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Abstract— The recent integration of distributed generators
(DGs) and renewable energy sources (RESs) into the power
system led to the manifestation of a significant number of
household microgrid (MG) systems in the electricity market.
However, in most of the cases, the DGs in the MG system
are passive and are not equipped by their own controllers,
thus their integration increases the fluctuation in the power
system and brings challenges to its management and control. To
address these challenges, this paper proposes a novel electricity
trading strategy for a household MG. This will be achieved
by formulating a nonlinear stochastic control problem that
will then be solved such that the profit through electricity
trading is maximised. To solve this optimisation problem,
a gradient descent method based on compressive sensing is
applied. Finally, some numerical examples are given to illustrate
the effectiveness of the proposed control method. The results
from the simulation experiments indicate that the proposed
electricity trading strategy achieves the target and satisfies all
constraints by controlling the energy router (ER) with the
energy storage component.

NOMENCLATURE

MG Microgrid.
RES Renewable energy source.
DG Distributed generator.
EI Energy Internet.
ER Energy router.
SDE Stochastic differential equation.
ODE Ordinary differential equation.
CIR Cox-Ingersoll-Ross.
CS-GDMCompressive sensing-baced gradient descent

method
PR RESs output power.
PL Load output power.
PER power of ER’s energy storage component.

I. INTRODUCTION

With the rapid development of renewable energy resourses
(RES), the RES based distributed generators (DG) have re-
cently been widely exploited in the power systems, especially
in the household microgrid (MG) systems [1]. For instance,
in Decemebr 2019 there have been more than 1025,000
solar photovoltaic panels installed in the UK, which provided
about 13356MW capacity in total. Furthermore, more than
half of the power were generated from the small-sized types
equipment, which are less than 5MW [2]. It can be predicted
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that in the future, with the increasing application of the
small and medium-sized MG, there will be a significant
revolution in the power system field. This revolution will help
the chance of evolving more renewable and clean energy to
avoid the environmental pollution. On the other hand this
revolution in the power sytem structure will bring many
challenges that will need to be dealt with [3].

In order to better cope with the upcoming revolution in the
power system field and face the unpredictable challenges, the
new concept of the energy internet (EI) has been defined [4].
According to the EI concept, the future electricity market
is characterized as open and equal [5]. As a crucial part
of the future electricity market, household MG has drawn
much attention [6]-[8]. Typically, the household MG consists
of Photovoltaic panels, smart electricity meter, household
battery (energy storage equipment), household loads, and
other smart equipment [9]. Thus, MG can be considered as
both the energy provider and the energy consumer. This kind
of dual-role means that the rights can be switched between
these two roles in the middle of the trade of the future
electricity market. The proposed formulation will allow the
market to optimize the distribution of benefits by itself and
then realize a more efficient and fair distribution of benefits
[10]. Therefore, MG has been one of the major interesting
research subjects and considerable literature have extensively
investigated it. Paper [11] provided an intelligent scheduling
strategy based on the mixed-integer nonlinear programming
to optimize the operation schedule of building energy sys-
tems. This proposed optimal scheduling strategy minimizes
the overall operation cost by considering the uncertainty
of the operation energy cost and the cost concerning the
plant on/off penalty. The possibility of smoothing out the
load variance in a household MG by regulating the charging
patterns of family PHEVs is investigated in [12]. In order
to facilitate domestic DR to effectively respond to pressures
in energy prices and distribution network conditions, [13]
presented a novel dispatch strategy for shared ownership
of domestic energy storage batteries between customers and
DNOs.

Another key feature of the future electricity market is the
fluctuation of electricity prices. Compared with the fixed
prices in the traditional power system, the electricity prices
in the future electricity market will change dynamically over
time along with the production cost and generation capacity.
Besides, the future EI can provide the service accordingly
based on the analysis of the costumer’s electricity bill data
to maximize the value of the electricity [15]. Regarding
the electricity price forecasting, a hybrid electricity price
prediction methodology by combining WT with ARMA,



KELM, and SAPSO is provided in [16].
As the mediator that MG communicates with outside and

exchanges energy, energy router (ER) plays a vital role in
the EI [17]. Paper [18] designed an AC-DC hybrid multi-
port energy router for power distribution networks, which
consists of high voltage AC port, low voltage AC port and
low voltage DC port while [21] offered formal verification
solutions for an ER-based system by proposing a continuous-
time Markov chain model characterizing the architecture of
the ER-based system.

Motivated by the information mentioned above, in this
paper, we propose an electricity trading strategy for house-
hold MG system without having to have controllable DGs.
Considering the uncertainty of the power dynamics of RESs,
and loads and electricity prices stochastic differential or
difference equations provide the most complete description
under these conditions [14], [19], [20]. Therefore in this
work SDEs are applied to model their deviation. It is notable
that, to capture mean reversion and sharp spikes observed
in electricity price [22], we model the electricity price as
a nonlinear SDE called the CIR diffusion process. ODEs
are utilized to model the power dynamics of ER. Then,
the considered MG system is written as a nonlinear SDE.
To maximize the profit through electricity transactions, a
nonlinear stochastic optimization problem is formulated with
constraints for ER and controller. Because of the complexity
of nonlinear stochastic problem, a gradient descent method
based on compressive sensing called CS-GDM method is
adopted. In order to show the feasibility of the proposed
approach, numerical examples are conducted. The primary
importance and contribution of this paper are highlighted as
follows.
• This is the first time that the electricity trading strategy

is investigated by characterizing the electricity price as a
nonlinear SDE. The CIR diffusion process can describe
the electricity price more precisely.

• By adopting the compressive sensing based approach,
we are able to deal with the complex nonlinear stochas-
tic problem. Most of the existing methods, e.g., the
Monte Carlo method, failed to solve this problem ef-
fectively.

• Compared to the existing fixed electricity model, the
proposed control scheme is more practical for the future
electricity market.

The rest of this paper is organized as follows. Section
II describes the model of a typical household. Section III
formulates the MG operation and electricity trading problem
into a nonlinear stochastic optimization problem. In Section
IV, a gradient descent method based on compressive sensing
is adopted to solve the problem. Section V presents the
numerical results. Finally, Section VI concludes the paper.

II. SYSTEM MODELLING
In this paper, a typical household MG is investigated. As

shown in Fig. 1, the MG normally consists of RESs, loads
and an ER. In such a MG, all the power generation relies
on RESs. The ER in the considered MG plays two roles: on

the one hand, the MG can sell energy to the utility company
or purchase energy from the utility company through ER;
on the other hand, the ER can function as a battery, which
means the ER can store energy and discharge.

household microgrid

loads

renewable energy source

energy router

utility company

Fig. 1. A typical household microgird.

For notation simplicity, unless necessary, time t of all
variables throughout this paper is omitted.

To characterise the uncertainty and fluctuation of power of
RESs and loads, the linear stochastic differential equations
is adopted as follows [23]

dPR = −θr(PR − µr)dt+ σrdWr, (1)
dPL = −θl(PL − µl)dt+ σldWl, (2)

where Wr and Wl represent scalar Wiener processes, pa-
rameters µr and µl refer to expected value of PR and PL,
parameters θr, σr, θl and σl are weights of the deterministic
and stochastic terms of dPR and dPL, respectively. All
the system parameters can be determined by parameter
estimation methods [24].

Similar with [25], we apply the following linear ordinary
differential equations to describe the power dynamics of ER’s
storage component in the considered MG

dPER = − 1

TER
(PER −BERu)dt, (3)

dSER = ηPERdt. (4)

In (3), TER is the time constant of ER’s energy storage
component, BER represents the maximum absolute value of
PER, and u is the control input signal. Besides, SER in (4)
denotes the state of charge of ER’s energy storage compo-
nent, while η in (4) is a coefficient related to charge/discharge
efficiency. In addition, the constraints for u and SER are
shown as follows,

−1 ≤ u ≤ 1, (5)
Cmin ≤ SER≤ Cmax. (6)

where Cmin and Cmax are the allowed minimum and max-
imum value of SER, respectively.

Due to the non-elasticity of demand and renewable elec-
tricity generation, electricity prices exhibit large spikes.
Moreover, the electricity price is influenced by generation
cost, power quality and other factors. Therefore, in the future
electricity market, the electricity price is similar to the price
of stocks, rather than a constant value [26]. To describe the



fluctuation of the electricity price, in this paper, a nonlinear
SDE is applied. Motivated by Cox–Ingersoll–Ross (CIR)
diffusion process [27], electricity price between the utility
company and the considered MG is formulated as follows,

dλ = −θp(λ− µp)dt+ σp
√
λdWp, (7)

where λ is the electricity price, µp stands for the expected
value of λ. Parameters θp and σp are the weights of the deter-
ministic and stochastic terms respectively of dλ. The square
root term in the stochastic differential equation 7 emphasises
that the dynamics of the price are in fact nonlinear.

Denote x = [PR, PL, λ, PER, SER]
T , W =

[Wr,Wl,Wp]
T , the system can be rewritten in the

following form,

dx = (Ax+Bu+ C) dt+D(x)dW, (8)

where,

A =


−θr 0 0 0 0

0 −θl 0 0 0
0 0 −θp 0 0
0 0 0 − 1

TER
0

0 0 0 η 0

 , B =


0
0
0

BER

TER

0

 .

C =


θrµr
θlµl
θpµp

0
0

 , D =


σr 0 0
0 σl 0

0 0 σp
√
λ

0 0 0
0 0 0

 .
In this sense, our investigated MG dynamics have been

transformed into a stochastic control system (8). It is noted
that matrix D(x) is a time variant parameter matrix related
to state x(t). The term D(x)dW indicates that system (8) is
indeed a nonlinear system.

III. PROBLEM FORMULATION

In this section, the energy trading strategy for the consid-
ered MG is formulated as an optimal control problem. The
details will be given as follows.

To maintain power balance of investigated MG, the fol-
lowing equation can be obtained

PR = PL + PER + Pout, (9)

where Pout denotes power exchange between the MG and
utility company. There are three situations regarding to Pout.
1. when Pout is greater than zero, the MG sells energy to
utility company; 2. when Pout is zero, the MG maintains
power balance without power exchange; 3. when Pout is
smaller than zero, the MG purchases energy from utility
company.

As an energy trading strategy, our target is to maximize
the profit through energy trading. With the above mentioned
notation, λ(t)Pout(t) represents the profit for considered MG
per unit time at time t. Thus, considering a time period T ,

the objective function, whose value should be minimized, is
defined as follows,

J0 = E
∫ T

0

−λPoutdt, (10)

where E represents the mathematical expectation, and the
integral denotes transactions from the MG to the utility
company in time period T . By substituting equality (9) into
objective function (10), the new form is presented as

J0= E
∫ T

0

−λ(PR − PL − PER)dt

= E
∫ T

0

xTQxdt, (11)

where,

Q =
1

2


0 0 −1 0 0
0 0 1 0 0
−1 1 0 1 0
0 0 1 0 0
0 0 0 0 0

 .
The optimal control problem is then formulated as

min
u

J0
s.t. (1)− (7)

(12)

In order to deal with the inequality constraints (5) and (6),
a penalty term P is introduced to the objective function as
follows

P=ε1(SER −
Cmin + Cmax

2
)2

+ε2 (− log(u+ 1)− log(1− u)) , (13)

where ε1 and ε2 are weight coefficients. In (13), the first line,
the quadratic form, is related to constraint (6). The second
line in (13) is a logarithmic form. For a constraint f(x) ≤ 0,
the logarithmic barrier function φ(x) = − log (−f(x)) is
differentiable and closed: it goes to ∞ as f(x) approaches
zero [28]. Note that the approximation to primal control
problem (12) becomes more accurate as ε2 decrease to zero.

In this manner, the optimal control problem (12) is trans-
formed into an equality contrained problem (14) shown as
follows,

min
u

J = E
∫ T

0

{
xTQx+ P

}
dt

s.t. (1)− (4), (7)

(14)

It is notable that the objective function is nonlinear be-
cause of the logarithmic barrier function.

By solving the stochastic nonlinear optimal control prob-
lem (14), the optimal energy trading strategy for the consid-
ered household MG can be obtained. The detailed method-
ologies will be presented in next section.



IV. SOLUTION TO THE CONTROL PROBLEM

In this section, we will introduce the numerical method
that was proposed in our previous work to solve the stochas-
tic optimization problem (14). The algorithm, named as CS-
GDM, combines the traditional gradient descent method with
compressive sensing. To use this method, we firstly need to
discretize the Wiener process in (8). Here we use the Haar
basis to construct the Wiener process [29].

The multilevel Haar functions H
(n)
k are defined as

H
(0)
0 (t) = 1 and

H
(n)
k (t) = 2

n−1
2 ψ(2n−1(t)− k), n ≥ 1,

k ∈ {0, 1, 2, . . . , 2n−1 − 1}, for t ∈ [0, 1]. (15)

where n is the level, and ψ is the mother Haar function:

ψ(t) =


1, t ∈ [0, 1/2);

−1, t ∈ [1/2, 1);

0, otherwise.

The Wiener process can then been approximated by

W =

∞∑
n=1

∑
k

ω
(n)
k

∫ t

0

H
(n)
k (s)ds. (16)

Here ω
(n)
k are the random variables selected from the in-

dependent identical standard Gaussian distribution. For the
numerical calculation, we consider the N-term truncation
which satisfies the accuracy requirements of the problem.

After the discretization, the solution of the state equation
(8) can be expanded with a set of stochastic polynomials
[30], which is given by,

x(t) =

p∑
j=1

cj(t)Ψj , (17)

where {Ψj}pj=1 are the multi-Hermite polynomials, p is the
number of polynomials, and {cj(t)}pj=1 are the coefficients
which need to be determined by the compressive sensing
method. This means that we can recover the sparse coef-
ficients in (17) by solving the following basis pursuit de-
noising (BPDN) problem as

ĉ = arg min ‖c‖1, subject to ‖X −Ψc‖ ≤ ε, (18)

where X is the sample simulation results, Ψ is the infor-
mation matrix formed by inserting the stochastic sample
points into the Hermite polynomials, and c = {cj}pj=1 is
the coefficient vector to be determined.

Compressive sensing method provides an efficient algo-
rithm for solving the stochastic state equation (8), which has
always been considered as the main computation complexity
when using iterative methods to solve the control problem
(14).

To use the gradient descend method to solve the optimal
control problem, we need to introduce the Hamiltonian
function H [31] :

H = J + λ′(t){Ax(t) +Bu+ C +D(x)dW}, (19)

where λ(t) is the system co-state. Then, the equivalent
Hamiltonian systems for the optimal control problem are
[32]:

dx = Ax+Bu+ C +D(x)dW, (20)

dλ = −∂J
∂x
− (A+

∂D

∂x
)′λ (21)

∂H

∂u
=
∂J
∂x

+Bλ. (22)

As the system (20)-(22) is nonlinear, we employ our CS-
GMD algorithm to solve this stochastic optimization problem
numerically. The detailed procedure of the algorithm can be
summarized as:

Algorithm 1 〈CS-GDM optimization algorithm 〉
The optimization algorithm is as follows:

a. Discretize the Wiener process with N terms in (16),
then use multi-Hermite polynomials and expand the
state variable x(t).

b. Introduce the Hamiltonian function and deduce the
equivalent systems (20)-(22) of the optimization
problem (14).

c. Initialize the gradient descend parameters.
d. During the iteration, use compressive sensing to

solve equation (20) to get the state variable x(t).
e. From x(t), use compressive sensing to solve equation

(21) to get the co-state variable λ(t).
f. Form x(t) and λ(t) derive the gradient ∂H

∂u in (22).
g. Calculate the objective function J . if the relative

error reach the requirement, then finish the iteration.
If not, go back to step d.

The CS-GDM method we proposed can save computa-
tional cost dramatically compared with some other methods
such as the Monte Carlo method. The reduction in the
computational requirements is achieved because the proposed
compressive sensing method can achieve the same accuracy
with much fewer samples than other sampling methods. The
relevant numerical results will be given in the next section.

V. NUMERICAL EXAMPLE

To demonstrate the proposed strategy, the considered
household MG system is simulated in this section and the
control performance of the proposed energy trading strategy
is evaluated.

The simulation period is t ∈ [0, 60] min, with 1 min time
increment. The related optimal stochastic control problem is
solved using MATLAB 2019a environment.

The parameters of the considered MG system (1)-(7) are
shown in Table I.

Motivated by stochastic differential equation (1) and (2),
simulation for fluctuation of PR and PL are depicted in Fig.
2 and Fig. 3, respectively. For the reason that the initial value
of PL is set to be 15 KW and the expected value µl is set
to 10 KW, there is a downward trend in the curve of PL in
Fig. 3.



TABLE I
SYSTEM PARAMETERS FOR SIMULATION

Parameters Value Parameters Value Parameters Value

θr 2 µr 15 KW σr 2
θl 1.5 µl 10 KW σl 1.5
θp 0.5 µp 0.15$/KWh σp 0.1
TER 1 h BER 4 KW η 0.2
ε1 2 ε2 1

0 10 20 30 40 50 60
time / min

12

13

14

15

16

17

Fig. 2. Fluctuation curve of PR within a hour.

Modelled by nonlinear stochastic differential equation (7),
the electricity price λ is presented in Fig. 4. It can be clearly
seen from Fig. 4 that there are more drastic spikes in the last
30 minutes.

With the proposed energy trading strategy, the power and
state of charge of ER’s energy storage component are plotted
in Fig. 5. It is clear that the state of charge is restricted
within a suitable range during the investigated time period.
In addition, Fig. 5, shows that in the interval [0, 15] min,
the power PER is greater than zero, and the state of change
SER increases. However, in the interval [15, 60] min, the
power PER is smaller than zero, and the state of change
SER decreases. Fig .5 indicates that the ER absorbs energy
in the first quarter and discharges in the remaining time.

The profit of the household MG through electricity trading
is illustrated in Fig. 6. It is clear that during time [0, 10] min,

0 10 20 30 40 50 60
time / min

8

10

12

14

16

Fig. 3. Fluctuation curve of PL within a hour.
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Fig. 4. Fluctuation curve of price λ within a hour.
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Fig. 5. Fluctuation curve of PER and SER within a hour.

the power of RESs is smaller than the power of loads, and
then the household MG purchases energy from the utility
company. After 10 min, PR is greater than PL, leading to
selling energy from the MG.

0 10 20 30 40 50 60
time / min

-0.02

-0.01

0

0.01

0.02

0.03

pr
of

it 
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Fig. 6. Profit for household MG through electricity trading per minute.

The numerical examples provided above properly shows
the feasibility of the proposed energy trading strategy, and
the efficacy of such method is evaluated.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, an optimal electricity trading strategy for a
household MG system without controllable DGs is proposed.



By a compressive sensing based method, this stochastic
optimization control problem is solved. In the simulation
section, comparison indicates that the optimal electricity
trading strategy has a better performance. The state of charge
of ER’s energy storage component is controlled within a
suitable range, and the objective of maximizing the profit
through electricity trading has been achieved.
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