

A general analytical model for spatial and temporal performance of

bitmap index compression algorithms in Big Data

Yinjun Wu, Zhen Chen, Yuhao Wen, Junwei Cao, Wenxun Zheng, Ge Ma

 Research Institute of Information Technology, Tsinghua University

Tsinghua National Lab for Information Science and Technologies (TNList),

Beijing, China

Wu-yy12@mails.tsinghua.edu.cn

Abstract—Bitmap indexing is flexible to conduct boolean

operations in data retrieval. Besides, the query processing

based on bitmap indexing is also very fast. Therefore it has

been widely used in various big data analytics platforms, such

as Druid and Spark etc. However, bitmap index can consume

a large amount of memory, which leads to the invention of

different kinds of bitmap index compression algorithms

without sacrificing temporal performance. In practice, we are

often discommoded by choosing a proper algorithm when

handling specific problems. Besides, after devising a new

algorithm that may outperform existing ones, it is essential to

evaluate its performance in theory. Without appropriate

theoretical analysis, the deficit of a new algorithm can only be

spotted until final experimental results are drawn, thus

wasting much time and effort. In this paper, we propose a

general analytical model to analyze both the spatial and

temporal performance for bitmap index compression

algorithms, which can be applied to analyze all kinds of

algorithms derived from WAH (word-aligned hybrid). In this

model, two types of distributed bitmaps, uniformly distributed

bitmaps and clustered bitmaps, are used separately. In order

to illustrate this model, several bitmap index compression

algorithms are analyzed and compared with each other.

Algorithms herein are COMBAT (COMbining Binary And

Ternary encoding), SECOMPAX (Scope Extended COMPAX)

and CONCISE (Compressed ‘n’ Composable Integer Set),

which are all derived from WAH. Evaluation results by

MATLAB simulation about these algorithms are also

presented. This paper paves the way for further researches on

the performance evaluation of various bitmap index

compression algorithms in the future.

Keywords—bitmap index; Big Data; COMBAT;

SECOMPAX; CONCISE; data compression, performance

evaluation.

I. INTRODUCTION

Nowadays streaming data, such as sensing data from IoT
devices, network traffic and machines’ operational logs etc.,
are soaring and many applications are experiencing hardness
in querying and searching such big data. In order to solve
this problem, bitmap indexing [1-7] has been widely used in
Big data platforms. An example of bitmap index is shown in
Fig. 1. However, since bitmap indexing consumes a large
amount of memory and disk space, a series of bitmap index
compression algorithms have been proposed, such as
BBC[8], WAH [9-10], UCB [11], RLH [12], VLC [13],
PLWAH [14], EWAH [15], PWAH [16] , COMPAX [17],
GPU-WAH [18-19], GPU-PLWAH [20], SECOMPAX [21],
PLWAH+[22], DFWAH [23], roaring bitmap[24],

BREAD[25], VAL-WAH [26], CONCISE[27],
COMBAT[28] etc. A detailed survey is presented in [29].

In practice, a proper bitmap index compression
algorithm often matches a specific problem and the process
of choosing often discommodes us. Besides, a theoretical
evaluation for a newly devised algorithm is indispensable.
For this purpose, an theoretical model is developed for
analyzing both the spatial and temporal performance of
bitmap index compression algorithms by using two kinds of
bitmaps, i.e. uniformly distributed bitmaps and clustered
bitmaps. Based on appropriate assumptions, some
indispensable procedures compose this analytical model,
including calculating Basic Probabilities (defined in Section
III), listing all compressible word combinations, calculating
probabilities of each codewords and working out final
expected values of compressed size and decompression time
in each algorithm. This model is proved by analyzing spatial
and temporal performance of SECOMPAX, COMBAT, and
CONCISE.

This paper is organized as follows. In Section II, specific
encoding schemes of SECOMPAX, COMBAT and
CONCISE are given. In section III, specific analysis
procedures of these algorithms referred above are presented,
which are composed of both the spatial and temporal
analyses in two kinds of bitmap indexes. In Section IV,
evaluation results on memory consumption and
decompression time are given to show their comparison
explicitly.

II. ALGORITHM

A. Basic Definitions

For convenience in analysis, basic terms in bitmap
indexing are introduced and are listed in TABLE I. Based on
these definitions, all kinds of codewords in SECOMPAX,
COMBAT as well as CONCISE are introduced. Since these
coding schemes are all operated after WAH encoding, the
codewords in WAH are introduced firstly. Two types of
codewords are used in WAH, i.e. fill and literal. A Fill
represents the number of consecutive fills of the same kind.

tpye=1 type=2 type=3 type=4 type=5

1 2 0 1 0 0 0

2 1 1 0 0 0 0

3 4 0 0 0 1 0

4 3 0 0 1 0 0

5 1 1 0 0 0 0

6 1 1 0 0 0 0

7 5 0 0 0 0 1

RowID type
bitmap index

Fig. 1 An example of bitmap index

mailto:Wu-yy12@mails.tsinghua.edu.cn

A MSB recording the type of these consecutive fills in
compressed fill after WAH encoding. A Literal is the same
definition shown in TABLE I.

B. Codewords in SECOMPAX

In SECOMPAX, new types of [LFL] and [FLF]
codewords are devised for further compression after WAH
encoding. If three consecutive chunks are fill, L and fill
separately, then they can be merged into a chunk belonging
to [FLF] codeword. Likewise, the [LFL] codeword can also
be defined. Specific compositions of these two codewords
are shown in Fig. 2 and Fig. 3 separately.

TABLE I. Terminology and corresponding explanations

Terminology Explanations

unset bit A bit that is “0”

set bit A bit that is “1”

chunk Consecutive 31 bits in a bit sequence

Fill

Defined as a chunk composed of the same kinds of bit.

A 0-fill is defined as a fill only composed of unset bits.

A 1-fill is defined as a fill only composed of set bits.

literal A chunk that is not fill.

dirty byte

Defined as a byte in a chunk containing set bits or unset bits
exclusively.

A 0-dirty is defined as a byte in a chunk containing set bits
exclusively.

A 1-dirty is defined as a byte in a chunk containing unset
bits exclusively.

L

Defined as a chunk with one dirty byte

A 0-L is defined as a chunk with a 0-dirty

A 1-L is defined as a chunk with a 1-dirty

NI2-L

Defined as a chunk with two dirty bytes

0-L is defined as a chunk with two 0-dirtys

1-L is defined as a chunk with two 1-dirtys

C. Codewords in COMBAT

COMBAT is derived from SECOMPAX which includes
all codewords of SECOMPAX and beyond. Furthermore,
some special codewords are also introduced to improve the
compression ratio. If there already exist two continuous
chunks, L and fill (but without another L following), these
two continuous chunks can be merged into a new compact
one. This merge creates a new kind of codeword named [LF].
Besides, if an NI2-L just locates in front of a fill after WAH
encoding, then these two chunks can be merged into a new
one, called [NI2-LF]. The composition of [LF] and [NI2-LF]
is also listed in Fig. 4 and Fig. 5 repectively.

D. Codewords in CONCISE

CONCISE is a bitmap index compression algorithm
which is also extended from WAH. CONCISE introduces a
new type of codeword based on fill (defined as NL-F). It
aims at compressing a fill and a special literal which
includes only one set bit in a literal. This compressible
literal is defined as N-fill here. In a NL-F, besides the

number of fill, the position of the only set bit in N-fill is also
recorded. The [NL-F] codeword is shown in Fig. 6.

Intuitively, since COMBAT provides more possibilities
to compress an uncompressed bit sequence comparing to
SECOMPAX and CONCISE, it can be expected that the
compressed size after COMBAT encoding is smaller than
SECOMPAX and CONCISE. In terms of decompression
time, due to shorter compressed bit sequence in COMBAT,
it can take less time to load this compressed bitmap into
memory and CPU. Thus shorter process time can also be
expected. However, more process time can be expected
when processing a single compressed chunk in COMBAT,
because it uses more codewords,. As a whole, these three
algorithms can share nearly the same decompression time.

III. SPATIAL AND TEMPORAL ANALYTICAL MODEL

A. Compression of uniformly distributed bitmaps

1) Assumptions
In this analysis model, we assume that only three chunks

exist in raw bitmap indexes so that they can be compressed
by COMBAT, SECOMPAX and CONCISE at the same
time. It is convenient for the following analyses and this case
can be generalized to other complex cases.

Before conducting analysis, some assumptions are listed
below:

 The density of set bits is denoted by a variable d.

 The variable d is independent from the distribution of

set bits in uniformly distributed bitmaps.

 The value of d can be considered very small,

approaching to zero.

Fig. 2. [FLF] codeword in SECOMPAX

Fig. 3. [LFL] codeword in SECOMPAX

Fig. 4. [LF] codeword in COMBAT

Fig. 5. [NI2-LF] codeword in COMBAT

Fig. 6. [NL-F] codeword in CONCISE

 For computational convenience, Taylor expansion

can be applied since the value of d approaches zero.

After Taylor expansion, only terms of the first and

the second degree are retained.

 The execution time of an assignment statement and

a conditional statement (if or else statement) in

programs are consistent and denoted by variables

t1 and t2 separately.
There are some explanations about the value of d.

According to listed assumptions, d is approaching zero,
which is reasonable in real network environment. For
example, since each byte composing an IP address ranges
from 0 to 255, the average value of d is 1/256, less than 0.5%
in each bitmap. In general network environment, the value
of each byte is a random integer between 0 and 255 because
a website can be accessed by millions even billions of
different users with various IP address. So the value of d in
each bitmap is very small, approaching to zero.

2) Size of compressed uniformly distributed bitmaps

a) Step 1: calculating Basic Probabilities

Based on assumptions above, the probabilities of fill,
literal, L and NI2-L (defined as Basic probabilities) can be
calculated out separately. The probabilities of each
codeword can be denoted by the value of Basic probabilities
simplified through Taylor Expansion.

In order to generalize this model to other algorithms
based on WAH, the basic probabilities are separated into
two parts, some are general ones for all algorithms derived
from WAH while others are special ones for specific
algorithms

 General Basic probabilities for all algorithms based
on WAH:

Since in a 0-fill 31 bits are all unset bits, the probability

(denoted by p
1
) will be

 p
1
= (1 - d)31

≈1 - 31d + 465d
2
 

Likewise, the probability of 1-fill (denoted by p
2
) can

deduced out according to symmetrical characteristic
(replacing d with 1-d in equation (1)).

 p
2
= d

31
≈ 0 

After getting the value of p
1
 and p

2
, the probability of

literal (denoted by p
7
) can be written below:

 p
7
=1 - p

1
- p

2
= 1- (1 - d)

31
- d31

 ≈ 31d - 465d
2 

 Special Basic probabilities for SECOMPAX and
COMBAT:

In terms of the probability of 0-L (denoted by p
3
) it can

be deduced below:

 p
3
 = C3

1(1 - (1 - d)
8
) (1 - d)23+ (1 - (1 - d)

7
) (1 - d)

24

≈ 31d - 825d
2



The first term in equation (4) denotes the case that the
dirty byte lies in the leftmost position while the second term
denotes the case that the dirty byte locates in one of the other
three bytes in this 0-L.

Similarly, according to symmetrical characteristic, the

probabilities of 1-L (denoted by p
4
) can be denoted below.

 p
4
 = C3

1(1 - d
8
) d23

+ (1 - d7
) d24

≈ 0 
 The results of the probabilities of 0-NI2-L and 1-NI2-L

(denoted by p
5

 and p
6

 separately) are shown below and

their derivation process is similar to the former one.

 p
5
 ≈ 360d

2
 

 p
6
=3((1 - d8

)
2
+3(1 - d7

)(1 - d8
)) d23

≈ 0 

 Special Basic probabilities for CONCISE:

When it comes to the probability of N-fill in CONCISE,

since only a set bit exists, the probability (denoted by p
8
)

can be denoted as follows by binomial theorem.

 p
8
= C31

1 d (1 - d)
30

≈ 31d - 930d
 2 

b) Step 2: calculating probabilities of all

compressible codewords

TABLE II lists probabilities of all compressible three-
continuous-word combinations and corresponding
compressed sizes after COMBAT encoding. Based on these
probabilities, the expected value of compressed size in

COMBAT (denoted by LCOMBAT) can be calculated out and
detailed derivation processes of these probabilities are
shown in Appendix (see Proof 1).

TABLE II. Probability and corresponding compressed size of

each word combination in COMBAT

word combination compressed

size

Symbol Probability

value

0-fill+0-fill+0-fill 1 q
1
 1-93d+4278d

2

1-fill+0-fill+0-fill 2 q
2
 0

0-fill+0-fill+1-fill 2 q
3
 0

1-fill+1-fill+0-fill 2 q
4
 0

0-fill+1-fill+1-fill 2 q
5
 0

1-fill+1-fill+1-fill 1 q
6
 0

fill + L + fill ([FLF]) 1 q
7
 31d - 2747d

2

L + fill + L([LFL]) 1 q
8
 961d

2

Literal(not L) + L +

fill([LF])

2 q
9
 961d

2

L + fill + literal(not

L,[LF])

2 q
10

 961d
2

fill + fill + literal 2 q
11

 31d - 2387d
2

Literal (not L) + fill +

fill

2 q
12

 360d
2

L+ fill + fill 1 q
13

 31d - 2747d
2

NI2-L + fill +literal

([NI2-LF])

2 q
14

 360d
2

NI2-L + fill +fill
([NI2-LF])

1 q
15

 360d
2

Any type + NI2-L +

fill ([NI2-LF])

2 q
16

 360d
2

Other cases 3 q
17

 601d
2

Since all kinds of codewords in SECOMPAX are
covered by COMBAT, there is no need to create an
independent table for SECOMPAX.

Similarly, TABLE III lists probabilities and
corresponding compressed sizes of all possible compressed
codewords in CONCISE. Detailed derivation processes of
them can be seen in Appendix (see Proof 2).

TABLE III. Probability and corresponding compressed size

of each word combination in CONCISE

Word combination compressed

size

Symbol Probability

value

0-fill+0-fill+0-fill 1 q
1
c 1 - 93d + 4278d

2

1-fill+1-fill+1-fill 1 q
2
c 0

0-fill+0-fill+1-fill 2 q
3
c 0

1-fill+0-fill+0-fill 2 q
4
c 0

1-fill+1-fill+0-fill 2 q
5
c 0

0-fill+1-fill+1-fill 2 q
6
c 0

fill + fill + literal 2 q
7
c 31d - 2387d

2

literal(not N-fill) +

fill + fill (the same
type of fill)

2 q
8
c 465d

2

N-fill+0-fill+ 0-fill 1 q
9
c 31d - 2852d

2

N-fill+0-fill+ 1-fill 2 q
10
c 0

N-fill+1-fill+ 0-fill 2 q
11
c 0

N-fill+1-fill+1-fill 2 q
12
c 0

Any type of word +

N-fill + 0-fill

2 q
13
c 31d - 1891d

2

Other cases 3 q
14
c 2387d

2

c) Step 3: calculating expected values of compressed

size

According to TABLE II, the value of LCOMBAT can be
derived below:

LCOMBAT = q

1
+ 2q

2
+2q

3
+2q

4
+2q

5
+q

6
+q

7
+q

8
+2q

9
+2q

10
+2q

11

+2q
12

+q
13

+2q
14

+q
15

+2q
16

+3q
17

 ≈ 1 + 31d +496d
 2



Similar processes can be conducted to work out the
expected values of compressed size with SECOMPAX

(denoted by LSECOMPAX). Since COMBAT includes all of
the codewords of SECOMPAX, corresponding derivation
processes are similar. In SECOMPAX, the probabilities,
q

11
, q

12
, q

16
, q

17
 and q

18
, do not exist. Besides, the

compressed size of q
15

 is 2 in SECOMPAX, because this

word combination cannot be fully compressed due to lack of

the codeword [LF]. Therefore the value of LSECOMPAX is
shown as follows.

 LSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 1 + 62d - 210d

2 

According to the analysis above, the value of LCONCISE
can be calculated and shown below.

 LCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ 1 + 62d + 1922d

2 
Detailed derivation processes of the equation (10) and

(11) are shown in Appendix (see Proof 3)

3) Decompression time complexity
The practical executing time of decompression process

will be influenced by many factors like CPU load, free
memory size and the programming language etc. Therefore
the numbers of statements in decompression are used to
approximate the decompression time.

a) Step 1: listing estimated decompression time in

all kinds of codewords

 A decompression process is usually composed of two
steps: one is judgment and the other is assignment. In
practice, assignment statements and conditional statements
will be executed alternatively during the decompression
process.

Let’s take an example to illustrate this process, if a
compressed word (e.g. [FLF] codeword in COMBAT) is
ready to be decoded, it would take 3t1 + 5t2 because three
assignment statements are needed to split it into three
separate words and 5 judgment statements are needed to
judge the type of two fills and the both the type and position
of the dirty byte in this L. This decompression process is
shown in Fig. 7.

Similarly, estimated decompression time of all the
codewords in COMBAT, SECOMPAX and CONCISE can
be calculated and listed in TABLE IV (“All” means that this
codeword’s decompression time is the same for all the three
algorithms).

TABLE IV. Decompression time estimation of all the

codewords

Codewords Time Algorithms

Fill t1 + t2 All

Literal t1 + t2 All

[FLF] 3t1 + 5t2 COMBAT, SECOMPAX

[LFL] 3t1 +6t2 COMBAT, SECOMPAX

[LF] 2t1 +4t2 COMBAT

[NI2-LF] 3t1 +6t2 COMBAT

NL-F 2t1 + 3t2 CONCISE

b) Step 2: calculating the expetected decompression

time

Taking the probabilities calculated in Section 1) into
consideration, we can calculate the expected values of
decompression time (denoted by TCOMBAT

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and

TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ separately) in a three-word combination and
detailed derivation process is shown in Proof 4 in Appendix.

 TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ (1 + 124d)t1+ (1 + 248d)t2 

Fig. 7. An example of time evaluation in the process of decompression

 TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ (1 + 124d)t1+ (1 + 248d)t2 

 TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ (1 + 124d)t1+ (1 + 186d)t2 

From equation (12) to (14), when d is approaching to
zero, although the decompression time consumed in
CONCISE is less than that in SECOMPAX and COMBAT,
however, it can be considered that querying time of the three
algorithms at least stay in the same order of magnitude.

B. Compression of clustered bitmaps

1) Assumptions
Further assumptions are made that bitmap indexes

follow two-state Markov process. Still only three chunks
exist in the raw bit sequence and Taylor expansion can be
applied to simplify our analysis. Besides, the first bit in a
chunk is considered to be independent from the former
chunk.

Variable p is introduced to represent the probability that
a set bit is followed by an unset bit and q represents the
probability that an unset bit is followed by a set bit.

 Then the relationship between d, p and q can be
established because two type of bits are both likely to appear
preceding a set bit. After simplification, an equation about
variable d, p and q can be written as follows.

 d =
q

p + q
⟺ q = (

d

1 - d
) ∙ p 

According to equation (15), it is obvious that the value
of q approaches zero since d approaches zero. It can be
assumed that p approaches one since the distribution of set
bits is very sparse and continuous set bits are also very rare.
This assumption is logical since busty network traffic is
actually rare in general case.

In order to be more convenient, another variable r is
introduced and it is assigned with the value of (1 - p). So r
approaches zero. It can be further assumed that when q and
r approach zero, they share the same convergent speed.

2) Size of compressed clustered bitmap

a) Step 1: calculating Basic probabilities

In order to calculate the expected values of compressed
size, Basic probabilities should be recalculated.

 P1, P2, P7

It is easy to calculate the values of p
1
, p

2
 and p

7
,

which are shown below.

 p
1
= (1 - d) (1 - q)

30
=

p

p + q
 (1 - q)

30
≈ 1-31q+466q2-q r 

 p
2
= d (1 - p)

30 ≈ 0 
 p

7
 = 1 - p

1
- p

2
≈ 31q - 466q2+q r 

The derivation processes of equation (16) and (17) are
shown in Proof 5 in Appendix.

 P3 AND P4

It would be much more complex to calculate the values
of p

3
 and p

4
 because dirty byte may be dependent on the

former bits and have influence on the following ones.

In this case, three kinds of subcases should be considered
according to the position of dirty byte. In the following

analyses, 0-dirty and 0-L will be considered at first. And in
order to be more convenient to analyze, the bytes in a chunk
are numbered. The leftmost byte is numbered as the zeroth
byte and from leftmost to rightmost bytes, the number is in
ascending order.

Case (1): In this case, the first or second byte in a chunk
is 0-dirty. That means this 0-dirty would be influenced by
the zeroth byte in this chunk and have impact on the third
one.

Before calculating probabilities in this case, some
auxiliary probabilities should be calculated at first.

According to the properties of Markov process, a basic
recursive formula can be established as follows.

 (
p

n
(0)

p
n
(1)

) = (
1-q 1-r

q r
) (

p
n-1

(0)

p
n-1

(1)
) 

Variables p
n
(0) and p

n
(1) represent the probability

when the n-th bit in a chunk is unset bit or set bit separately.
After iterative process and omitting terms of higher degree,
the results will be (detailed derivation process is shown in
Proof 6 in Appendix):

 (
p

n
(0)

p
n
(1)

) = (
1-q+q2-q r 1-q+q2-q r

q - q2+q r q - q2+q r
) (

p
0
(0)

p
0
(1)

) (n>2) 

When n = 8, the result is:

 (
p

8
(0)

p
8
(1)

) = (
1-q+q2-q r

q - q2+q r
) 

Another auxiliary variable is introduced here. If a group
of bits ends with an unset bit and contains at least one set bit,
the probability will be denoted by p

0
(n) . Variable n

represents the number of containing bits.

This probability can be further divided into two parts
according to the type of the (n-1)-th bit. When the (n-1)-th
bit is an unset bit, then probability is p

0
(n -1) (1-q). When the

(n-1)-th bit is a set bit, at least one set bit has appeared and
the probability is p

n-1
(1) p. Since p

n-1
(1) equals q - q2+q r, a

recursive formula can be established as follows. And its
general formula is also shown below.

 p
0
(n) = p

0
(n -1) (1-q) + (q - q2+q r) p 

Since the first term p
0
(2) equals p∙ q and p equals

1- r, the general term of p
0
(n) can be written as follows

after iterative process,.

 p
0
(n) = (1 - r)(1 - q + r) - (1- q)n-2(1 - r)(1 - 2q + r) 

When n equals eight, the result of p
0
(n) is needed in the

following calculation and shown below:

 p
0
(8) ≈ 7q - 27q2 - q r 

Similarly, we can use variable p
1
(n) to represent the

probability of a group of bits ending with an unset bit and
containing at least one set bit. Obviously, this probability

equals p
n
(1), q - q2+q r.

Based on these auxiliary variables, the probability of 0-
L in this case (denoted by p

dirty, 1
) is shown below and the

derivation process is presented in Proof 7 in Appendix:

 p
dirty, 1

= C2
1(1-d) (1- q)21(p

0
(8) (1-q)+p

1
(8) p) 

≈16q - 422q2-2q r

Case (2): If 0-dirty is the zeroth byte in a 0-L, then the
first bit will not be influenced by the former bytes. In this
case, variable p

n
(0), p

n
(1), p

0
(n) and p

1
(n) still work,

but their values get changed.

Because this 0-dirty is not affected by the former bytes,
the values of p

8
(0) and p

8
(1) are d and 1 - d separately.

In order to be distinct, p
0
(n) is redefined as p*

0
(n) in this

case. When n equals seven, the value of p*
0
(n) is:

 p*
0
(7) ≈ 6q - 21q2 

The value of p
1
(7) still equals q - q2+q r . Based on

these values, the probability of 0-dirty (denoted by p
dirty, 2

)

is:

 p
dirty, 2

= p
0
(7)(1- q)24+p

1
(7)p(1-q)23 ≈ 7q - 189q2+q r 

Case (3): The third byte in 0-L is 0-dirty. This 0-dirty
will have no influence on the following bytes. Before
calculating the probability, another variable p

k
(n) is

introduced to denote the probability that a group of bits
(composed of n bits) contain at least one set bit. Then
another recursive formula will be established as follows.
Since the first term p

k
(1) equals q, its general term is also

shown below.

 p
k
(n) =p

k
(n-1)+ (1 - q)n-1q 

 p
k
(n) =1 - (1 - q)n 

So the probability p
dirty, 3

in this case is:

 p
dirty, 3

= (1 - d) (1 - q)22p
k
(8) ≈ 8q - 212q2 

Finally, the value of p
3
 is the sum of probabilities in the

three cases discussed above:

 p
3
 = p

dirty, 1
 + p

dirty, 2
+p

dirty, 3
 ≈ 31q - 823q2 - q r 

Similarly, the value of p
4
 can be calculated out. But it

is obvious that p
4
 can be divided by the expression r22

which is an item of high degree. So its approximate value is:

 p
4
≈ 0 

 P5 AND P6

The values of p
5

 and p
6

 will be calculated here.

Likewise, p
5
 will be considered at first. And several cases

are discussed below. In order to distinct the two dirty bytes
existing in a chunk, they are named as left 0-dirty (or 1-dirty)
and right 0-dirty (or 1-dirty) according to their positions in
this chunk.

Case (1) - two dirty bytes are not adjacent:

Subcase (1): If the zeroth byte is the left 0-dirty in this
chunk, this case is just extended from subsection A. So the
probability (denoted by p

2-dirty, 1
) can be derived as follows.

p

2-dirty, 1
= p*

0
(7) (1- q)8(p

0
(8) (1-q)8+ p

1
(8) p (1-q)7)

+ p*
1
(7) p(1 - q)7(p

0
(8) (1 - q)8+ p

1
(8) p (1-q)7) ≈ 56q2



Subcase (2): if the first byte in this chunk is the left 0-
dirty, the probability (denoted by p

2-dirty, 2
) is:

 p2-dirty, 2
= (1 - d)(1 - q)7(p

0
(8) (1 - q)8+p

1
(8) p (1 - q)7)p

d
8 

 ≈ 64𝑞2
Case (2) - two dirty bytes are adjacent:

This is the case that two dirty bytes are adjacent in a 0-
NI2-L codeword. A probability should be calculated at first.
In order to be distinct, the variable p

0
(n) is redefined as

𝑝'
0
(n) here. Obviously 𝑝'

0
(n) shares the same recursive

formula with p
0
(n) but they have different first terms. The

first term, 𝑝'
0
(2) is (1 - p) p . After iterative process, the

general term is:

 p'
0
(n) = (1 - r) (1 - q + r) - (1 - r) (1 - q)

n-1
 

When n equals eight, the value is (after simplification):

 p'
0
(8) = 6q - 21q2 + r - 6q r 

Subcase (1): If the zeroth byte is the left 0-dirty, the
derivation process is similar to the former cases. Then after
simplification, the probability (denoted by p

2-dirty, 3
) is

shown below and detailed derivation process is shown in
Appendix (see Proof 8):

 p
2-dirty, 3

≈ 55q2 +q r 
Subcase (2): When the first byte is the left 0-dirty

similarly, the following equation can be drawn. The
probability is denoted by p

2-dirty, 4
.

p

2-dirty, 4
= (1 - d) (1- q)

8
(p

0
(8) (p

0
(8)(1 - q)

8
+p

1
(8) p(1 - q)

7
)

+p
1
(8) (p'

0
(8) (1 - q)

8
+p

1
(8) p(1 - q)

7
)) ≈ 63q2



Subcase (3): Then the case that the second byte is the left
0-dirty is discussed. Before this discussion, another variable

p*
k
(n) is introduced. It shares the same recursive formula

with p
k
(n). But it denotes the case that a group of bits follow

a set bit. The value of first term p*
k
(1) is 1 - p . So the

general term is:

 p*
k
(n) = 1- (1 - q)n + r - q 

When n equals eight, the value is:

 p*
k
(8) = 7q - 28q2 + r 

So when the left 0-dirty is the second byte,
corresponding probability can be derived in the same way.
The probability in this case is denoted by p

2-dirty, 5
 and it is

shown as follows.

 P2-dirty, 5= (1- d)(1 – q)15(p

0
(8) p

d
8 + p

1
(8) p

d
8*

)

≈ 63q2+q r


Finally, the value of p
5
 is:

p

5
 = p

2-dirty, 1
+ p

2-dirty, 2
+ p

2-dirty, 3
+ p

2-dirty, 4
+ p

2-dirty, 5

 ≈ 307q2+2q r


In terms of p
6
, there exist at least 14 continuous set bits.

This is a term of high degree, which can be divided by the

expression r14. When the value of r approaches zero, this
value can be also considered to approach zero.

 P8

Since only a set bit exists in an N-fill, according to the
position of the only set bit, the calculation of p

8
 should be

divided into three cases and the results are shown below.

 p
8
=d q30+C29

1 (1-d)p q (1-q)
28

+(1-d) q (1-q)
29 

≈ q - 28q2

The first term denotes that the only set bit lies in the
leftmost bit and the third denotes that the only set bit lies in
the rightmost bit. The second term denotes other possible
positions.

b) Step 2: calculating probabilities of each

codeword

After calculating Basic probabilities, similar to
Subsection A, the probabilities listed in TABLE II and
TABLE III can be recalculated and listed in TABLE V and
TABLE VI respectively.

TABLE V. Probabilities in COMBAT

Denotation Probability

q
1
 1-93q+4281q2-3q r

q
2
 31q - 2745q2- q r

q
3
 961q2

q
4
 961q2

q
5
 0

q
6
 31q - 2388q2+q r

q
7
 357q2+2q r

q
8
 31q -2745q2- q r

q
9
 301q2

q
10

 301q2

q
11

 301q2

q
12

 415q2- 4q r

TABLE VI. Probabilities in CONCISE

Denotation Probability

q
1
c 1- 93q + 4281q2-3q r

q
2
c 0

q
3
c 0

q
4
c 0

q
5
c 0

q
6
c 0

q
7
c 31q - 2388q2+q r

q
8
c 435q2+30q r

q
9
c 31q -2823q2-29q r

q
10
c 0

q
11
c 0

q
12
c 0

q
13
c 31q -1862q2-29qr

c) Step 4: calculating expected values of compressed

size

Similar to subsection A, the expected values of
compressed size using COMBAT, SECOMPAX and
CONCISE can be calculated and shown as follows
respectively. And the derivation process is similar to that in
subsection A.

 LCOMBAT ≈ 1 + 31q + 362q2 - q r 
 LSECOMPAX

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈1 + 62q - 218q2 + 6q r 
 LCONCISE ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 1 + 62q + 899q2 + 62q r 

As shown in equations of (44) to (46), the coefficient of
monomial term in COMBAT is also smaller than that in
SECOMPAX and CONCISE, when q and r approach zero.
It can be predicted that COMBAT can provide more spatial
savage comparing to SECOMPAX and CONCISE.

3) Decompression time complexity
Similar to subsection A, decompression time can be also

estimated and values in TABLE IV still hold. The values of

TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , TSECOMPAX

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ can be recalculated

and their results are also shown below. Their derivation
processes are similar to those in subsection A.

 TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ t1(1+124q)+t2(1+252q) 

 TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≈ t1(1+124q)+t2(1+188q) 

 TCONCISE ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ t1(1+124q)+t2(1+126q) 
By comparing results above, the decompression time is

at least in the same order of magnitude. Although the coding
scheme in COMBAT contains more operations, querying

time is still acceptable.

IV. EVALUATION RESULTS

In this section, evaluation results including both the
spatial and the temporal performance are presented.

A. Evaluation results on spatial performance

When bitmap indexes are uniformly distributed, Fig. 8
shows evaluation results where the density interval ranges
from 0 to 0.01. When bitmap indexes are clustered,
corresponding evaluation results are shown in Fig. 9 to Fig.
11.

As shown in these figures, COMBAT has a higher
compression ratio comparing to the other two algorithms,
which confirms the analysis results in Section III. It is
concluded that COMBAT has a better spatial performance
than the other two algorithms whether a bitmap index is
uniformly distributed or clustered.

Fig. 9. Compressed size

in COMBAT

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
0.9

1

1.1

1.2

1.3

1.4

the value of x

compressed length in COMBAT

the value of q

c
o

m
p

re
ss

e
d

 l
e
n

g
th

Fig. 10. Compressed

size in SECOMPAX

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
0.8

1

1.2

1.4

1.6

1.8

the value of x

compressed length in SECOMPAX

the value of q

c
o

m
p

re
s
s
e
d

 l
e
n

g
th

Fig. 11. Compressed size

in CONCISE

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1

1.2

1.4

1.6

1.8

2

the value of x

compressed length in CONCISE

the value of q

c
o

m
p

re
ss

e
d

 l
e
n

g
th

Fig. 8. Simulation results with

uniformly distributed bitmaps

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

the density of set bit

c
o

m
p

re
s
s
e
d

 s
iz

e

COMBAT

SECOMPAX

CONCISE

B. Evaluation results on temporal performance

When evaluating the temporal performance, since final
results contains up to four variables, i.e. q, r, t1, t2, some
variables should be set constant values to facilitate our
evaluation in advance. For example, the values of t1 and t2
can be constant within a CPU, it is necessary to set proper
values for them.

For convenience, t1 is set as one unit of time, denoted
as t and t2 as 0.2 unit of time, that is, 0.2t. These values
are reasonable because a certain conditional statement will
be often followed by more than one non-conditional
statements. More execution time on assignment operations
is expected. Based on this assumption, evaluation results in
uniformly distributed bitmaps are presented in Fig. 12.
When d varies in the interval of (0, 0.01), temporal
performance is actually almost the same among the three
algorithms, at least in the same order of magnitude, which is
in accordance with analytical results in Section III.

Corresponding results in clustered bitmap are shown in
Fig. 13-15. As shown in these figures, with the change of the
values of r and q, the three algorithms share the nearly the
same trend as well as similar decompression time values,
which also concurs with analytical results in Section III.

V. CONCLUSION

In this paper, a general analytical model is proposed to

analyze spatial and temporal performance of three bitmap

index compression algorithms, i.e., COMBAT,

SECOMPAX and CONCISE. When a bitmap index is

sparse, COMBAT achieves the best improvement in spatial

performance, which is proved by both the theoretical

analysis and evaluation results. Besides, this analytical

model can not only be applied in these three algorithms, but

also be used to any bitmap index compression algorithms

that are derived from WAH. Based on appropriate

assumptions, the general analysis procedures are similar,

including listing all kinds of possible compressed word

combinations, calculating the probabilities of each

codeword and then working out the expected values of

compressed size after encoding and corresponding

decompression time. This model can contribute to analyzing

both the spatial and temporal performance results of a new

invented bitmap compression algorithm before conducting

real experiments.

REFERENCES

[1] I. Spiegler and R. Maayan, Storage and retrieval considerations of
binary data bases, Information Processing and Management, vol. 21,
no. 3, pp. 233-254, 1985.

[2] P. E. O’Neil, Model 204 architecture and performance, in High
Performance Transaction Systems. Springer Berlin Heidelberg, 1989,
pp.39-59

[3] P. Cheng, “bitmap index techniques and its research advancement,”
Science and technologies information, Vol. 026, pp.134-135, 2010.

[4] J. Li, Research in bitmap index in data warehouse, (in Chinese), PhD
diss, Shandong University, 2007.

[5] Z. Huang, W. Lv, and J. Huang, “Improved BLAST algorithm based
on bitmap indexes and B+ tree,” Computer Engineering and
Applications, 49(11), pp.118-120, 2013.

[6] B. Yang, Y. Qi, Y. Xue, and J. Li, “Bitmap data structure: Towards
high-performance network algorithms designing,” Computer
Engineering and Applications, 45(15), 2009.

[7] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database System
implementation, Second Edition, Prentice Hall, 2009.

[8] G. Antoshenkov, “Byte-aligned bitmap compression,” Data
Compression Conference, 1995.

[9] K. Wu, Ekow J. Otoo , and A. Shoshani, “Compressing bitmap
indexes for faster search operations.” In Scientific and Statistical
Database Management, 2002. Proceedings. 14th International
Conference on, pp. 99-108. IEEE, 2002.

[10] K. Wu, Ekow J. Otoo , and A. Shoshani, “Optimizing bitmap indexes
with efficient compression,” in ACM Transactions on Database
Systems (TODS), 31(1), 2006, pp.1-38.

[11] C. Guadalupe, M. Gibas, and H. Ferhatosmanoglu, “Update
conscious bitmap indexes,” 19th IEEE International Conference on
Scientific and Statistical Database Management SSBDM’07, pp. 15-
15, 2007.

[12] M. Stabno, and R. Wrembel. “RLH: Bitmap compression technique
based on run-length and Huffman encoding,” Information Systems
34, no. 4, 2009, pp.400-414.

[13] F. Corrales, D. Chiu, and J. Sawin, “Variable Length Compression
for Bitmap Indexes,” in DEXA’11, Springer-Verlag, pp.381-395,
2011.

[14] F. Deli`ege and T. B. Pedersen, “Position list word aligned hybrid:
optimizing space and performance for compressed bitmaps,” In
Proceeding of the 13th International Conference on Extending
Database Technology, 2010.

[15] D. Lemire, O.Kaser, and K. Aouiche, “Sorting improves word-
aligned bitmap indexes,” Data & Knowledge Engineering, 69(1),
pp.3-28, 2010.

[16] S. J. van Schaik and O. de Moor, “A memory efficient reachability
data structure through bit vector compression,” In Proceedings of the

 Fig. 12. Simulation results with

uniformly distributed bitmaps

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

the density of set bit

d
e
c
o

m
p

re
s
s
io

n
 t

im
e

COMBAT

SECOMPAX

CONCISE

Fig. 13. Decompression

time evaluation in COMBAT

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

the value of x

decompression time in COMBAT

the value of q

d
e
c
o

m
p

re
ss

io
n

 t
im

e

Fig. 14. Decompression time

evaluation in SECOMPAX

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1

1.5

2

2.5

3

the value of x

decompression time in SECOMPAX

the value of q

d
e
c
o

m
p

re
ss

io
n

 t
im

e

Fig. 15. Decompression time

evaluation in CONCISE

0
0.002

0.004
0.006

0.008
0.01

0

0.002

0.004

0.006

0.008

0.01
1

1.2

1.4

1.6

1.8

2

2.2

2.4

the value of x

decompression time in CONCISE

the value of q

d
e
c
o

m
p

re
ss

io
n

 t
im

e

2011 ACM SIGMOD International Conference on Management of
data, pp. 913-924. ACM, 2011.

[17] F. Fusco, M. P. Stoecklin, and M.Vlachos, “Net-fli: on-the-fly
compression, archiving and indexing of streaming network traffic,”
Proceedings of the VLDB Endowment, 3(1-2), pp.1382-1393, 2010.

[18] W.Andrzejewski, and R.Wrembel, “GPU-WAH: Applying GPUs to
compressing bitmap indexes with word aligned hybrid,” In Database
and Expert Systems Applications, Springer Berlin Heidelberg,
January, pp. 315-329, 2010.

[19] F. Fusco, M. Vlachos, X. Dimitropoulos, and L. Deri, “Indexing
million of packets per second using GPUs,” In Proceedings of the
2013 conference on Internet measurement conference, pp.327-332.
ACM, 2013.

[20] W. Andrzejewski, and R. Wrembel, “GPU-PLWAH: GPU-based
implementation of the PLWAH algorithm for compressing bitmaps,”
Control & Cybernetics, 40(3), pp. 627-650, 2011.

[21] Y. Wen, Z. Chen, G. Ma, J. Cao, W. Zheng, G. Peng, and W. L.
Huang, “SECOMPAX: A bitmap index compression algorithm,” In
23rd International Conference on Computer Communication and
Networks (ICCCN), IEEE, pp. 1-7, 2014.

[22] J. Chang, Z. Chen, W. Zheng, Y. Wen, J. Cao, and W. L. Huang,
“PLWAH+: a bitmap index compressing scheme based on PLWAH,”
In Proceedings of the tenth ACM/IEEE symposium on Architectures
for networking and communications systems, ACM, pp. 257-258,
2014.

[23] A. Schmidt, D. Kimmig, and M. Beine, “DFWAH: A Proposal of a
New Compression Scheme of Medium-Sparse Bitmaps,” in the
Third International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA 2011), pp. 192-195.

[24] S. Chambi, D. Lemire, O. Kaser, and R. Godin, “Better bitmap
performance with Roaring bitmaps,” arXiv preprint arXiv:1402.6407
(2014).

[25] G. Ma, Z. Guo, X. Li, Z. Chen, J. Cao, Y. Jiang, and X. Guo.
"BreadZip: a combination of network traffic data and bitmap index
encoding algorithm." In Systems, Man and Cybernetics (SMC), 2014
IEEE International Conference on, pp. 3235-3240. IEEE, 2014.

[26] R. Slechta, J. Sawin, B. McCamish, D. Chiu and G. Canahuate, A
tunable compression framework for bitmap indices, In Data
Engineering (ICDE’ 2014), pp. 484-495. IEEE.

[27] A. Colantonio, and R. Di Pietro, “Concise: Compressed ‘n’
composable integer set,” In Information Processing Letters, 110(16),
2010, pp.644-650.

[28] Yinjun Wu, Zhen Chen, Yuhao Wen, Junwei Cao, “COMBAT: a
new bitmap index compression algorithm for Big Data”, in
submission.

[29] Z. Chen, Y. Wen, J. Cao, W. Zheng, J. Chang, Y. Wu, G. Ma, M.
Hakmaoui, G. Peng, “A Survey of Bitmap Index Compression
Algorithms for Big Data,” Tsinghua Science and Technology, 20(1),
February 2015

APPENDIX

Proof 1. This is to prove the probabilities listed in TABLE II.

q
1
 = p

1
p

1
p

1
= (1 - 31d + 465d

 2
)
3
≈ 1 - 93d + 4278d

 2
 q

2
 = q

3
 = p

1
p

1
p

2
 ≈ 0 q

4
 = q

5
 = p

1
p

2
p

2
 ≈ 0 q

6
 = p

2
p

2
p

2
 ≈ 0

q
7
 = (p

1
+p

2
) (p

3
+p

4
) (p

1
+p

2
) ≈ 31d - 2747d

 2
 q

8
= (p

3
+p

4
) (p

1
+p

2
) (p

3
+p

4
) ≈ 961d

 2
 q

9
= (p

3
+p

4
) (p

1
+ p

2
) p

7
 ≈ 961d

 2

q
10

 = (p
3
+p

4
) (p

1
+ p

2
) (p

7
- p

3
- p

4
) ≈ 961d

 2
 q

11
 = p

7
p

1
p

1
 ≈ 31d - 2387d

 2
 q

12
 = (p

7
 - p

3
- p

4
) p

1
p

1
 ≈ 360d

 2

 q
13

 = (p
1
+p

2
) (p

3
+p

4
) (p

1
+p

2
)≈ 31d - 2747d

 2
 q

14
 = (p

1
+p

2
) (p

5
+p

6
)p

7
 = 360d

 2
(1 - 31d + 465d

 2
) (31d - 465d

2
) ≈ 0

q
15

 = (p
5
+p

6
) (p

1
+p

2
) (p

1
+p

2
) ≈ 360d

 2
 q

16
 = (p

5
+p

6
) (p

1
+p

2
) = 360d

 2
 (1 - 31d + 465d

 2
) ≈ 360d

 2
 q

17
= 1- ∑ q

i
 ≈ 165d

 218
i = 1

Proof 2. This is to prove the probabilities in TABLE III.

q
1
c = p

1
p

1
p

1
 ≈ (1 - 31d + 465d

 2
)
3
≈ 1 - 93d + 4278d

 2
 q

2
c = p

2
p

2
p

2
 = d

 93
 ≈ 0 q

3
c = q

4
c = p

1
p

1
p

2
 = d

 31
(1 - d)

62
 ≈ 0

q
5
c = q

6
c = p

1
p

2
p

2
 = d

 62
(1 - d)

31
 ≈ 0 q

7
c= (p

1
+p

2
) (p

1
+p

2
) p

7
 ≈ 31d - 2387d

2
 q

8
c= (p

1
+p

2
) (p

1
+p

2
) (p

7
- p

8
) ≈ 465d

2

q
9
c= p

1
p

1
p

8
 ≈ 31d - 2852d

2
 q

10
c = q

11
c = p

8
p

2
p

1
 = (31d - 930d

 2
) d

 31
(1 - d)

31
 ≈ 0 q

12
c = p

8
p

2
p

2
 = (31d - 930d

 2
) d

 62
 ≈ 0

q
13
c = p

8
(p

2
+ p

1
) ≈ (31d - 930d

 2
) (1 - 31d + 465d

 2
) ≈ 31d - 1891d

2

Proof 3. This is to prove the equation of (10) and (11)

 LSECOMPAX ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =q
1
+ 2q

2
+2q

3
+2q

4
+2q

5
+q

6
+q

7
+q

8
+2q

11
+2q

12
+2q

13
+3(1- q

1
- q

2
- q

3
- q

4
- q

5
- q

6
- q

7
- q

8
- q

11
- q

12
- q

13
) ≈ 1 + 62d - 210d

2

LCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = q

1
c + q

2
c + 2 q

3

c +2 q
4

c+2 q
5

c + 2 q
6
c + 2 q

7

c+2 q
8

c + q
9
c+ 2 q

10

c + 2 q
11

c +2 q
12

c + 2 q
13

c +3q
14
c ≈ 1 + 62 d + 1922d

2

Proof 4. This is to prove the equation of (12)

TCOMBAT
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = q

1
(t1 + t2) + 2q

2
(t1+ t2) + 2q

3
(t1+ t2) + 2q

4
(t1+ t2) + 2q

5
(t1 + t2) + q

6
(t1 + t2)+ q

7
(3t1 + 5t2) + q

8
(3t1 + 6t2)

 + q
9
(2t1 + 4t2+ t1+ t2) + q

10
(t1 + t2 + 2t1+ 4t2)+ q

11
(t1 + t2 + t1 + t2)+ q

12
(t1 + t2 + t1+ t2) + q

13
(2t1 + 4t2) + q

14
(3t1 + 6t2 + t1+ t2)

 + q
15

(3t1+ 6t2) + q
16

(t1+ t2 + 3t1+ 6t2)+3q
17

(t1+ t2)≈ (1 + 124d)t1+ (1 + 248d)t2

TSECOMPAX
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = q

1
(t1 + t2) + 2q

2
(t1+ t2) + 2q

3
(t1+ t2) + 2q

4
(t1+ t2) + 2q

5
(t1 + t2) + q

6
(t1 + t2)+ q

7
(3t1 + 5t2) + q

8
(3t1 + 6t2)

+ q
11

(t1 + t2 + t1 + t2)+ q
12

(t1 + t2 + t1+ t2) + q
13

(2t1 + 2t2)

+3(1- q
1
- q

2
- q

3
- q

4
- q

5
- q

6
- q

7
- q

8
- q

9
- q

10
- q

13
- q

14
- q

15
)(t1+ t2) ≈ (1 + 124d)t1+ (1 + 248d)t2

TCONCISE
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = q

1
c(t1 + t2) + q

2
c(t1+ t2) + 2q

3
c(t1+ t2) + 2q

4
c (t1+ t2) + 2q

5
c(t1 + t2) + 2q

6
c(t1 + t2) + 2q

7
c(t1+t2) + 2q

8
c(t1 + t2)

+ q
9
c(2t1 + 3t2) + q

10
c (3t1 + 3t2) + q

11
c (3t1 + 3t2) + q

12
c (2t1 + 2t2) + q

13
c (3t1 + 4t2)

+ (1 - q
1
c- q

2
c - q

3
c - q

4
c - q

5
c - q

6
c - q

7
c - q

8
c - q

9
c - q

10
c - q

11
c - q

12
c - q

13
c) (3t1 + 3t2) ≈ (1 + 124d)t1+ (1 + 186d)t2

Proof 5. This is to prove the equation of (16) and (17)

In a 0-fill, the first bit is an unset bit and it can be considered an independent bit. So the value of it is (1 - d). Then the rest 30 continuous bits

are also unset bits. Since they all follows an unset bit, the probability is (1 - q)
30

. So the final result of p
1
 is (1 - d) (1 - q)

30
. Using the

equation of (15) and replacing p with r, the following equation can be deduced: p
1
=

1 - r

1 - r + q
 (1 - q)

30
. After using Taylor expansion and omitting

terms of high degree, the final approximate result is p
1
≈ 1-31q+466q2-q r.

In a 1-fill, the first bit is set bit and this bit is followed by 30 continuous set bits. The probability is d (1 - p)
30

. After replacing d with variable

q and r and replacing p with r, the result is
1 - r

1 - r + q
 r30. Obviously, r30 is a term of high degree and

1 - r

1 - r + q
 is a finite value. So when r

approaches zero, the result can be seen as p
2

→ 0

Proof 6. This is to prove the equation of (20)

Mathematical induction is applied to prove this conclusion. The matrix (
1 - q 1 - r

q r
) is denoted by A

When n equals 3, A3 = (
1- q 1 - r

q r
)

3

= (
1-q+q2-q3-q r+2q2r - q r2 1- q+q2- q r - q2r +2q r2-r3

q -q2+q3+q r -2q2r +q r2 q -q2+q r +q2r -2q r2+r3
)

After omitting items of higher degree, the result is (
1-q+q2-q r 1-q+q2-q r

q -q2+q r q -q2+q r
), which is in agreement with the conclusion.

Now assuming that when n equals k (an integer which is bigger than three), the conclusion is still established.

Then when n equals k+1, Ak + 1 = Ak A = (
1-q +q2 - q r 1- q+q2-q r

q - q2+q r q - q2+q r
) (

1- q 1-r

q r
) = (

1-q+q2- q r 1 - q +q2- q r

q - q2+q r q - q2+q r
)

So this equation is proved.

Proof 7. This is to prove the equation of (25)

In this case, 0-dirty can locate in either the first byte or the second byte. It can be assumed that this 0-dirty is the first byte in the following

analyses and other bytes are all composed of unset bits. In the zeroth byte, except that the first bit is independent, other bits all follows an

unset bit. So the probability is (1-d) (1- q)6. In the second byte, the first bit of it must be influenced by the last bit of the first byte which is

0-dirty. When the 0-dirty ends with an unset bit, the probability for the first bit to be unset bit is p
0
(8) (1-q). When the case is opposite, the

probability is p
1
(8) p . Then the probability of the rest 15 bits to be unset bit is (1- q)15 . The final result of p

1

dirty
 is C2

1(1-d)

(1- q)21(p
0
(8) (1-q) + p

1
(8) p). According to the value of p

0
(8) and p

1
(8), the simplified result is p

1

dirty
 ≈ 16q - 422q2-2q r

Proof 8: This is to prove the equation of (37)

According to the type of the last bit in this dirty byte, this probability can be divided into two parts. If the last bit is an unset bit, then according

to the type of the last bit in the following dirty byte, the probability can be further divided into two subparts. Similar to Proof 8, the probability

in this part is p*
0
(7) (p

0
(8) (1 - q)

16
+p

1
(8) p (1 - q)

15
) . Likewise, if the last bit is a set bit, this part of probability is p*

1
(7) (p'

0
(8)

(1 - q)
16

+p'
1
(8) p (1 - q)

15
). So the value of p

3

2-dirty
 is the sum of these two parts of probability and it is shown below.

p
3

2-dirty
= p*

0
(7) (p

0
(8) (1 - q)

16
+p

1
(8) p (1 - q)

15
) +p*

1
(7) (p'

0
(8) (1 - q)

16
+p'

1
(8) p (1 - q)

15
)

Then after specific value is assigned and simplification process is done, the value of p
3

2-dirty
 is: p

3

2-dirty
≈ 55q2 +q r

