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Abstract—There is a growing trend for engaging edge com-
puting to help smart homes to improve the living comfort of
residents. However, the rapidly rising interest in such deploy-
ments does not normally integrate with energy management
schemes, which is a central issue that smart homes have to
face. In this paper, we propose a unified energy management
framework for enabling a sustainable edge computing paradigm
while meeting the needs of home energy management and smart
home applications. This framework aims to enable the full use of
renewable energy while reducing electricity bills for households.
A prototype system was implemented by using low-cost and
easy-to-get hardware. The experiment results demonstrated that
renewable energy is fully capable of supporting the reliable
running of edge computing devices and electricity bills could be
cut by up to 86% when our proposed framework was employed.

Index Terms—Internet of Things, Edge Computing, Smart
Homes, Renewable Energy, Sustainable Computing, Scheduling,
Energy Management

I. INTRODUCTION

With the advent of Internet of Things (IoT) [1], the increas-
ing use of smart devices opens up new avenues to promote
the development of smart homes, which aim to improve living
comfort and make daily life easier. The rapid growth of IoT-
based smart home systems will certainly produce a large
amount of streaming data, and such data is expected to be
processed on easily accessible computing resources for the
sake of performance and efficiency. Edge computing [2], as
an emerging distributed computing paradigm, has recently
been introduced to the field to enable data processing and on-
demand services at the edge of networks where such functions
and/or services were normally available at far-end data centres.
It can thus reduce service latency and improve QoS (Quality
of Service) for time-constrained IoT applications, and provide
better overall experience to end users [3] [4] [5].

Currently, significant research efforts are focused on im-
proving the features of flexibility [6], scalability [7], [8]
security [9] [10] [11], programmability [12] and real-time
processing [13] [14] of edge computing systems better cope
with IoT applications. However, the energy consumption of
edge computing systems is becoming a noticeable issue if
they are all powered by the utility grid. As reported in [15],
a significant portion (over 80%) of today’s energy is still

generated by fossil fuels (brown energy). As is well known,
the widespread use of fossil fuels is implicated in global
climate warming. Carbon taxes have helped to reduce the
rapid anthropogenic release of carbon dioxide from fossil fuel.
However, they have not only driven up electricity prices for
residents, they have also incentivized reductions in total energy
demand as well as shifts toward using renewable energy.

The development of home energy systems [16] has suc-
cessfully helped users to reduce electricity bills by shifting
loads from peak hours to non-peak hours. To take a step
further, lowering the carbon footprint of smart homes requires
using renewable energy as the primary and brown energy as
the secondary energy supply. The relatively small scale of
the deployments of at-home edge computing systems puts
them in a better position to make effective use of renewable
energy. Moreover, if smart homes are equipped with one or
more energy storage device(s), energy generated from local
renewable energy sources can be used to charge the storage
when the electricity cost is low and discharge the storage
during high-cost periods. The use of storage in conjunction
with renewable energy sources is helpful to optimise the cost
effectiveness of smart homes. Unfortunately, local renewable
energy generation and its proper use are misaligned with most
home energy systems in smart homes.

To address these issues, it is a strong motivation for us
to propose a unified energy management framework on edge
computing systems to handle both renewable energy manage-
ment and smart home applications. The proposed energy man-
agement framework fully utilises the local renewable energy
of a household to increase the effectiveness and utilisation
of energy resources while still meeting the requirements of
IoT applications for smart homes. The energy management
framework is designed to run on single-chip computers at
the consumers’ premises, so that privacy-sensitive data can be
processed and stored locally. Besides, our approach is highly
scalable once the computational resource is needed and has
low cost of capital investment. The main contributions of this
paper are:

(i) We explore the idea of using edge computing systems to
provide an integrated platform for managing the use of
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renewable energy and brown energy, as well as processing
smart home applications.

(ii) We propose a unified energy management framework that
minimises negative environmental impact of using brown
energy and significantly reduce the cost of running edge
computing systems in homes.

(iii) We conduct a real-world empirical evaluation of the
proposed framework using low cost and easy-to-get hard-
ware.

In the rest of this paper, we first provide a brief overview on
edge computing and its development in Section II. Then, we
introduce the architecture of our designed sustainable edge
computing platform for households, and show how the key
modules enable the features of data processing and energy
management in Section III. In Section IV, we present an opti-
mal forecasting method integrated with receding horizon con-
trol mechanism, which significantly supports to reduce fore-
casting errors. Moreover, in this section, we also present two
energy scheduling strategies, which cover different working
scenarios, and a cost-effective algorithm for task scheduling
on the edge computing system. After that, Section V presents
the experimental studies for the proposed system architecture
and the scheduling algorithms, and then the experiment results
are analysed. Finally, the conclusion and future work are given
in Section VI.

II. RELATED WORK

In the past few years, edge computing has gained popularity
as a promising technology to be integrated with IoT and Cloud.
Most of existing works on this area is driven by the purpose
of using edge computing paradigm to meet the needs of IoT
applications [17], such as: location-aware processing, privacy
and energy consumption. As one of such IoT applications, the
existing home energy management systems (HEMS) can be
certainly benefited from the involvement of edge computing.

A. Edge Computing

To realise an edge computing platform that provides the
needed services and be well integrated with the IoT ecosystem,
there are a few work on utilising different technologies to build
up the standalone edge computing platforms.

In [18], Cumulus is introduced as a distributed edge com-
puting testbed, which is designed for edge cloud computa-
tional offloading. Several performance metrics are taken into
consideration during the design, including task execution time,
CPU usage and average memory usage. However, the intrinsic
features on low compatibility and poor scalability limits its
applicability to individual cases. To avoid the same issue, [19]
used the popular virtualisation technique - Docker in their
work. Compared to the traditional virtual machines, Docker
can reduce the boot-up overhead and avoid the conflict of
resource allocation to a large extent. It also addresses the
limitation of compatibility and scalability, which enables the
testbed can better capture the orchestration patterns, conduct
the cost-effective resource management, and perform various

types of IoT applications regardless of their running environ-
ment. This design is implemented on a Raspberry Pi cluster
to demonstrate and quantify the hardware feasibility, but more
experiments need to be performed to evaluate the stability
and energy consumption of the framework. Another docker-
based edge computing architecture proposed by [20]. In this
work, the docker containerisation is introduced in support
of implementing IoT gateway, which can be dynamically
configured with respect to multiple scheduling demands, and
responds to various service requests.

B. Home Energy Management Systems

Due to the needs of saving energy and reducing electricity
bill for each household, HEMS has become one of the most
popular research topics in the context of smart homes. Despite
of current solutions, the presence of either edge computing
or sustainable energy is largely missing from both open-
source platforms, e.g. OpenHAB [21], Dreamwatts® [22] and
commercial platforms, e.g. Samsung SmartThings [23], LG
Smart Thinq™ [24].

In [25], an initial attempt on enabling energy management
on edge/fog computing platform is presented. The authors
conducted a study of performing energy management and the
related control algorithms over a Fog computing platform,
which aims at demonstrating the feasibility, scalability, adapt-
ability and interoperability of the design. In addition, such
a design is implemented as a HEMS prototype to coordinate
with a lab-level microgrid for the HVAC (Heating, ventilation,
and air conditioning) applications. The numerical studies of
the above implementation show that the results are promising.
However, this platform does not address the integration of
sustainable energy.

In an effort to address the issue of using sustainable en-
ergy to support the running of HEMS, we propose a low-
cost sustainable edge computing system design as a home-
level extension of the exploratory design of our sustainable
edge computing systems [26], which can not just reduce the
electricity tariff, and also meet the needs of smart home
applications and home energy management. The motivations
of the deployment of our edge-based HEMS framework in-
clude (i) well utilise the possibility of accessing the share
resources from the edge devices within the same house so as
to processing the data streams produced by smart devices in a
timely manner, (ii) lowering the energy cost of edge computing
systems by employing the optimal scheduling strategies, and
(iii) allocating available renewable energy to edge device(s) in
a cost-effective way with the support of an optimal forecasting
method.

III. SYSTEM ARCHITECTURE OVERVIEW

Figure 1 represents a systematic overview on the functional
modules developed in our design, and their interactions in an
edge device. There are in total four major modules that provide
all of the functionality required by the energy management
as well as the applications of smart home, namely, weather
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forecast module, energy generation prediction module, energy
scheduler module and data processing module.

Fig. 1. System Architecture

The weather forecast module is used to predict weather
parameters that impact solar energy generation, such as global
horizontal irradiance (GHI) and temperature. At the beginning
of a day, the raw historical weather data of the present location
is uploaded to this module. An operational mesoscale weather
forecast model is responsible for day-ahead forecast and then
the initial weather forecast profile is generated. However, solar
irradiance variations are tightly coupled with cloud movement,
cloud formation, and dissipation [27] that are hard to predict
day-ahead accurately, which means the day-ahead forecast
error is often far from desirable and less than ideal for on-
site use. To address this issue, solar forecasts are expected to
span over different time horizons and granularity. In this paper,
we adopt receding horizon control [28] strategy to handle
the highly dynamic and partially known environments. By
using this strategy, the intra-day forecast will be performed
repeatedly on user-defined granularity once the up-to-date
weather information is retrieved. In each intra-day forecast,
the full time horizon forecasting is still conducted, but only
the first user-defined granularity of the newly generated profile
will be used so as to increase forecast accuracy to a large
extent.

The energy generation prediction module is used to estimate
the solar generation based on the profile forwarded from
the weather forecast module, which contains the relevant
weather variables on solar power generation. Photovoltaics
is the process of converting sunlight directly into electricity
using solar cells. According to the photovoltaic properties of
solar cells described in [29], the open-circuit voltage decreases
along with increasing temperature whereas current output
remains unchanged, almost equal to short-circuit current which
just increases slightly with increasing temperature. For the
dependency of light intensity, the generated current is linear
to the solar radiation. With these principles, working current
and working voltage can be first obtained from the V-I
characteristics of solar cells respectively, and then the solar
power generation can be determined from them.

Once the result from the energy generation prediction mod-
ule is ready, it will be passed to the energy scheduler module as
an input for deciding whether the electricity should be drawn
from the solar power system or the utility grid. Besides the
energy generation result, the status of the energy storage, load
demand and the retail electricity price are the other major
inputs for making the feasible energy scheduling decision.
To achieve the goal of minimising electricity cost and car-
bon emissions, we develop two energy scheduling algorithms
based on dynamic programming and greedy-like approach,
each of which is used in different scenarios. The use of
renewable energy is thus maximised without jeopardising the
functionality and the reliability of the edge computing system.
Moreover, new scheduling scheme is periodically derived for
each time slot, implicitly guaranteeing that receding horizon
control mechanism is applied throughout the whole system
and each derived energy scheduling scheme contributes to
minimising the energy cost. More details will be discussed
in Section IV.

The data processing module is used for completing the
processing of smart home applications in a timely and effective
manner while still meeting the needs of users. To make our
solution scalable and adaptive, we are inspired by the proposal
of Distributed Weighted Backpressure (DWB) [30], which is
an online and distributed system control policy that asymp-
totically minimises the computation and communication cost
of a Fog-integrated IoT ecosystem. By refining and extending
this policy, our design is able to fully exploit the capabilities
of edge devices so as to complete the smart home applications
collaboratively. Furthermore, it aims to achieve load balancing
among edge devices used in our system, which naturally leads
to the maximum usage of green energy.

IV. GREEN ENERGY MANAGEMENT DESIGN

The overall goal of our proposed energy management frame-
work is to maximise utilisation of renewable energy while
still meeting the needs of users. However, it is challenging to
determine the optimal energy allocation of renewable energy
because of the power fluctuation caused by the intermittency
of renewable energy generation. In this section, we introduce
our preliminary skeleton to facilitate the allocation of available
renewable energy for edge computing systems by using the
rolling control strategy for both forecasting and scheduling
functionalities to achieve the aforementioned goal.

A. Forecasting

Most existing forecasting models using day-ahead forecast
manner are not able to reflect actual environment changes
perfectly, and will incur considerable errors leading to huge
deviations from real measurements, which is highly likely
to increase inaccuracy of energy scheduling and the cost of
electric power drawn from utility grid. To alleviate these
existing issues, we adopt receding horizon control in our
design. According to [28], receding horizon control is an
optimal control technique, by using which system is expected
to update action plan and calculation results periodically based
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on feedback from last time step in order to minimise errors
in runtime. In this control manner, we introduce intra-day
forecast in the forecasting module, combined with day-ahead
forecast.

As mentioned before, our weather forecast module consists
of two processing stages, a day-ahead solar forecasting stage
and an intra-day solar forecasting stage. For day-ahead solar
forecasting, the numerical weather prediction (NWP) models
[31] are preferably used for the early quantitative prediction
of solar irradiation forecasts. However, NWP models could
exhibit substantial biases when conducting the long term
prediction (from six hours up to days ahead). To refine the
results of NWP models, post-processing methods are routinely
employed to reduce these biases since the local weather
features are generally not involved in NWP predictions [32].
Furthermore, the method of spatial averaging is effective at
reducing forecast errors, particularly for the situations with
variable clouds that are hard to predict precisely [33].

To further improve the reliability and validity of solar
forecast, the receding horizon control strategy is employed.
This strategy allows us to improve the result of day-ahead
forecast over a fine granularity time horizon, starting from
the currently predicted data, and complete the refinement,
then move into the next time granularity and re-optimise. To
conduct the intra-day prediction, we employed a well-known
and proven linear technique in the field of solar forecast,
auto regressive moving average (ARMA) model [34], in our
system. The standard setting of the general form of ARMA
is based on the least squares method and thus a training data
set is used to estimate the set of parameters. To reduce the
computational cost for estimating the model’s parameters, we
chose recursive least square method, which is a variation of
the least squares method but no training set is required. Hence,
the recursive least square method is particularly well suited for
on-site scenarios where forecasts have to be performed in a
timely manner.

B. Energy Scheduling

To achieve the design goal of the system, we employed two
different scheduling strategies to cooperate with the forecast-
ing module, one is for the energy scheduler module and the
other is for the data processing module.

For the energy scheduler module, the edge device is ex-
pected to generate a cost-effective schedule with respect to so-
lar forecast, electricity price and battery status. As mentioned
before, the solar forecast is generated according to the user-
defined time granularity, which makes once the scheduling
decision is determined, the rest of that time in a granularity
will follow the same decision. At the beginning of each user-
defined time granularity ti ∈ (t1, . . . , tn) over a day, the
energy scheduler module first extracts the related information
from the inputs, and then such information is stored in a tuple
(lti , pti , gti ). In this tuple, lti represents the energy demand
over ti; pti is electricity price over ti, and gti represents
solar generation forecast over ti. It is worth mentioning
that most existing work assumes that residential users can

get the realtime or near-realtime electricity price from the
electricity market. However, in Australia, the electricity market
is operated by the Australian Energy Market Operator, which
offers electricity to the energy retailers at every five-minute
interval with the average price over the past 30 minutes. The
final electricity price that residential users get from energy
retailers is stepped over a day, which can be denoted as
pti ∈ (ppeak, pshoulder, poffpeak). If the edge computing
system draws power from solar panels, the price is set as zero.
To maximise the utilisation of solar energy, the excess power
generated from the solar panel is expected to be stored into
battery as much as possible, thus we use Ebattery(t) to denote
the amount of the energy left in the battery at the start of time
granularity ti, which can also be deemed as battery status. The
battery capacity is represented as Emax

battery, and Ebattery(t) is
expected to be equal to or less than the value of Emax

battery at any
time. Based on the above notations, we can formally define
the objective of the energy scheduling problem as follows.

Minimize{
tn∑

ti=t1

lti · ti · pti · xti} (1)

subject to
lt1 · t1 · xt1 ≤ gt1 · t1 + Ebattery(t1), (2)
lt2 · t2 · xt2 ≤ gt2 · t2 + Ebattery(t2), (3)
...

ltn−1 · tn−1 · xtn−1
≤ gtn−1

· tn + Ebattery(tn−1), (4)
ltn · tn · xtn ≤ gtn · tn + Ebattery(tn), (5)
Ebattery(t1) ≤ Emax

battery (6)

Ebattery(t2) ≤ Emax
battery (7)

...

Ebattery(tn−1) ≤ Emax
battery (8)

Ebattery(tn) ≤ Emax
battery (9)

Ebattery(ti) = Ebattery(ti−1) + (gti−1
· ti−1)

− (lti−1
· ti−1 · xti−1

) ti ∈ {t1...tn}
(10)

The objective as shown in Eq. (1) is to produce an optimal
scheduling scheme on selecting energy source, which finally
leads to the least electricity cost over a certain long period of
time. In the objective function Eq. (1), xti ∈ {0, 1} represents
the type of the energy to be used in the current time granularity,
where 1 denotes that the system selects energy from utility grid
and 0 denotes that the system selects energy from solar panels.
Meanwhile xti is the key decision variable in this optimisation
problem. Moreover, there are several critical constraints (from
(2) to (9)) that need to be satisfied. The constraints from (2)
to (5) require that the total energy consumption in each user-
defined time granularity cannot exceed the available renewable
energy when the solar energy is selected as the energy source.
In our design, the available renewable energy in a certain time
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Algorithm 1 The energy scheduling approach under the full
support of energy storage devices
Input: t1: the first time granularity;

tn: the last time granularity;
τ : the length of a user-defined time granularity;
lti : energy demand over ti;
pti : electricity price over ti;
gti : the solar generation forecasting over ti;
Ebattery(ti): the battery status at the beginning of time

granularity ti
Output: the value of each decision variable xti

1: for ti = t1 to tn do
2: P [ti]← pti
3: D[ti]← lti
4: G[ti]← gti
5: end for
6: Sort elements in the price array P[ ] in a descending order
7: for each P [tk] ∈ P [ ] (with the maximum electricity price

selected first) do
8: if D[tk] · τ ≤ G[tk] · τ + Ebattery(tk) then
9: Use renewable energy as energy source

10: Ebattery(tk+1) = G[tk] · τ −D[tk] · τ +Ebattery(tk)
11: else
12: Use utility grid as energy source
13: Ebattery(tk+1) = G[tk] · τ + Ebattery(tk)
14: end if
15: end for
16: return the value of each decision variable xti

granularity mostly comes from two energy sources. The first
one is solar panels and the other one is battery storage. The
energy left in the battery can be calculated by Eq. (10) and it
must necessarily satisfy the constraints (6) to (9) at any time.

To generate cost-effective scheduling schemes, we devel-
oped two low-complexity algorithms for energy scheduling,
each of which fits to a specific deployment environment.
Moreover, we utilised the time-slot based scheduling strategy,
which neatly matches up with the user-defined time granularity
used in the intra-day forecast. By doing so, it is convenient
for us to make the scheduling decision with the latest input.

Case 1: We focus on large-scale deployment of our designed
edge computing platform, which is normally set up in residen-
tial buildings or even communities. In this scenario, sufficient
energy storage devices are generally deployed locally, thus
the battery is always capable of storing all surplus energy
generated from the solar energy generator, and we do not need
to concern about the constraints (6) to (9). To realise the energy
scheduling in this case, we can simply employ a greedy-like
strategy as shown in Algorithm 1 to maximise the solar energy
utilisation over a day, particularly for the time periods when
the electricity price is high.

With respect to the routine of deriving energy schedules,
which is depicted in Algorithm 1, the scheduler needs to first
recursively store each type of collected input information into
the corresponding array and then sort the electricity price of

Algorithm 2 The energy scheduling approach under the partial
support of energy storage devices
Input: t1: the first time granularity;

tn: the last time granularity;
τ : the length of a user-defined time granularity;
lti : energy demand over ti;
pti : electricity price over ti;
gti : the solar generation forecasting over ti;
Ebattery(ti): the battery status at the beginning of time

granularity ti
Output: the value of each decision variable xti ;

1: for τi = τ1 to τn do
2: τi ← the end time of the time granularity ti
3: end for
4: E(τ0) = 0
5: E(τn) = 0
6: F (τ0, E(τ0)) = 0
7: for τi = τ0 to τn do
8: for each possible battery status E(τi) at time point τi

do
9: if lti+1

· ti+1 ≤ gti+1
· ti+1 + E(τi) then

10: Choose renewable energy or utility grid (xti+1
←

1 or 0)
11: else
12: Only choose utility grid (xti+1 ←1 )
13: end if
14: Calculate all possible battery statuses satisfying bat-

tery capability constraints at time point τi+1

15: end for
16: for each possible battery status E(τi+1) at time point

τi+1 do
17: F (τi+1, E(τi+1)) ← min{F (τi, E(τi)) +

W (E(τi), E(τi+1))};
18: Put the value of xti+1

into the corresponding decision
variable array X[ ]

19: end for
20: end for
21: return the optimal Xfinal[ ] that leads to E(τn)

the time slots in a descending order over a day as presented in
lines 1-6. After that, the scheduler will determine solar energy
on different time granularities based on the sorted electricity
price as depicted in Lines 7-15. By jointly considering the
status of energy storage device, solar energy forecasting and
the estimated load demands, the module filters out those
time slots when the solar energy is insufficient to support
the running of edge computing systems. Once the scheduling
scheme is generated, this scheme will then be used for the
following time slot.

Case 2: When our edge computing platform deployed in
households, there is a high chance that not enough energy
storage devices are installed in each family. The capacity
of the battery is now becoming a critical factor that makes
effects on energy scheduling over different time granularities.
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In this case, the constraints (6) to (9) are therefore expected
to be taken into consideration. In order to generate an optimal
scheduling scheme for this case scenario over a long-term time
period, we developed a dynamic programming based algorithm
as shown in Algorithm 2.

In Algorithm 2, E(τi) denotes the battery status at time
instant τi. As the dynamic programming (DP) strategy is
employed in this algorithm, we use E(τi) to match up with the
system state in the DP problem. F (τi, E(τi)) is a cost-to-go
function in this DP problem, which represents the minimum
total energy costs charged by the utility grid from τ0 to τi.
Initially, the scheduler specifies the start time and the end
time of each user-defined time granularity as depicted in lines
1-3. We also assumed that the energy stored in the battery
is empty at the system initialisation and the energy charged
into the battery during the schedule is expected to be used
up in the end. Therefore, lines 4-6 set the values of battery
storage at time points τ0 and τn to 0, and initialise total energy
cost at the starting time point τ0 to 0. After that, lines 8-
14 contribute to calculating all possible battery states at time
point τi+1 once E(τi) is determined. For each possible battery
state at τi+1, the corresponding minimum energy cost can
be calculated based on the state-transition equation shown in
line 17, where W (E(τi), E(τi+1))} is the transition function
capable of calculating transition cost from state E(τi) to state
E(τi+1). With this approach, the system can finish all iterative
calculations at different stages as shown in lines 7-20. Based
on the results, we can eventually obtain the optimal values of
decision variables, which lead to the minimum electricity cost.

C. Task Scheduling

The data processing module employed a distributed task
scheduling policy. Our approach is built on top of our previous
work of DWB policy [30]. The original DWB policy is a time-
slot based Lyapunov optimisation approach for making task

offloading decisions among edge devices. However, the orig-
inal design of the DWB policy only focused on minimisation
of computing and communication cost in runtime, which is not
well aligned to the design objective of our system. To tackle
this issue, we practically generalise it to further take the solar
energy into consideration. In the extended DWB policy, each
edge computing device is firstly expected to retrieve the latest
information from its connected neighbours at the beginning of
each time slot, including the number of tasks, battery status
and solar power generation. Once the information is retrieved,
the data processing module will dynamically determine the
incoming tasks of that time slot to be performed locally
or on the neighbours. In order to meet the needs of the
applications and to maximise the use of solar energy, the tasks
are preferably allocated to the edge device that has the most
available renewable energy and computation resource. Based
on this principle, the utilisation of the resources of the edge
devices can thus be maximised.

V. A PROOF-OF-CONCEPT CASE STUDY

To demonstrate the feasibility of our proposed energy man-
agement framework, a real-world testbed made of low-cost
and easy-to-get hardware is built. We first provide the details
of our prototype implementation. After that, we present the
results of experimental studies.

A. Testbed Setup

Figure 2 depicts our testbed setup that recreates the afore-
mentioned sustainable edge computing systems in smart home
environments. In this testbed, three Raspberry Pi 3B devices
with a quad-core CPU and 1 GB RAM are used as edge servers
that are responsible for receiving requests, processing data and
making decisions for schedulers, and another three Raspberry
Pi 3B devices equipped with Sense Hat are used as IoT devices
to emulate smart devices at home.
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We enabled the peer-to-peer wireless communication in our
testbed with the help of WiFi, including the server to server
connection and IoT devices to server connection. We used
sockets in between every two edge servers for message passing
so that each edge server is able to relay the key information
to others. Meanwhile, each server is responsible for at least
one IoT device, so the data collected from Sense Hat will
then be forwarded to the corresponding edge server for further
processing. For those tasks with complex computation or
a large amount of data, they are supposed to be uploaded
to the cloud. In our experiment, we connected the edge
servers to IBM Watson IoT platform [35], which provides
a set of component cloud services, such as visualised data
analysis, and tools for remote control, to form a user-oriented
application.

To power up the edge devices with renewable energy, we
firstly connected the solar panel to three 20000mAh recharge-
able batteries, each of which is used to power a single PI
via GPIO (General-Purpose Input/Output). Besides, we expect
that the surplus renewable energy can be stored in the batteries
while brown energy can be drawn when a power deficit occurs.
To do this, each PI can draw power from utility grid at its
micro-USB port. Both GPIO pins and micro-USB port are
wired to smart switches that are able to access WiFi and can
be remotely controlled by APP, and the circuit connection
of a single Raspberry Pi 3B is shown in Figure 3. If the
system selects to use renewable energy, the switch wired with
GPIO is connected and the switch connected to micro-USB
is disconnected. The reverse operation occurs if the system
selects to use brown energy. To measure the power usage of
different energy sources, a power meter is also connected in
between the smart switch and the PI as shown in Figure 2.

B. Evaluation of Energy scheduling

Figure 4 shows the comparison between the forecast data
and the measured data of power generation within a day, and
illustrates the performance of energy scheduler module under
load fluctuation. As shown in upper part of the figure, the fore-
cast data of solar generation nicely matches the measured ones
across a day. This is due to the fact that the employed receding
horizon control method allows us to calibrate forecasts with
the latest information. Compared with traditional day-ahead
forecasting, such interval-ahead forecasting literally shrinks
the gaps between forecast and measurement, making our
forecast more accurate. The lower part of Figure 4 depicts the
operations on battery and smart switch for energy scheduling
in response to the load variation and electricity tariffs.

As shown in Figure 4, from 12:00 to 17:00, the electricity
generation from solar panel is sufficient to solely power the
edge servers and the surplus solar energy is used to charge
the battery. From 17:00, the solar energy cannot meet the load
demands, and the batteries stops charging since then. To reduce
the electricity bill, the energy scheduler aims to maximise the
utilisation of renewable energy at peak hours, then shoulder
hours. Based on this principle, from 17:00 onward, battery
starts discharging to meet the needs of load demands. From
22:00 to 07:00, the offpeak hours of a day, the electricity cost
is much cheaper. To ensure the reliability of edge device, the
system uses utility grid to support the system running in these
hours. Once moving into the shoulder hours staring from 07:00
of the next day, electricity price goes up and the batteries
start discharging again to power the edge devices. With solar
energy increases, the system will again to choose solar panel
as energy source from 09:30. It is obvious that the utility grid
is used during the off-peak hours most of the time, while the
renewable energy is able to support the reliable running of
edge computing systems during the rest of the time. Thus, we
can reduce up to 86% electricity tariffs every day for edge
computing systems.

C. Evaluation of Task Scheduling

To evaluate how the data processing module contributes
to the energy management framework, we employed two
different strategies to distribute incoming tasks among con-
nected edge devices. The first one used no collaboration
mechanism, and the incoming tasks were allocated to edge
servers according to a pre-defined ratio, which is 10%, 20%,
and 70%, respectively. As shown in Figure 5, from 12:00
to 20:00, all these three Raspberry Pis purely draw power
from renewable energy sources, either the solar panel or the
connected batteries. However, from 20:00 onwards, the third
Raspberry Pi started to draw power from the utility grid, since
tremendous tasks were released during the peak hours and
the tasks allocated to this edge device need to be completed
in time. This leads to the case that the connected battery
was depleted rapidly. By contrast, the stored energy in the
batteries for the other two Raspberry Pis is more than enough
during that period. Furthermore, the less utilisation of the
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Fig. 5. Load Imbalance
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Fig. 6. Load Balance

stored energy makes the energy cost can be further reduced
by balancing the peak demands among the three edge devices.

In the second approach, we used the extended DWB policy,
which not only fully exploited the computing capabilities and
storage resources of the edge devices, but also balanced the
loads among these devices. As shown in Figure 6, three edge
devices fully drew power from renewable energy source before
22:00, thus the system maximises the utilisation of surplus
energy stored in the batteries during the peak hours and the
time periods of drawing power from utility grid is significantly
reduced. More importantly, no obvious load imbalance is
found among the Raspberry Pis. This approach saves 23.5%
electricity tariff compared to the load imbalance case.

VI. CONCLUSION AND FUTURE WORK

In this work, we explore the possibilities of developing a
sustainable Edge Computing platform that fulfills the needs of
home energy management systems and smart home applica-
tions, while are missing from both open-source platforms and
commercial platforms. As sustainable computing becomes a
rapidly expanding research area spanning many areas in com-
puter science, e.g. cloud computing, IoT, mobile computing
and blockchain, we believe this topic will surely become of
significant interest to the edge computing community. We also
illustrate the design choices needed to realise a sustainable
edge computing system for handling the needs of home energy
management and smart home applications. This paper intro-
duces the high-level design and the required functionalities of
the system instead of delving into the intricate details of our
proposed framework.

To make our design more robust, it is important to fulfill
the following two tasks:

• Green cloud computing has been studied for years and
numerous mechanisms have been proposed for real-world
practices. It is important to distil from the accumulated

experience and the learned lessons that are valuable and
relevant to edge computing.

• The works on smart grids and energy Internet can greatly
benefit from ICT support to balance supply and demand in
near real-time with frequent price updates. Edge computing
can provide the needed mechanisms to achieve this but more
studies are necessary to come up with practical solutions.

In the future, we plan to address multiple challenges on re-
ceding horizon control, resource management on edge devices,
demand response and load disaggregation. The technique of re-
ceding horizon control is employed in both energy scheduling
and task scheduling of our framework. However, there are still
existing a delimma on this control method in need of further
research. It is well known that the accuracy of forecast and
scheduling increases when the length of time granularities is
decreased. However, the size of the problem increases at the
same time, which leads to higher computational complexity
and more energy consumption. Therefore, it is necessary to
explore a solution to find a practical balance of the accuracy
and computation overhead in the future study.

On the other hand, peak load shifting is a popular approach
to minimise the energy cost at households, by selectively
shifting the jobs of the appliances from peak hours to off-
peak hours. However, to improve the effectiveness of such
approach, edge computing paradigm can be used to determine
which types of jobs can be shifted without jeopardising users’
comfort during the peak hours in a real-time or quasi-real time
manner. Besides, the multimodal human-machine interaction
technique can also be integrated into the system so that user’s
preference and feedback can be identified immediately before
performing peak load shifting. Furthermore, the location-aware
users’ demand prediction and analytics models need to be
explored to further reduce the search space of the problem.
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