byte or the second byte. It can be assumed that this 0-dirty is the first byte in the following 

analyses and other bytes are all composed of unset bits. In the zeroth byte, except that the first bit is independent, other bits all follows an 

unset bit. So the probability is (1-d) (1- q)6. In the second byte, the first bit of it must be influenced by the last bit of the first byte which is 

0-dirty. When the 0-dirty ends with an unset bit, the probability for the first bit to be unset bit is p
0
(8) (1-q). When the case is opposite, the 

probability is p
1
(8) p . Then the probability of the rest 15 bits to be unset bit is (1- q)15 . The final result of p

1

dirty
 is C2

1(1-d) 

(1- q)21(p
0
(8) (1-q) + p

1
(8) p). According to the value of p

0
(8) and  p

1
(8), the simplified result is p

1

dirty
 ≈ 16q - 422q2-2q r 

 

Proof 8: This is to prove the equation of (37) 

According to the type of the last bit in this dirty byte, this probability can be divided into two parts. If the last bit is an unset bit, then according 

to the type of the last bit in the following dirty byte, the probability can be further divided into two subparts. Similar to Proof 8, the probability 

in this part is p*
0
(7) (p

0
(8) (1 - q)

16
+p

1
(8) p (1 - q)

15
) . Likewise, if the last bit is a set bit, this part of probability is p*

1
(7) (p'

0
(8) 

(1 - q)
16

+p'
1
(8) p (1 - q)

15
). So the value of p

3

2-dirty
 is the sum of these two parts of probability and it is shown below. 

p
3

2-dirty
= p*

0
(7) (p

0
(8) (1 - q)

16
+p

1
(8) p (1 - q)

15
) +p*

1
(7) (p'

0
(8) (1 - q)

16
+p'

1
(8) p (1 - q)

15
) 

Then after specific value is assigned and simplification process is done, the value of p
3

2-dirty
 is: p

3

2-dirty
≈ 55q2 +q r 

 


