In Proceedings of 7 International Euro-Par Conference, Manchester, UK, Ledilates in
Computer Science 2150, Springer Verlag, August 2001, pp. 882-886.

Use of Agent-Based Service Discovery for Resour ce
M anagement in M etacomputing Environment

Junwei Cao, Darren J. Kerbyson, Graham R. Nudd

High Performance Systems Laboratory, Department of C@nfaience,
University of Warwick, U.K.
{junwei, djke, grn}@cs.warw ck.ac. uk

Abstract. A new methodology is presented in this paper for resource
management in a metacomputing environment using a hierarchy of
homogeneous agents that has the capability of service digcdver PACE

[6] tools are used to provide quantitative data concerning tHerpance of
sophisticated applications running on local high performanseurees. At
metacomputing level, an agent hierarchy is used to model gbeunce
management system, and the implementation of resource maardge
scheduling, and allocation can be abstracted to the proce$sservice
advertisement and service discovery. Different optinosagtrategies can be
used to improve the performance of the agent system.

1 Introduction

The overall aim of the resource management in the wmatadting environment is to
efficiently schedule applications that need to utilizeakailable resources [5]. Such
goals within the high performance community will redp accurate performance
prediction capabilities.

Our previous works on PACE [2] can be used to provide quawttatata
concerning the performance of sophisticated applicationgirrg on local high
performance resources. While extremely well-suited foanaging a locally
distributed multi-computer, the PACE functions do not magl wnto wide-area
environments, where heterogeneity, multiple admirtisga domains, and
communication irregularities dramatically complicate thHeb of resource
management. There are two key challenges that must tesaed.

Scalability. A given component of the grid will have it's own fuiocts, resources,
and environment. These are not necessarily gearedrtotagether in the overall
grid. They may be physically located in different organizetiand may not be
aware of each other.

Adaptability. A grid is a dynamic environment where the locatitype, and
performance of the components are constantly chandhog. example, a
component resource may be added to, or removed frorgrithat any time. These
resources may not be entirely dedicated to the gridgenéneir computational
capabilities will vary over time.

In this work, an agent-based service discovery model smuree management in
metacomputing environment is introduced to address aboveraesleAn agent is a
local computing resource manager equipped with PACE functidrigese
homogeneous agents are organised into a hierarchy, wanchecused to address the
problem of the scalability. An agent is considered tbdité a service provider and a
service requestor. We use service here to descriliethés of a resource within the
grid. Resource management, scheduling, and allocation cabdieacted to the
processes of servicavertisement and servicediscovery. Performance issues arise
when service is advertised and discovered in the ageetsyBlifferent optimisation
strategies can be used to improve the system performance

2 PACE Toolset

Our previous works on PACE toolset provide the basehefimplementation of
resource management for metacomputing.

~
Source Object Object CpPU [Net—workJ
Code Editor Library
AnaIyS|s Cache] © O O
[
= —
)
[Language Scripts J Hardware Model
Evaluation Engine
Compiler Application Model
- T
=_~ <_~ B
Performanc On-the-fly
Analysis Analysis

Fig. 1. The PACE Toolset

The main components of the PACE toolset are showiaiginl. A core component
of PACE is a performance language, CIIPwhich describes the performance
aspects of an application and its parallelisation. Tlauation engine combines the
workload information with component hardware models tapce time estimates, or
trace information of the expected application behavidarimportant application of
prediction data is that of dynamic multi-processor sclirgluwhich can be applied
for efficient local resource management.

The key features of PACE performance prediction capailiinclude: a
reasonable prediction accuracy; a rapid evaluation tingt easy performance
comparison across different computational systems [1]séfle@able the prediction
data to be used for resource management in a highly dyearifonment.

3 Agent-based Service Discovery for Resource M anagement

In this section, a hierarchy of homogenous agents setlice discovery capabilities
is used for resource management in metacomputing environiffeatintroduction
below includes four parts: agent structure, agent hierasehnyice model and service
discovery.

3.1 Agent Structure

There is a single type of the component, the agent,iwisiaised to compose the
whole resource management system. Each agent has teessawf functions and
acts as a manager of local high performance resoutloggever, at a meta-level, an
agent must also take part in the cooperation with @bents, which differentiate an
agent from a current PACE system. A layered agent steucts shown in Fig. 2 and
described in detail below.

Agent

Agent

[Local Management Laye

it JdT

{ Local Management Laye]

it JF

[Coordination Layer J

it J7

[Communication Layer

[Coordination Layer J

ir JdT

[Communication Layer

< Networks >

Fig. 2. Layered Agent Structure

Communication Layer — Agents in the system must be able to communicateeaith
other using common data models and communication pistoco

Coordination Layer — The data an agent receives at the communicatien sapuld
be explained and submitted to the coordination layer, wdecides how the agent
should act on the data according to its own knowledgewidnk described in this
paper mainly focus on the implementation of this lagad the service discovery
model used to achieve the agent coordination will be destin sections later.

Local Management Layer — This uses existing PACE todts the management of the
locally distributed computing resources. The local manager also provide
information needed by the coordination layer to make weds

3.2 Agent Hierarchy

Different agents cannot work together without some beganisation. In this section,
a hierarchical model is introduced, which is an extendiauioprevious work [3].

When a new resource is added into the grid, a new agergdated. The new agent
can register with one of existing agents, and hencelj@ragent hierarchy. An agent
can only have one connection to an agent highereiterarchy to register with, but
be registered with many lower level agents. An agenténhierarchy has only the
identities of its upper agent and lower agents and can comateiniith them at the
beginning. However, after joining the system, agent eamimore information about
other agents and communicate with more agents graduialiy the agent can benefit
from the other agents’ capabilities, cooperate wétbheother, and manage all of the
computing resources in the metacomputing environment. Amt @ga also leave the
hierarchy at any time, which means the resourcesiitages are not available to the
grid any more. In this situation, its lower agents nbgsinformed to register with a
new agent to keep the relations with the hierarchy.

The agent-based hierarchical model is used to addresgprtidem of the
scalability. The key feature that enables the sdilabdf this model is the
homogeneity of agents. There is no agent with more dganietions than any other.
The broker does not have any privileges compared to coartbreaid agents.

3.3 Service M odel

An agent is considered to be both a service provider amivice requestor. Every
agent can also act as a router between a request anvita.s& service model is used
to describe the details of local high performance ressungthin the grid. An initial
implementation of a service model is a simple datacsitre, including an agent
identity, corresponding resource information, and some ggdtion options.

The main part of a service model is the resource nmdtion. This should include
all of the information needed for performance predictbrorresponding resources,
from hardware statistics to application states. Whegaest arrives, it should be able
to turn into useful performance information of corresgfing resources using the
PACE evaluation engine. These predictions can be useab@arts to make decision
whether the corresponding resources can meet the parfoemnequirements from the
request at the coordination layer.

An agent can use several kinds of Agent Capability TablesTghCfor
maintenance of service models from other agents. @wirce performance can vary
over time, thus the service offered by the agent wilhgeaover time. When this
occurs, the resource information in corresponding semviodel needs also to be
updated. The dynamics of this system increases theutfi§fiof resource management
and allocation. The essential issue is how an agenttasdaeits services and also
coordinates with other agents to discover the requiredcesrun the most efficient
way.

3.4 Service Discovery
Resource management, scheduling, and allocation at theewetare abstracted to

the processes of service advertisement and serviaevdigcin this work. These are
performed at the coordination layer in each agent in titersy

Service Advertisement. The service model of an agent can be advertisedhen t
hierarchy (both up and down).

Service Discovery. When an agent receives a request, it will first chiéggkown
knowledge to see if it is already aware of an availaéeise, which can meet the
performance requirements of the request. If it is, it eohtact the target agent
directly. Otherwise it may contact other (e.g. its upmelower) agents until the
available service is found.

Different strategies can be used to decide when, andtb@ayvertise or discover a
service but with different performances. These incluske of cache, using local and
global knowledge, limit service lifetime, limit scopehd performance issues are
discussed in greater detail in [4].

4 Conclusions

The resource management system in the grid computingpamaént will be a large-
scale distributed software system with high dynamics.this work, we have
developed a homogeneous agent-based hierarchical modektate requirements
of the scalability. We also abstract the resource mamage scheduling and
allocation into the processes of the service adesniésmt and discovery.

Ongoing works include the implementation of an agent caonigation language
and a service description language. Future implementaflbrlso integrate a new
version of PACE toolset, which is specially lightdnep for remote performance
evaluation.

References

1. J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G.udd,N'Modeling of ASCI High
Performance Applications Using PACE”, in Proc. of"18nnual UK Performance
Engineering Workshop, Bristol, UK, pp. 413-424, 1999.

2. J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. Bd,N&erformance Modeling of
Parallel and Distributed Computing Using PACE”, in Proc. df IEEE Int. Performance,
Computing and Communication Conf., Phoenix, USA, pp. 485-492, 2000.

3. J. Cao, D. J. Kerbyson, and G. R. Nudd, “Dynamic Apptinaintegration Using Agent-
Based Operational Administration”, in Proc. df Bit. Conf. on Practical Application of
Intelligent Agents and Multi-Agent Technology, Manchester, piK 393-396, 2000.

4. J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performancéu&i@n of an Agent-Based
Resource Management Infrastructure for Grid Computing”, ac.Ref £' IEEE Int. Symp.
on Cluster Computing and the Grid (CCGrid’'01), Brisbane tralia, pp. 311-318, 2001.

5. I. Foster, and C. Kesselman, “The Grid: BlueprintdoNew Computing Infrastructure”,
Morgan-Kaufmann, 1998.

6. G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. €,Re S. Harper, and D. V. Wilcox,
“PACE — A Toolset for the Performance Prediction ofdial and Distributed Systems”,
Int. J. of High Performance Computing Applications, Specaudés on Performance
Modelling — Part |, Sage Science Press, 14(3), pp. 228-282000.

