
 1

Ordinal Optimized Scheduling of Scientific
 Workflows in Elastic Compute Clouds

Fan Zhang1,3, Junwei Cao2,3, Kai Hwang3,4 and Cheng Wu1,3
1National CIMS Engineering and Research Center, Tsinghua University, Beijing 100084, P. R. China

2Research Institute of Information Technology, Tsinghua University, Beijing 100084, P. R. China
3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, P. R. China

4University of Southern California, Los Angeles, CA 90089, USA
*e-mail: kaihwang@usc.edu

Abstract— Elastic compute clouds are best
represented by the virtual clusters in Amazon EC2 or in
IBM RC2. This paper proposes a simulation based
approach to scheduling scientific workflows onto elastic
clouds. Scheduling multitask workflows in virtual
clusters is a NP-hard problem. Excessive simulations in
months of time may be needed to produce the optimal
schedule using Monte Carlo simulations. To reduce this
scheduling overhead is necessary in real-time cloud
computing. We present a new workflow scheduling
method based on iterative ordinal optimization (IOO).

 This new method outperforms the Monte Carlo and
Blind-Pick methods to yield higher performance against
rapid workflow variations. For example, to execute
20,000 tasks on 128 virtual machines for gravitational
wave analysis, an ordinal optimized schedule can be
generated in a few minutes, which is O(103)~O(104)
faster than using Monte Carlo simulations. The ordinal
optimized schedule results in higher throughput with
lower memory demand. The cloud experimental results
being reported verified our theoretical findings on the
relative performance of three workflow scheduling
methods studied in this paper.

Keywords: Cloud computing; workflow scheduling;
 ordinal optimization, and virtual clustering

1. INTRODUCTION
There is a growing demand to use Internet clouds or

large grids to execute large-scale scientific applications
 [11]. Scientific workload demand parallel resources
from computing infrastructures on demand. One of the
best examples is the LIGO (Laser Interferometer
Gravitational-wave Observatory) [1] experiments for
earth science studies. LIGO demands massive data
analysis over a workflow with thousands of tasks to be
scheduled for parallel execution on a huge number of
processors in grids or clouds.

Parallel resources can be provided by computational
grid or by elastic clusters in cloud platforms. While grid
computing enables wide-area sharing of geographically
distributed resources, cloud platform provides

virtualized server clusters over large datacenters [2].
Virtual clusters are elastic resources that can scale up or
down, dynamically [21].

In general, scheduling of multitask workflow onto
distributed computing resources is a NP-hard problem
 [8]. The main challenge of dynamic workflow
scheduling on virtual clusters lies in how to reduce
scheduling overhead and handle workload dynamics.
An optimal workflow schedule on the cloud may take
intolerable amount of simulation time to generate. This
is not acceptable if elastic cloud clusters are used in real
time applications.

Ho, et al [9] proposed the ordinal optimization (OO)
method for discrete-event problems with very large
solution space. Subsequently, they [10] demonstrated
that the OO method is effective to generate a soft or
suboptimal solution to most NP-hard problems. In this
paper, we extend the OO method iteratively in search of
suboptimal schedule to execute scientific workflows on
elastic compute clouds.

Our scheduling is based on a new iterative ordinal
optimization (IOO) approach. During each iteration, the
OO is simulated to search for a suboptimal or good-
enough schedule. We reduce the search space
significantly to result in lower overhead. The inner core
of the IOO approach is to generate a rough model
resembling the workflow problem. The discrepancy
between rough and complete search models is kept
rather small in our approach.

In the IOO process, the system absorbs dynamic
changes in resources provisioning against the workload
variations. The low overhead in IOO-based scheduling
appeals to real-time cloud computing applications [3].
The purpose is to generate better schedule from a global
perspective over a sequence of workload prediction
periods. We present the analytical model of the IOO-
based scheduling scheme. Then we demonstrate its
effectiveness with extensive LIGO experimental work.

We apply the LIGO workflow in the experiments [4]
using hundreds of virtual machines (VMs).

 2

Experimental results show that our IOO scheduling
achieves higher throughput and reduced memory
demands, compared with existing scheduling methods
like Monte Carlo [14] and Blind Pick methods [10].

The rest of the paper is organized as follows:
Section 2 characterize the workflow scheduling problem
on a set of virtual clusters in the compute cloud. Section
3 introduces Monte Carlo and Blind-Pick scheduling
methods. Section 4 specifies the process of iterative
ordinal optimization. Section 5 provides an overhead
analysis of three scheduling methods. The experimental
settings and design of LIGO experiments are given in
Section 6. Experimental results are reported in Section
7. Finally, we conclude with a review of related work
and summarize our technical contributions.

2. WORKFLOW SCHEDULING IN VIRTUAL
CLUSTERS IN A CLOUD
A physical cluster is built with a fixed number of

interconnected servers in a datacenter. Each physical
server can be mounted with multiple virtual machines
(VMs). A virtual cluster is formed with multiple VMs,
that are logically connected together over several
physical clusters. Virtual clusters are dynamically
provisioned to users upon demand in service-level
agreement (SLA) between provider and clients.

When a user job gets done by a virtual cluster, the
VM instances are removed from the hosting servers
and server resources can be allocated to other users.
Figure 1 shows an example cloud platform that has
provisioned 4 virtual clusters installed at servers
from 3 physical clusters. Each physical cluster is
represented by rectangular boxes with different
shading. The servers in 3 physical clusters are
distinguished by boxes with different shadings.

Figure 1: A virtualized cloud platform built with 4
virtual clusters over 3 physical clusters. The VMs
installed at various servers are distinguished by
different colors.

Each virtual cluster can be formed with either
physical machines or VMs hosted by multiple
physical clusters. The virtual clusters boundaries are
shown by 4 dot/dash-line boxes. The provisioning of
VMs to a virtual cluster can be dynamically done

upon user demand. The queuing model of the
workflow task dispatching is shown in Fig. 2.

Figure 2. The workflow scheduling model
dispatches multiple tasks to virtual clusters
for parallel execution in a cloud platform

In the above scheduling model, we define task class
as a set of computing jobs of the same type and they can
be executed, concurrently in VMs in the same virtual
cluster. For simplicity in analysis, we assume that all
VMs in the same virtual cluster take equal amount of
time to execute their assigned tasks. In other word, the
task execution time in a VM is the basic time unit in
performance analysis. A summary of basic notations
used in this paper are listed in Table 1.

Table 1. Notations and Basic Definitions

Term Basic Definition
U Candidate set of all u possible schedules

S Selection set of s schedules to simulate

G Acceptable set of g good-enough schedules

k Number of overlapped schedules between G and S

N The number of simulations per schedule performed
in Monte Carlo or Blind-Pick scheduling methods

n The number of IOO simulations per schedule

θ A working schedule in the schedule space U

p Average task execution time on a single VM

d Average task memory demand on a single VM

h Time to simulate a schedule by Monte Carlo method

M Makespan to execute all tasks in a workflow

T Total workflow throughput in a cloud platform

D Total memory demand in using virtual clusters

H Overhead time of a particular scheduling method

A. Workflow Scheduling Model
Let pi be the expected execution time of a single

VM in the i-th cluster. Let vi be the number of VMs in
the cluster. We have βi = vi/pi as the task processing
rate in a cluster. Let δi be the number of tasks in queue i.
Then we have the execution time ti = δi /βi = piδi /vi by
the i-th cluster. All virtual clusters are distinguished by
the index i. We define the makespan of all n tasks in a
scientific workflow by:

 M = Max {t1, t2, …, tc} (1)

Virtual

Cluster 4

Physical
Cluster 3

Physical
Cluster 2

Virtual
Cluster 1

Virtual
Cluster 3

Virtual
Machines

Physical
Cluster 1

Virtual
Cluster 2

Virtual
Cluster

Virtual
Cluster

Virtual
Cluster

. . . .

Task Queues

Workflow Manager

 3

where c virtual clusters are used and ti = pi δi /vi. This
makespan is the total execution time between the start
and finish of all tasks in a multitask workflow. We
denote di as the memory used by one VM in the VCi.
Then, the total memory demand by all VMs is:

1

C
i ii

D d v
=

= ×∑ (2)

 A resource-reservation schedule specifies the sets
of VMs provisioned at successive time slots, called
periods. For example, the jth schedule θj is represented
by a set of VMs allocated in c clusters in a schedule
space U. This schedule is thus represented by a c-
dimensional vector:

 θj = [v1, v2 , . . . , vc] (3)

where vi is the number of VMs assigned in cluster i. At
different time periods, different schedules may be
applied. All candidate schedules at successive time
periods form a schedule space U. The cardinality of U
is estimated by the following expression:

 u = (v − 1)!/[(v − c)!(v − 1)!] (4)

where v is the total number of VMs used in c server
clusters. This parameter u counts the number of ways to
partition a set of v VMs into c nonempty clusters.

 For example, if we use 20 VMs in 7 clusters for 7
task classes, then we need to assess u = 27,132 possible
schedules to search for the best schedule to allocate the
VMs. Using simulation to determine the best schedule,
this number is way too high. It will lead to excessive
simulation overhead time. Thus, we need to reduce the
schedule search space significantly.

 The following objective function is used to search
for the suboptimal schedule for the workflow
scheduling. In general, we need to conduct an
exhaustive search to minimize a pair of objective
functions on all makespans and memory demands by
all possible schedules:

 () (){ }m in , m in
j j

j jU U
M D

θ θ
θ θ

∈ ∈
 (5)

against all possible schedules θj in the search space U.

 In simulating each schedule θj, we need to
generate the value of pi and di before we can calculate
the makespan M and memory demand D in Eq.(1) and
(2). We use the average over all simulations on θj to get
the minimum M(θj) and D(θj) in Eq.(5). The random
variables pi and di, could be also estimated offline and
using a rough estimation.

3. MONTE CARLO AND BLIND PICK
 SCHEDULING METHODS

In this section, Monte Carlo Method and Blind-Pick
method are introduced for workflow scheduling. In
Monte Carlo simulation, we simulate N = 1,000 runs

for each value pi and di. to assess the expected
makespan and memory demand. It is desired to reduce
the simulation runs to n = 10 runs as a rough model to
make scheduling decisions.

We use Monte Carlo simulation to generate optimal
schedules under the heavy scheduling overhead. Figure
3 shows a bi-objective optimization scenario, by which
both the makespan and memory demand need to be
minimized in the 2-dimensional optimization space.
Each dot in the space corresponds to a working
schedule that has been simulated.

Through exhaustive simulation, the Monte Carlo
method produces a set of “optimal” schedules along the
skyline layer in Fig.3(a). These optimal choices are
marked in red dots. Mathematically, there is no
schedule in the 2-D space, which is better or less than
those red schedules along the skyline in terms of
makespan and memory demand. In other words, with a
fixed memory demand, all skyline makespans are lower
than those above the skyline.

Similarly, with a fixed makespan, all memory
demands along the skyline are lower than those above
the skyline. Researchers working in the automation
community, call the skyline schedules a pareto front,
which correspond to the acceptable or good-enough
schedule set G. If {L1} is removed, {L2} can be
achieved in the same way. By processing all schedules
in such a way, the searching space can be divided into a
series of pareto fronts denoted by {L1},{L2},…, {L}.

{ }1L { }2L

{ }L

1θ
2θ

G =

(a) Monte Carlo method (1000 runs) leads to optimal

schedules shown in red dots along the skyline layer L1

{ }1L′ { }2L′

{ }sL′

{ }L′

S

(b) Rough model evaluation (10 runs) of all the schedules
leads to optimal schedules scatter sparsely in the space

Figure 3. Monte Carlo and rough model evaluation
of a bi-objective optimization problem. Red dots in
(a) are good-enough schedules. In (b), the good-
enough schedules are scattered due to rough
model evaluation. We could still find one good-
enough schedules in the skyline layer.

 4

It is difficult to determine S to cover all schedules in
G given a rough model evaluation. Optimization modes
and noise levels introduced in section 4 are two
important factors. With noises introduced, the good-
enough schedules in set G are spread in multiple layers
of the skyline under rough evaluation.

 The rough model used Fig.3(b) results in lower
scheduling overhead. The good-enough schedules are
scattered sparsely in the space. This may demand a
large selection set S to cover all these schedules. A
smaller S is enough, but may demand heavier
scheduling overhead. Thus, tradeoff does exist between
s and the scheduling overhead that can be tolerated.

In the next section, we show that applications with a
steep optimization mode and small noise, our method
can be quite efficient.

4. ITERATIVE ODINAL OPTIMIZATION
FOR WORKFLOW SCHEDULING

Optimization mode describes how schedules are
scattered in the searching space as shown in Fig. 4 in
three modes. In Fig.4(a), there are 12 schedules
scattered in 4 skyline layers. In Fig.4(b), corresponding
optimization modes are shown. The x identifies the
layer index, and F(x) denotes how many schedules are
in the first x skyline layers.

If schedules are scattered in the steep mode as
shown in the rightmost figures in Figs. 4(a) and 4(b), it
would be very much easy to find out the suboptimal
schedules for the optimization problem. This is because
most schedules are converged to the zero point, one
search could get 5 good schedules. On the other hand,
only one good schedule is available in the flat mode.
The neutral mode corresponds to a uniform distribution
in all skyline layers. We expect steep mode to ensure
our optimization much more efficient.

Figure 4. Three optimization modes for three
different schedules, by which 12 schedules are
scattered to form 4 skyline layers. In (b), the
corresponding optimization mode for (a) is shown.
The x identifies the layer index, and F(x) denotes
the number of schedules in x front layers.

The workflow scheduling for LIGO gravitational
wave data analysis pipelines satisfies a steep mode
shown in section 7. This leads to tradeoffs between
scheduling overhead and performance levels desired.

Mathematically, the noise level of the performance
pair {M(θj), D(θj)} is determined by the maximum
standard deviation from makespan and memory demand.
Large number of simulation runs n leads to small noise
while at the cost of high simulation overhead. This is as
if we were flipping a coin, more runs (large n, small
noise) can lead to the probability of each side closer to
0.5, but results to more simulation time used.

Given the above analysis, the size s of the schedule
selection set S has been determined in [22] as a
function of the optimization mode and the noise level
tolerated by numerous regression analysis on top of
different optimization modes and noise levels. The
detailed expression for computing s can be found in [22]
and it will not be repeated here.

 As a comparison, the U space is very large, say u
= 27, 132 in our experiment, while the selection space
applies to s = 190 schedules in IOO. Per each schedule
θj simulation, the Monte Carlo and Blind-pick Methods
need to simulation N =1,000 runs to compute the
average throughput Rj and memory demand Dj. To
implement the IOO-based simulation, only n = 10 runs
of simulation is performed to generate the performance
pair {M(θj), D(θj) } , and N = 1,000 runs followed on a
rather smaller reduced set S.

Algorithm 1. Ordinal Optimization for Optimizing
the workflow schedule

Input: Simulated performances of all the u schedule
{(M(θ1), D(θ1)), …, (M(θu), D(θu))}, n=10 runs each

Output: A suboptimal workflow schedule to use
Procedure:
1. Assess the optimization mode (steep mode)
2. Calculate the noise level (NL)
3. Calculate the selection set S based on 1 and 2
4. Simulate the schedules at s front skyline layers, {θ1,

θ2 ,…, θ s}, N = 1000 runs per each schedule
5. Plot the above schedules in as in Fig. 3, select one

schedule in Pateto front for use

Algorithm 1 specifies the ordinal optimization for

selecting a suboptimal workflow schedule using the
IOO method. In Step 1, it calculates the optimization
mode to find out how the throughput and memory
demand are scattered in the space, as shown in Fig. 4
and Fig. 9 in section 6(B). In Step 2, we calculate the
noise level (NL). In Step 3, we determine the value of s
based on [22] and selects the schedules of the first s
skylines as S. In Step 4, we perform n Monte Carlo
simulations for each schedule in S. Finally, we apply
Algorithm 1 to narrow down to the final choice. It
should be noted that that N >> n in general. In our LIGO
experiments, we have applied N = 1,000 and n =10.

x x

flat

1 2 3 4 1 2 3 4 1 2 3 4
1 3

F(
x)

F(
x)

7
12

3

12
6

9 12

5
9

11

x

(a) Schedules scattered in the searching space

(b) Corresponding optimization modes

neutral

F(
x)

 steep

Makespan

M
em

or
y

Makespan Makespan M
em

or
y

M
em

or
y

 5

Generate candidate schedule set
U over predicted workload W

Is U empty ?

Simulate each j U N times to
determine the average throughput
Rj and memory demand Dj for j

Remove j from U

Start

Plot the performances of all the
u schedules as in Fig. 3 and

select one in Pareto Front to use

Is W empty ?

End

Randomly generate a small
candidate schedule set Sbp over

predicted workload W

Is Sbp empty ?

Simulate each j Sbp N times
to determine the average

throughput Rj and memory
demand Dj for j

Remove j from Sbp

Start

Plot the performances of all the
sbp schedules as in Fig. 3 and

select one in Pareto Front to use

Is W empty ?

End

Generate candidate schedule set
U over predicted workload W

Is U empty ?

Simulate each j U n times to
determine the average throughput
Rj and memory demand Dj for j

Remove j from U

Start

Is W empty ?

End

Yes
No

No Yes
Yes

Yes No

No Yes
No

Yes No

Apply Algorithm 1 to Select a
sub-optimum schedule for use

 (a) Monte Carlo Method based (b) Blind-Pick Method using (c) The IOO Method based on iterative
 on exhaustive search a reduced selection set Sbp ordinal optimization
 Figure 5 Three workflow scheduling methods for simulated LIGO experiments on an elastic cloud
 platform with 128 VMs installed at the IBM Beijing Research Center.

Iterative ordinal optimization (IOO) is specified to
generate suboptimal schedules in virtual clusters with
dynamic workload. Scheduling solutions are generated in an
iterative way. During each iteration, suboptimal or good-
enough schedules are obtained. The IOO method adapt to
system dynamism in terms of dynamic workload and VM
provisioning in virtual clusters.

Figure 5 above shows the flow charts of the three
scheduling process for the Monte Carlo, Blind-pick and IOO
methods. Note that the large search space U is applied in
Monte Carlo and IOO method at the outer loop on all
possible schedules. IOO then use a much reduced set S as
shown in algorithm 1. The Blind-Pick Method applies the
randomly reduced selection set Sbp.

Let T be the time period of scheduling using the Monte
Carlo method, and t be that for IOO. For example, at time t0,
Monte Carlo is used for simulation. It is not until t1 can
Monte Carlo generate its optimal schedule. While the
solution is optimized at the time t1, It is not possible to
generate such an optimized schedule between t1 and t2. As
for IOO at time t1, the predicted workload is used to
generate a suboptimal schedule at time t1+t, and then at
t1+2t, …., similarly.

Figure 6 IOO adaption to dynamic workload.

This process is continued at each period to capture the
variation of the workload in order to improve the
performance. The IOO is carried out dynamically to upgrade
the performance, iteratively. In each iteration, the workflow
scheduling follows a steep mode to reduce the overhead and
generate a good enough solution. From a global point of
view, the successive iterations are processed fast enough to
adapt to the dynamic workload of the system.

5. DESIGN OF LIGO WORFLOW EXPERIMENTS
In this section, we present the design of the LIGO

experiments to test the effectiveness of the IOO scheduling
method for scientific workflow in cloud platform. First we
introduce the experimental settings, Then we analyze the

 6

LIGO task classes that can be explored by using multiple
VMs in the cloud.

A. Experimental setting :
The cloud experiments are carried out using 10 servers of

IBM RC2 Cloud at IBM China Development Laboratory,
Beijing (Fig.7). Each sever is equipped with Intel Xeon MP
7150N processor, 24 GB memory. The virtualized physical
servers in IBM Beijing Center are specified in Table 2.

We install up to 14 virtual machines (VM) per each
physical server. The physical server runs with the
OpenSuSE11/OS. All LIGO tasks are written in Java. With
10 servers, we could experiment up to a virtual cluster of 128
VM instances. To test the scalable performance, we vary the
virtual cluster configuration from 16 to 32, 64 and 128 VMs.

Figure 7. Research compute cloud (RC2) over 8 IBM R/D
Centers, where our experiments were conducted at the
IBM Beijing Center.

Table 2 Virtualized Physical Cluster
Cluster Size 10 servers per physical cluster

Node
Architecture

IBM X3950 with 16-core Xeon MP 7150N,
24 GB memory with the openSuSE 11

VM
Architecture

CPU: 1 vCPU deployed in 1 pCPU with 1
GB memory running with OpenSuSE 11

VMs/Hypervisor 14 VMs in each server/Xen 3.0.3

B. Multitask Analysis of LIGO Workflow
The LIGO (Laser Interferometer Gravitational-wave

Observatory) is designed for direct detection of earth’s
gravitational waves, This is a large-scale scientific
experiment as predicted by Einstein’s General Theory of
Relativity a century ago. We analyze the LIGO workload to
exploit the parallelism in using the virtual clusters in a elastic
compute cloud. The computations involved are divided into
seven task classes in Table 3. It embodies three sensitive
detectors (L1, H1, H2) on earth surface.

 Gravitational-wave data analysis is carried out in a
workflow pipelined manner, since multiple tasks have to be
executed at geographically dispersed data sources
concurrently. The verification of a LIGO workflow is
essential to identify potential faults before the actual program
execution. Each verification contains many subtasks over
massive data sets. We use many virtual machines to explore
the DoP in these task classes. Sufficient cloud resources

(VMs) are provisioned to satisfy the demand of LIGO
workflows. The seven independent task classes can be
executed in parallel [19].

Table 3. Task Classes in a LIGO Workflow
Task
Class

Functional
Characteristics

Number of
Parallel Tasks

Class-1 Operations after tinplating 3,576
Class-2 Restraints of interferometers 2,755
Class-3 Integrity contingency 5,114
Class-4 Inevitability of contingency 1,026
Class-5 Service reachability 4,962
Class-6 Service Terminatability 792
Class-7 Variable garbage collection 226

We want to find a range of solutions to use θj to
minimize both makespan M and memory demand D. On our
LIGO workflow experiments, there are 7 task classes and 20
virtual machines. There are 27,132 schedules in total to be
evaluated. Feasible allocation schedule is θj. Then for each
task class, the number of VMs allocated for its execution is
identified as [1, 20]. The steep optimization mode guarantees
that the IOO can be effectively applied in LIGO workload.

6. EXPERIMENTAL PERFORMANCE RESULTS
In this section, we report the experimental results, First

we show snap shot of the simulated schedule distribution of
our experiment. Then we report the scheduling overhead,
makespan and memory demands in LIGO experiments.

A. Bi-Objective Optimized Scheduling
In Fig. 8, we map the schedule performance pair {M, D}

into a 2-dimensional space. Each schedule is simulated 1000
runs to assess its makespan M and memory demand D. Each
schedule is represented by a black dot. The small circled dots
(in blue color) form the G set of good-enough schedules. The
suboptimal schedules generated by IOO method are
identified by large red circles. Some accepted suboptimal
schedules overlap with the blue schedules at the skyline. This
graph illustrates clearly the effectiveness of the IOO scheme
to make fast scheduling decision in a large-scale cloud, while
still delivering a set of good-enough schedules.

B. Simulated Scheduling Overhead
Traditional method uses the Monte Carlo [14]

simulation to exhaust the entire schedule space. For each
schedule, one must implement all task classes on all virtual
clusters. The time used for this exhaustive search causes a
great amount of scheduling overhead. The IOO method
require the least scheduling overhead as demonstrated in
Fig.10. The schedules are generated by testing an estimated
search time by averaging over a small set of schedules. The
tradeoff of our IOO method is that it avoids the exhaustive
search in using Monte Carlo method. Good-enough
schedules can be found in a few iterations of the IOO
process.

 7

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
x 105

6.5

7

7.5

8

8.5

9

9.5

10

x 109

Simulated Makespan, millisecond

S
im

ul
at

ed
 M

em
or

y
D

em
an

d,
 B

yt
es

Performance of Schedules(PoS)
Skyline Layer (Pareto front) of PoS
Selected schedules based on IOO

1.21.41.61.8 2
x 105

7.9
7.95

8
8.05

x 109

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3x 104

x, index of the measured layers

of

 d
es

ig
ns

 in
 th

e
m

ea
su

re
d

fro
nt

 x
 la

ye
rs

Figure 8. The scheduling results of a bi-objective
scheduling over the LIGO workload. There are 27,132
schedules (dots) shown in the 2-D performance space.

Figure 9. The optimization mode of the performance of
n simulation runs in IOO. It is a steep type
corresponding to the good-enough schedule

16 32 64 128

10
5

10
10

No. of VMs

O
ve

rh
ea

d
tim

e
(m

s)

(a) 10% good-enough schedules

16 32 64 12810
4

10
6

10
8

10
10

No. of VMs

O
ve

rh
ea

d
tim

e
(m

s)

(b) 50% good-enough schedules

Figure 10 Simulation overhead time plotted against
the cluster size under two user choices (10% and 50%)
of good-enough schedules.

 As shown in Fig.10, IOO performance for workflow
scheduling is evaluated by overhead time comparison
among three methods over 16, 32, 64, 128 virtual
machines. This comparison is made under two acquisition
of good enough schedules (10% versus 50%). If a higher
percentage of good-enough schedules is demanded, the
scheduling overhead will increase.

As the cluster size scales from 16 to 128, we observe
that IOO method has an scheduling overhead reduction of
to tens or hundreds times than using the Monte Carlo
method. The scheduling overhead of Blind-pick is slightly
lower than the Monte Carlo method, but still much higher
than the IOO method. As the number of VMs increases,

the tradeoff space also increases. These experimental
results are upper bounded by the theoretical prediction
given in Section 5.

C. Throughput Performance and Memory Demand
In Figs 11 and 12, the performance metrics are average

throughput and memory demand during the whole
experiment period. The experiments are carried out in 8
simulation periods. Each period lasts the time h of a single
Monte Carlo simulation. During each period, the OO is
repeated iteratively, since the IOO scheduling time is
much shorter. By default, we consider 20,000 LIGO tasks
and 128 virtual machines in the cloud.

Experiments are carried out by comparison of 3
methods over scalable number of tasks and virtual
machines. In Fig.11(a), we demonstrate the effect of task
number in the LIGO application. The IOO method
demonstrates about 3 times higher throughput than the
Monte Carlo method as the task number varies. The IOO
method offers 20 to 40% times faster throughput than that
of the Blind-Pick method as the task number varies. Figure
11(b) shows the effects of the virtual cluster size on the
throughput performance of the three scheduling methods.
We observed a 2.2 to 3.5 times throughput gain of the IOO
method over the Monte Carlo method as the cluster
increases from 16 to 128 VMs. The IOO method has
about 15% to 30% throughput gain over the Blind-Pick
method as the cluster size increases.

Figure 12 shows the relative memory demands of 3
workflow scheduling methods. The results are plotted as a
function of the task number and cluster size. The Monte
Carlo method has the highest memort demand. The IOO
method requires the least memoy. The Blind-ick method
sits in the middle. The IOO method saves about 45%
memory from that demanded by the Monte Carlo method.
Blind-Pick method requires 80% ~ 20% higher memory
than IOO method as the task number increases. For 20,000
subdivided tasks, the memory demands are 11.5 GB, 8
GB, and 7 GB on 128 VMs for the Monte carlo, Blind-
Pick and IOO methods, respectively.

IOO Blind Pick Monte Carlo

 8

5K 10K 20K

200

400

600

800

1000

1200

No. of Tasks

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

5K 10K 20K2000

4000

6000

8000

10000

12000

No. of Tasks

M
em

or
y

D
em

an
d

(M
B

)

(a) Effect of task number for 128 VMs (a) Effect of task number for 128 VMs

16 32 64 128

200

400

600

800

1000

1200

No. of VMs

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

16 32 64 1282000

4000

6000

8000

10000

12000

No. of VMs

M
em

or
y

D
em

an
d

(M
B

)

(b)Effect of cluster size for 20K tasks (b) Effect of cluster size for 20K tasks

Figure 11 Relative throughput of 3 workflow
scheduling methods against the` task number and
cluster size

Figure 12 Relative memory demands of 3 workflow
scheduling methods plotted against task number and
cluster size, separately

7. RELATED WORK AND CONCLUSIONS
In the past, most workflow scheduling work was done

for computational grids or on large-scale heterogeneous
systems. Our work is the first attempt to schedule cloud
workflows on virtual clusters. In the final section, we
review some related work on cloud resource provisioning,
task scheduling and ordinal optimization. We summarize
our research findings and discuss the future extensions.

A. Related Work
In the past, scheduling large-scale scientific tasks to grid

or heterogeneous systems has been studied by many
researchers [6], [12], [13], [15], [16]. We see an escalating
interest on resource allocation for scientific workflows on
the Internet clouds [11]. Many classical optimization
methods, such as opportunistic load balance, minimum
execution time, and minimum completion time, are
described in [8].

Benoit, et al [3] designed resource-aware allocation
strategies for divisible loads. Li and Buyya [12] proposed
model-driven simulation of grid scheduling strategies.
Zomaya, et al [13], [16] proposed a hybrid scheduling
method for scheduling in large systems.

In 1992, Ho, et al [9] proposed the ordinal optimization
(OO) method for discrete-event dynamic systems. Along the
OO line, many heuristic methods have been proposed [17],
 [20], [21]. Subsequently, Ho, et al [10] demonstrated that the
OO method is effective to generate a soft or suboptimal
solution to most NP-hard problems. Subsequently, the OO
technique has been applied in advanced automation and
industrial manufacturing [17], [20], [22].

Wieczorek, et al [18] analyzed five facets which may
have a major impact on the selection of an appropriate
scheduling strategy. They proposed a taxonomy to classify
multi-objective workflow scheduling schemes. Prodan and
Wieczorek [15] proposed a dynamic algorithm, which
outperforms the LOSS3 and BDLS methods to optimize bi-
criteria problems.

In the past, Cao, et al [5], [20] have studied the LIGO
problems in grid environments. Duan, et al [7] suggested a
game-theoretic optimization method. Dogan, et al [6]
developed a matching and scheduling algorithm.

B. Concluding Remarks
This paper offers the first attempt to extend the ordinal

optimization for fast dynamic workflow scheduling on

IOO Blind Pick Monte Carlo

 9

virtual clusters in a cloud computing platform. The major
advantage of IOO method lies in significantly lowered
overhead in producing suboptimal schedules. The method
appeals especially to a scenario of time varying workload.
Major technical contributions of this work is the IOO
method appeals to work well on elastic cloud under dynamic
workload. Then we use large-scale LIGO gravitational wave
data analysis pipelines to test the new IOO approach
effectively. Finally, We provide the first model on workflow
scheduling in a cloud platform. The cloud environments
contain many uncertainty factors. Our IOO approach applies
well in EC2-like cloud services to upgrade the throughput
and in S3-like services to reduce the memory demand.

The LIGO scientific collaboration research group at
Tsinghua University will establish a new cloud
infrastructure for enabling real-time gravitational-wave burst
data analysis using virtualization technology. Improved
workflow scheduling and performance optimization lead to
faster execution of data analysis pipelines. This opens up a
new research front for scientific cloud computing in addition
to business applications installed at most public clouds.

Acknowledgments: This work is supported by Ministry of
Science and Technology of China under National 973 Basic
Research Grants No. 2011CB302805 and No.
2011CB302505, National 863 high-tech Program Grant No.
2011AA040501, and National Science Foundation of China
(grant No. 60803017). This work is also funded by Tsinghua
National Laboratory for Information Science and
Technology (TNList) Cross-discipline Foundation. Fan
Zhang was supported by a PhD Fellowship from IBM.
Hwang wants to thank the support of Intellectual Ventures
for his Chair Professorship at Tsinghua University.

REFERENCES :
[1] A. Abramovici, W. E. Althouse, et. al., “LIGO: The Laser

Interferometer Gravitational-Wave Observatory”, Science,
Vol. 256, No. 5055, pp. 325 – 333, 1992.

[2] P. Barham, and B. Dragovic, “Xen and the Art of
Virtualization”, Proc. of 19th ACM symp. on Operating
Systems Principles, Bolton Landing, NY, pp. 164-177, 2003.

[3] A. Benoit, L. Marchal, J. Pineau, Y. Robert, F. Vivien.
“Resource-aware Allocation Strategies for Divisible Loads on
Large-scale Systems”. Proc. of IEEE Int’l Parallel and
Distributed Processing Symp.(IPDPS’09), Rome, Italy. 2009.

[4] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J.
McNabb, “A Case Study on the Use of Workflow
Technologies for Scientific Analysis: Gravitational Wave
Data Analysis”, in Workflows for eScience: Scientific
Workflows for Grids, Springer Verlag, pp. 39-59, 2007.

[5] J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd, “GridFlow:
Workflow Management for Grid Computing”, Proc. 3rd
IEEE/ACM Int. Symp. on Cluster Computing and the Grid,
Tokyo, Japan, 198-205, 2003.

[6] A. Dogan, and F. Özgüner. “Biobjective Scheduling
Algorithms for Execution Time–Reliability Trade-off in

Heterogeneous Computing Systems”. The Computer Journal,
vol. 48, no.3, pp.300-314, 2005.

[7] R. Duan, R. Prodan, and T. Fahringer, “Performance and
Cost Optimization for Multiple Large-scale Grid Workflow
Applications”, Proc. of IEEE/ACM Int’l Conf. on
SuperComputing (SC’07), Reno, 2007.

[8] R. Freund, et al, “Scheduling Resources in Multi-user,
Heterogeneous, Computing Environments with SmartNet”,
Proc. of the 7th Heterogenous Computing Workshop
(HCW’98), Washington, DC, 1998.

[9] Y. C. Ho, R. Sreenivas, and P. Vaklili, “Ordinal Optimization
of Discrete Event Dynamic Systems”, Journal of Discrete
Event Dynamic Systems, Vol. 2, No. 2, pp.61-88, 1992.

[10] Y. C. Ho, Q. C. Zhao, and Q. S. Jia. Ordinal Optimization,
Soft Optimization for Hard problems. Springer, 2007.

[11] K.. Hwang, G. Fox, and J. Dongarra, Distributed and Cloud
Computing Systems:, Grids,Clouds, and The Future Internet,
Morgan Kauffmann, 2011

[12] H. Li and R. Buyya, “Model-driven Simulation of Grid
Scheduling Strategies”, Proc. of 3rd IEEE Int’l Conf. on e-
Science and Grid Computing, 2007.

[13] K. Lu, and A. Y. Zomaya, “A Hybrid Schedule for Job
Scheduling and Load Balancing in Heterogeneous
Computational Grids,” IEEE Int’l Parallel & Distributed
Processing Symp., July 5–8, pp. 121–128, Austria.

[14] N. Metropolis and S. Ulam, “The Monte Carlo Method”,
Journal of the American Statistical Association, 44 (247),
pp.335–341, 1949.

[15] R. Prodan and M. Wieczorek, “Bi-criteria Scheduling of
Scientific Grid Workflows”. IEEE Trans. on Automation
Science and Engineering, 2009.

[16] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A Cooperative
Game Framework for QoS Guided Job Allocation Schemes in
Grids,” IEEE Trans. on Computers, Vol. 57, No. 10, pp.
1413–1422, 2008.

[17] S. Teng, L. H. Lee, and E. P.Chew, “Multi-objective Ordinal
Optimization for Simulation Optimization Problems”,
Automatica, pp.1884-1895, 2007.

[18] M. Wieczorek, R. Prodan, and A. Hoheisel, “Taxonomies of
the Multi-criteria Grid Workflow Scheduling Problem”
CoreGRID, TR6-0106, 2007

[19] K. Xu, J. Cao, L. Liu, and C. Wu. “Performance
Optimization of Temporal Reasoning for Grid Workflows
Using Relaxed Region Analysis”. Proc. of the 2nd IEEE Int.
Conf. on Advanced Information Networking and Applications
Workshops, Okinawa, Japan, pp.187-194, 2008.

[20] F. Zhang, J. Cao, L. Liu, and C. Wu, “Fast Autotuning
Configurations of Parameters in Distributed Computing
Systems Using Ordinal Optimization”, Proc. 38th Int. Conf.
on Parallel Processing Workshops, Vienna, 190-197, 2009.

[21] F. Zhang, J. Cao, X. Song, H. Cai, and C. Wu, “AMREF: An
Adaptive MapReduce Framework for Real Time
Applications”, Proc. of 9th Int. Conf. on Grid and Cloud
Computing (GCC’10), China, 2010.

[22] Q. C. Zhao, Y. C. Ho, and Q. S. Jia. Vector Ordinal
Optimization”, Journal of Optimization Theory and
Applications, Vol. 125, No. 2, pp. 259-274, May 2005.

