Grid Information Services using
Software Agents

H.N. Lim Choi Keung * J. Cao D.P. Spooner
S.A. Jarvis G.R. Nudd

Abstract

Computational grids allow large-scale, pervasive and consistent shar-
ing of geographically dispersed resources. Their inherent nature incor-
porates issues including the discovery of resources located in different
administrative domains, predicting the performance of those resources
and monitoring their behaviour. The Monitoring and Discovery Service
(MDS), one of the pillars provided by the Globus toolkit, can be used
to offer Grid information services to an existing agent-based resource ad-
vertisement and discovery system. This paper presents an agent system
which implements the GRid Information Protocol (GRIP) and the GRid
Registration Protocol (GRRP) of the MDS to discover virtual organisa-
tions and monitor their respective resources. The resulting system has
the effect of resource brokering, monitoring and performance prediction.

1 Introduction

Grid computing enables wide-spread sharing and coordinated use of geograph-
ically dispersed, networked resources[10]. Such sharing may be short- or long-
term, and may consist of heterogeneous resources, thereby creating continuously
dynamic virtual organisations. Consequently, users would have no knowledge
of the resources which are participating in the virtual organisation at any one
time. Grid Information Services, for example the Globus Monitoring and Dis-
covery Service (MDS), are designed to discover and monitor the existence and
behaviour of resources, computations and services, and other entities which form
part of a Grid[9].

Grid computing defines the scalability of a large number of networked re-
sources. One issue that this raises is that of resource contention, which itself
will also affect application performance. It is therefore important that the ef-
fects of resource contention are carefully managed, for example through resource
monitoring and scheduling.

*High Performance Systems Group, Dept. of Computer Science, University of Warwick,
Coventry, UK. E-mail : {hlck, junwei, dps, saj, grn}@dcs.warwick.ac.uk

1.1 Grid Resource Management
1.1.1 The A4 Agent System

The Agile Architecture and Autonomous Agent system (A4)[3, 6] addresses the
general problem of resource management using an agent-based implementation
where agents cooperate to discover available resources. This process is termed
service advertisement and discovery. Every agent has knowledge about its neigh-
bouring agents which process one another’s service advertisement and discovery
requests|7].

In A4, a hierarchy of agents is used to provide wide-area resource sharing.
The agents are homogeneous and consist of a number of functional layers - see
Figure 1.

a4 Agent N/ Agent)
(Local Management LayeD (Local Management LayeD

{}

(Coordination Layer) (Coordination Layer)

9 <>

(Communication Layer) (Communication Layer)
< |1

M| e
Networ ks

Figure 1: The basic structure of an agent consists of three interacting layers. For
more details see [6].

e Communication Layer Agents use this layer to communicate with one
another using common data models and communication protocols. An
Agent Communication Language (ACL) can also be used by agents to
exchange knowledge with one another.

e Coordination Layer This layer decides how the agent should act on the
data at the communication layer according to its own knowledge.

e Local Management Layer This layer encapsulates the functions needed
for the management of local services. It also provides local service infor-
mation needed by the coordination layer [5].

This wide-area agent system has been integrated with a local-area grid task
scheduler known as Titan.

1.1.2 Titan Local Resource Manager

Titan[16] is a local-area workload management system used to select suitable
resources for a particular task, given a varied, dynamic resource pool. The search
space for the multi-parameter scheduling problem is large and not fully defined
until runtime. Consequently, a just-in-time approach to performance prediction
is adopted so that runtime variables and resource load can be used to assist task
and resource allocation while maintaining prescribed service contracts.

An iterative, heuristic algorithm forms the basis of each local scheduler.
This algorithm aims to minimise processor idle time and makespan, which is the
expected completion time of the last scheduled job. The algorithm is written
in such a way as to allow changes to be absorbed; these include the addition
or deletion of tasks, and changes in physical resources including the number of
hosts or processors. The approach used by Titan is to generate a set of schedules
and to evaluate the schedules to obtain a measure of fitness. It then selects the
most appropriate and combines them using operators(crossover and mutation)
to formulate a new set of solutions. This process is repeated, resulting in a
fittest solution. An important aspect of the algorithm is the use of predictive
performance data from the PACE toolkit that forms the basis for its scheduling
decisions.

1.1.3 Performance Prediction with PACE

The Performance Analysis and Characterisation Environment (PACE) is an
important component of the agent-based system because of its performance
prediction capabilities.

PACE is a dynamic performance prediction modelling toolset used by high
performance distributed applications. Some of the tools that it contains are for
model definition, model creation, evaluation and performance analysis. It uses
associative objects organised in a layered framework as a basis for representing
each of a system’s components. Moreover, the dynamic instrumentation tech-
nique used by PACE allows the automatic analysis of applications and hence, the
production of reliable prediction results. These results are then used to dynam-
ically steer the execution of these applications[1]. PACE also encompasses the
performance aspects of application software, its resource use and mapping, and
the performance characteristics of hardware systems[2]. The main components
of PACE are shown in Figure 2; these are:

é Application Tools(AT) hYd Resource Tools(RT))
Object Object N(T\‘A""’)‘I”k Cache
Editor Library PVMi (L1,L2)
PSL Scripts HCML Scripts
Compiler Compiler
C : s))
Applicat Ic/in Model Resou@M odel
Eval uation Engine(EE))

J0L T

Performance On-the- f|y Multi-
Prediction analysis processor
scheduling

Figure 2: Components of the PACE Toolkit.

Q00O

e Application Tools The performance characteristics of an application
and its parallelisation are described using the toolkit’s performance spec-
ification language(PSL). The Source Code Analyser converts sequential

source code components into performance descriptions. These descrip-
tions are edited using the Object Editor and the Object Library holds
existing objects.

¢ Resource Tools A PACE hardware modelling and configuration lan-
guage (HMCL) is used to define the computing environment in terms of
its constituent performance model components.

e Evaluation Engine This forms the core of the PACE toolkit. It exe-
cutes completed performance models to produce evaluation results. These
include time estimates and trace information relating to the expected ap-
plication behaviour.

PACE is also used for dynamic multi-processor scheduling and for efficient
resource management[4]. Furthermore, it provides realistic performance predic-
tions of expected application execution. The PACE toolset is comprehensive in
its approach and is used in many different application areas[12, 13].

PACE is based on a layered characterisation methodology and is an analytical-
based approach. It also supports the entire software lifecycle including develop-
ment, execution and post-mortem performance analysis[11, 14].

1.1.4 Grid Information Management using Software Agents

Although the local scheduler has information about the resources in its local
environment, it has no knowledge about resources in other local scheduling
environments or in other administrative domains. As agents discover resources
or receive service advertisements from neighbouring agents, they have to store
this information. While each agent has enough information to propagate a task
to its ‘best suited’ neighbour, there is no ‘global’ information repository which
agents can access on demand. Service advertisement in the agent hierarchy is
currently only carried out with nearby, neighbouring agents. Therefore, an agent
advertises its service information to its upper or lower agent only. In this case,
resource information is propagated to a wider infrastructure only after many
iterations of service advertisement and discovery, which can take a long time.
There is also the danger of a large amount of resource information duplication.
The use of the MDS will overcome these problems.

The movement of service discovery requests from one agent to another will
occur in the same way within a virtual organisation or across virtual organisa-
tions. This method therefore allows the agent hierarchy to be scalable. In this
paper, it will be shown how agents implement the GRIP and GRRP protocols
to pull information from resources and push information into aggregate directo-
ries. The paper also demonstrates how such agents can implement an automatic
referral mechanism to discover other aggregate directories and hence resources
in other virtual organisations.

This paper presents a way in which the Grid Information Services can be
used in the agent-based resource management system to discover and monitor
resources within large-scale Grid systems. In this context, a virtual organisa-
tion(VO) is defined as being a set of resources which, collectively, are within
the same administrative domain. This paper is organised as follows: in Section
2, the Grid Information Services components and protocols which will be used
are explained. Section 3 introduces the implementation of Grid Information

Services with software agents. Conclusions and future work are presented in
Section 4.

2 Grid Information Services

Grid Information Services are a collection of services carrying out resource
discovery and monitoring. Resource characteristics can be classified as static
and dynamic. Static characteristics include the number of processors, the host
model, machine architecture and the operating system version. Dynamic char-
acteristics include CPU availability, CPU load, amount of memory, available
processors and network load.

The Globus Monitoring and Discovery Service uses the LDAP model[15] and
represents information in a hierarchical way, resulting in a Directory Information
Tree (DIT). The MDS architecture consists of two basic entities:

1. Individual configurable information providers called Grid Resource Infor-
mation Service (GRIS), which adhere to LDAP and provide information
about individual entities. An entity is characterised by a set of ‘objects’
comprised of typed attribute-value pairs.

2. A higher-level, configurable aggregate directory component called a Grid
Index Information Service (GIIS). This component collects, manages and
indexes information provided by one or more information providers. The
aggregate directory services can implement both generic and specialised
views and can also provide searching functions. Thus, resources would
register with a GIIS which would then pull information from them when
requested by a client or when its cache has expired.

2.1 MDS Protocols

Each information provider implements two basic protocols: the GRid Informa-
tion Protocol (GRIP) which enquires about the structure and state of a resource
or service, and the GRid Resource Registration Protocol (GRRP) which allows a
resource to both register with another entity and to notify the latter of its avail-
ability. The protocol also specifies how to contact the entity for the purposes of
enquiry or control.

GRIS adheres to the GRIP protocol, and GIIS to the GRRP[S].

2.2 GRIS

This information provider framework is implemented as an OpenLDAP server
backend which is customisable using plug-ins from specific information sources;
this is shown in Figure 3. Considering the Grid environment, each resource
under local scheduler management can run a local GRIS. A GRIS can service
requests for specific resources, but in this work, a GRIS is configured to register
itself with an aggregate directory service (GIIS) via the local scheduler, so that
information can be passed onto other agents. The GIIS is explained in more
detail in Section 2.3.

Typically, a local resource manager would send out an information request to
each GRIS under its logical management on a periodic basis (for example, every

minute). The GRIS on each resource would then authenticate and parse the
incoming information request, and then dispatch the request to be handled by a
local information provider. The local resource manager then merges the results
from each of its GRIS resources and pushes them to the aggregate directory
service.

The communication between a GRIS and an information provider takes place
over a well-defined API. The local resource manager also caches each information
provider’s results for a specified period of time. Thus, the number of provider
invocations is greatly reduced, the response time is improved and deployment
capability is maximised. This configurable length of time is the cache’s time-to-
live (TTL), which is specified for each information provider at configuration.

The information providers return static host information including the num-
ber of processors, the CPU model, the operating system version and the architec-
ture type. Dynamic host information is also pulled, including the load average,
CPU availability, the number of available processors, storage information and
network information. The local resource manager then pushes the information
to the agent’s GIIS, when requested.

Local registration
Resource
Manager GIIS

4 {} N\

(Front End containing schemd)

slapd server
GRISback

end J

A | DAP Data

fork() and exec() Interchange
Format(LDIF)

Information
Providers

- J
GRIS

Figure 3: Within the GRIS, the server front end contains an LDAP schema for the
providers. The GRIS back end is within the LDAP server and it forks processes and
execs provider programs which then return LDIF data to the backend.

2.3 GIIS

The MDS also provides a framework for constructing aggregate directories called
Grid Index Information Services (GIIS). GRRP messages are passed from ‘child’
GRIS to the directory to form a unified information repository. The three major
components making up the GIIS framework are: 1. Generic GRRP handling 2.
Pluggable index construction 3. Pluggable search handling.

A preliminary analysis of the above systems indicates that the A4 agents and
the MDS architecture share two major features: a hierarchy and an information
storage capability. Further work demonstrates that the agents’ structure can be
mapped onto the MDS, resulting in the integration of both architectures. The
following describes how this mapping and integration are done.

Figure 4 shows an overview of the hierarchy of agent-based Grid information
services components. Each agent interfaces with a GIIS which has information

Virtual
Organisation A

Resource

GRIS

Organisation B

Virtual Organisation C

Figure 4: Agent-based Information Services Structure with a Hierarchy of Virtual
Organisations.

about all the resources in its administrative domain, including all its local re-
source managers. The scope of information for each agent spans downwards
towards all the other agents which have registered their resources with the for-
mer agent.

Therefore, homogeneous agents which communicate with one another, are
arranged in a tree-like hierarchy. To be able to act as a high-level broker to the
underlying metasystem and to carry out performance prediction, those agents
need to have accurate resource information. The Globus MDS provides the
information required for that purpose. Every agent will be closely integrated
with its own GIIS which will contain information about all the resources within
the VO.

GRIS

Key:
- 1
Information
Provider Resource Information
I Request and Results at
Local Management Level

Resource Resource
Task Task Monitoring Information Resource
Management Execution 3 Reporting W Information being

collected by the GIIS

L ocal resour ce manager]

! i '

PACE Evaluation Engine

and Performance

T l Resource Management
Prediction

Figure 5: GRIS within a local resource manager.

Figure 5 shows a more detailed diagram of the components of the local re-
source manager. The latter pulls information from its information providers via
its Resource Monitoring component and pushes that information to the agent’s
GIIS via its Resource Information Reporting module. The GRIS component is
made up of the information providers and the Resource Monitoring module.

3 Grid Information Services with Agents

An agent will not only act as a broker to the underlying local resource manager
but it will also interface with a Grid Information Service. The agents can
therefore, automatically refer to other neighbouring agents in order to access the
whole set of their resource information, if their own resources do not meet users’
job requirements. The overall system provides an autonomous Grid Information
Service which can locate resources across virtual organisations. The way in
which the A4 software agents will interface with the MDS is described below.

3.1 Structure of a Grid-enabled Agent

An agent’s structure is made up of three layers: the communication, coordina-
tion and local management layers. The coordination layer further splits into the
following components: the Information Service Module, the PACE Evaluation
Engine and the Referrer. The structure of an agent and the interface to its GIIS
are shown in Figure 6. The various functions of these components are described.

Agent Structure

£ N
3 Ebd Application Management
>

MDS SE5

©
% = GlIS information request and results

GlIS) ¥
E Serwcg PACE
85 Information Evallaton > Refarrer
5w - Engine | Evaluation
s~ Information 9 Results

re:EQ;) Service Module X P'lo.‘CE, Application Ager
c pplication requirement
o Job requi equi ID

results g €q E{ Model

Sy
é & Communication Module
£ \ 1 > N 7% /
o
)

| I

Advertisement Service Job request Job request Service
Discovery within VO to target local Discovery
request from resource request to
another agent manager another agent

Figure 6: Agent-based GIIS structure. The structure of an agent interfacing with
its GIIS is shown. The information flow during resource discovery and performance
prediction are indicated by the respective arrows.

One of the functions of the Information Service Module (ISM) is to con-
vert a service discovery request in XML format to an LDAP-based request.
This request is serviced by the GIIS which interfaces with an agent. The GIIS
contains resource information about all the local resource managers in the corre-
sponding virtual organisation. It also has potential access to information about
other virtual organisations’ resources since it receives service discovery messages.
Therefore, the aggregate directory structure is accessed by the ISM when a new
service discovery request arrives. The purpose is to determine whether there
is a local resource manager with available resources which can process the job

whilst satisfying the user’s requirements. In short, querying the GIIS is done
via the LDAP request that has been generated beforehand.

A user wishing to run an application on the Grid, submits the actual appli-
cation and a job request. The latter consists of resource requirements, a PACE
application performance model and performance metrics which includes dead-
line requirements. On receipt of the job request, a service discovery request is
generated, containing resource requirements. The corresponding virtual organi-
sation GIIS is then contacted to discover whether such a resource is available or
not. Once a matching resource has been found, the PACE performance model
and the deadline requirements are copied over to the discovered local resource
manager for performance prediction to be carried out.

When jobs are submitted anywhere within a virtual organisation, the service
discovery request is automatically moved to the nearest high-level agent. This
is done for the purposes of Grid resource discovery and performance evaluation.
In brief, a request for service discovery is sent to the agent.

From the LDAP results which are returned from the GIIS, there could be two
outcomes. If an adequate resource has been found in the virtual organisation
meeting the user’s requirements, the job request is passed on to the PACE
Evaluation engine. The PACE application model is therefore input to the PACE
Evaluation Engine. The latter then performs performance prediction and passes
the evaluation results to the referrer. Depending on the evaluation results, the
referrer could undertake either of the following. If a resource has been found
which can meet the job’s predicted execution time and fits onto an existing
schedule, it gets scheduled. If this is not possible, the referrer evaluates which
agent to contact next for GIIS information; this agent could be an upper or
lower agent. Subsequently, the service discovery request is moved to that agent
and the above process starts all over again. Likewise, if no adequate resource
has been found in the GIIS from the outset, the referrer determines an agent to
which the service discovery request is forwarded.

The agent receives both service advertisement and discovery messages via its
communication module. It interprets the contents of each message and submits
the information to corresponding modules in the coordination layer of the agent.
For example, an advertisement message from another agent will be handled by
the Information Service module which will consequently add the new informa-
tion in its own GIIS. Moreover, the communication module is responsible for
communicating service advertisement and discovery messages with other agents.

3.2 Information in the Agent-Enhanced GIIS

Cooperation amongst homogeneous agents is defined by the service advertise-
ment and discovery taking place for the purpose of resource management. An
agent has access to the following information stored in the GIIS:

1. Resource information in the VO.

2. Agent ID This is the contact information for an agent. The agent ID
is very useful in contacting other agents to search their GIIS. Each agent
will initially store its upper agent ID and later when other agents register
with it, it will store lower agent IDs.

3. Service Information This is where performance-related information
about resources is stored. The agent uses this information to evaluate the
performance of resources and to ensure that the performance metrics are
satisfied. The service information is also used as part of service discovery
decisions.

The GIIS will thus contain resource information, as described earlier, as well
as performance information.

A resource’s GRIS can be directly contacted for information. However, in
a Grid environment with a large number of heterogeneous resources, it is more
helpful for the local resource manager to contact its agent to look up its GIIS.
Each agent will have one or more local resource managers, with each resource
manager monitoring one or more resources.

The agent ID is used as follows. The resource needed by a job request might
be found in the local virtual organisation, but if no such resource is found, the
agent will use one of its agent IDs to contact another agent via its communication
layer. More specifically, at the agent’s coordination layer, the GIIS is accessed
and the ID of the selected agent to contact next is retrieved. The service request
is then sent to that agent. It might be appropriate to contact the agents in the
hierarchy in a breadth-first search fashion. However, no method of traversing the
agent hierarchy is particularly preferred. If a suitable resource and schedule have
been found in the GIIS of one of the agents in the hierarchy, the corresponding
local resource manager is contacted and the job is forwarded to it. Consequently,
at each stage until a schedule on a suitable resource is found, the job remains
on the submission host, but the job request moves from one agent to the next.

It is intended that an LDAP data model is used to represent all the informa-
tion needed to carry out resource discovery and monitoring, and performance
prediction. In short, the information is classified as follows:

e All of the resource information(static and dynamic) within the VO;

e Service information pertaining to the performance of resources in the VO
(and others);

e ID of other agents which an agent knows about, including its lower and
upper agents.
3.3 Information Flow Overview
There are four main types of cross-VO communication between agents:
1. Service advertisement and service discovery messages;
2. Service discovery requests moving from one agent to another;
3. Jobs moving from the portal to the target local resource manager;
4. Job requests moving from one agent to another.

When a new virtual organisation wishes to join the Grid, its agent advertises
its service information to other agents. At the same time, other agents are in
the process of discovering new agents. Once the new agent has chosen its upper
agent, it registers its GIIS with it and the new virtual organisation is now part

of the Grid. The performance offered by resources is likely to vary over time,
and if a virtual organisation wishes to cease to be part of the Grid, its agent
should unregister from its upper agent, thus its resources are no longer available
to execute jobs. In this way, the rest of the Grid is unaffected by the removal
of a GIIS.

Each resource has an upper local resource manager which continuously mon-
itors its performance. The existing GIIS schema has to be extended from having
only hardware information to including the agent ID and service information as
well. This is necessary because when a resource has been found, the job request
is not sent to that resource directly but to its local resource manager. This
method thus allows the resource manager to perform performance prediction
before actually submitting the job to the targeted resource.

3.4 Service Advertisement and Discovery

When a virtual organisation wishes to register with another high-level one, the
agent uses the GRRP protocol. LDAP queries can be sent from the higher-
level GIIS to the lower level one, but there is no existing mechanism for the
lower-level GIIS to search higher-level GIIS with which it registered.

This drawback can be avoided by using the agent service advertisement
mechanism at the time the virtual organisation is registered. Therefore, the new
virtual organisation’s agent advertises its service information to other agents.
This happens with its upper agent in the first instance. Once the new agent has
registered with its upper agent, a record of the latter’s ID is stored in the new
agent’s GIIS.

Service Discovery occurs when other agents’ GIIS need to be queried for
resource information. The lower or upper agents are thus contacted.

4 Conclusions and Future Work

In this paper, an agent-based Monitoring and Discovery Service has been de-
scribed, where GIIS from other virtual organisations are automatically con-
tacted for resource information search. This is brought about by using agent
service advertisement and discovery. The agents perform such searches automat-
ically, thus creating a referral mechanism which traverses the agent hierarchy in
a managed way.

This work is ongoing and the aim of future work is to explore the best
agent hierarchy traversal mechanism and the related performance issues when
the agents carry out information services searches. The overall performance
obtained when writing and reading dynamic information to and from the GIIS
respectively, will also be investigated.

Acknowledgements

This work is sponsored in part by grants from the NASA AMES Research
Centres (administered by USARDSG, contract no. N68171-01-C-9012) and the
EPSRC (contract no. GR/R47424/01).

References

[1]

2]

(3]

[4]

[7]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

A. M. Alkindi, D. J. Kerbyson, and G. R. Nudd. Dynamic Instrumentation
and Performance Prediction of Application Execution. Proceedings of High Per-
formance Computing and Networking(HPCN2001), Lecture Notes in Computer
Science, Volume 2110, Springer-Verlag, Amsterdam:313-323, June 2001.

A. M. Alkindi, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd. Optimisation
of Application Execution on Dynamic Systems. Future Generation Computer
Systems, Volume 17(8):941-949, June 2001. Elsevier.

J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd. ARMS: An
Agent-based Resource Management System for Grid Computing. In Scientific
Programming Special Issue on Grid Computing, 2002.

J. Cao, S. A. Jarvis, D. P. Spooner, J. D. Turner, D. J. Kerbyson, and G. R. Nudd.
Performance Prediction Technology for Agent-based Resource Management in
Grid Environments. 11th IEEE Heterogeneous Computing Workshop (HCW02),
15-19th April 2002. Marriott Marina, Fort Lauderdale, Florida.

J. Cao, D. J. Kerbyson, and G. R. Nudd. High Performance Service Discovery
in Large-Scale Multi-Agent and Mobile-Agent Systems. International Journal of
Software Engineering and Knowledge Engineering, Special Issue on Multi-Agent
Systems and Mobile Agents, World Scientific Publishing, 11(5):621-641, 2001.

J. Cao, D. J. Kerbyson, and G. R. Nudd. Use of Agent-based Service Discovery
for Resource Management in Metacomputing Environment. Proceedings of 7th
International Euro-Par Conference, Manchester, UK, Lecture Notes in Computer
Science, 2150, Springer-Verlag, pages 882-886, August 2001.

J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. Kerbyson, S. Saini, and
G. R. Nudd. Agent-based Resource Management for Grid Computing. 2nd IEEE
International Symposium on Cluster Computing and the Grid, May 2002. Berlin,
Germany.

K. Czajkowski, S. Fitzgerald, 1. Foster, and C. Kesselman. Grid Information
Services for Distributed Resource Sharing. Proc, 10th IEEE International Sym-
posium on High-Performance Distributed Computing (HPDC-10), 2001. IEEE
Press.

S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski, W. Smith, and S. Tuecke. A
Directory Service for Configuring High-Performance Distributed Computations.
I. Foster and C. Kesselman. The GRID: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, Inc., 1999.

D. J. Kerbyson, J. S. Harper, A. Craig, and G. R. Nudd. PACE: A Toolset to
Investigate and Predict Performance in Parallel Systems. Presented in European
Parallel Tools Meeting, ONERA, Paris, October 1996.

D. J. Kerbyson, J. S. Harper, E. Papaefstathiou, D. V. Wilcox, and G. R. Nudd.
Use of Performance Technology for the Management of Distributed Systems.
Euro-Par 2000, LNCS, Springer-Verlag, August 2000.

D. J. Kerbyson, E. Papaefstathiou, J. S. Harper, S. C. Perry, and G. R. Nudd.
Is Predictive Tracing too Late for HPC Users? R.J. Allan, A.Simpson and
D.A.Nicole (Eds), High Performance Computing, Plenum Press, 1998.

D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd. Application Execution
Steering Using On-the-fly Performance Prediction. High Performance Comput-
ing and Networking, Amsterdam, Holland, Lecture Notes in Computer Science,
Springer-Verlag, April 1998.

G. Laszewski and I. Foster. Usage of LDAP in Globus.

D. P. Spooner, J. Cao, J. D. Turner, H. N. Lim Choi Keung, S. A. Jarvis, and
G. R. Nudd. Localised Workload Management Using Performance Prediction
and QoS Contracts. Fighteenth Annual UK Performance Engineering Workshop
(UKPEW’ 2002).

