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Abstract— Elastic compute clouds are best 
represented by the virtual clusters in Amazon EC2 or in 
IBM RC2. This paper proposes a simulation based 
approach to scheduling scientific workflows onto elastic 
clouds. Scheduling multitask workflows in virtual 
clusters is a NP-hard problem. Excessive simulations in 
months of time may be needed to produce the optimal 
schedule using Monte Carlo simulations. To reduce this 
scheduling overhead is necessary in real-time cloud 
computing. We present a new workflow scheduling 
method based on iterative ordinal optimization (IOO).  

       This new method outperforms the Monte Carlo and 
Blind-Pick methods to yield higher performance against 
rapid workflow variations. For example, to execute 
20,000 tasks on 128 virtual machines for gravitational 
wave analysis, an ordinal optimized schedule can be 
generated in a few minutes, which is O(103)~O(104) 
faster than using Monte Carlo simulations. The ordinal 
optimized schedule results in higher throughput with 
lower memory demand. The cloud experimental results 
being reported verified our theoretical findings on the 
relative performance of three workflow scheduling 
methods studied in this paper.  

Keywords: Cloud computing; workflow scheduling; 
     ordinal optimization, and virtual clustering 

1. INTRODUCTION 
There is a growing demand to use Internet clouds or 

large grids to execute large-scale scientific applications 
 [11]. Scientific workload demand parallel resources 
from computing infrastructures on demand. One of the 
best examples is the LIGO (Laser Interferometer 
Gravitational-wave Observatory)  [1] experiments for 
earth science studies. LIGO demands massive data 
analysis over a workflow with thousands of tasks to be 
scheduled for parallel execution on a huge number of   
processors  in grids or clouds. 

Parallel resources can be provided by computational 
grid or by elastic clusters in cloud platforms. While grid 
computing enables wide-area sharing of geographically 
distributed resources, cloud platform provides 

virtualized server clusters over large datacenters  [2]. 
Virtual clusters are elastic resources that can scale up or 
down, dynamically  [21]. 

In general, scheduling of multitask workflow onto 
distributed computing resources is a NP-hard problem 
 [8]. The main challenge of dynamic workflow 
scheduling on virtual clusters lies in how to reduce 
scheduling overhead and handle workload dynamics.  
An optimal workflow schedule on the cloud may take 
intolerable amount of simulation time to generate. This 
is not acceptable if elastic cloud clusters are used in real 
time applications.   

Ho, et al  [9] proposed the ordinal optimization (OO) 
method for discrete-event problems with very large 
solution space.  Subsequently, they  [10] demonstrated 
that the OO method is effective to generate a soft or 
suboptimal solution to most NP-hard problems. In this 
paper, we extend the OO method iteratively in search of 
suboptimal schedule to execute scientific workflows on 
elastic compute clouds.  

Our scheduling is based on a new iterative ordinal 
optimization (IOO) approach. During each iteration, the 
OO is simulated to search for a suboptimal or good-
enough schedule. We reduce the search space 
significantly to result in lower overhead.  The inner core 
of the IOO approach is to generate a rough model 
resembling the workflow problem. The discrepancy 
between rough and complete search models is kept 
rather small in our approach. 

In the IOO process, the system absorbs dynamic 
changes in resources provisioning against the workload 
variations. The low overhead in IOO-based scheduling 
appeals to real-time cloud computing applications  [3]. 
The purpose is to generate better schedule from a global 
perspective over a sequence of workload prediction 
periods. We present the analytical model of the IOO-
based scheduling scheme. Then we demonstrate its 
effectiveness with extensive LIGO experimental work.  

We apply the LIGO workflow in the experiments  [4] 
using hundreds of virtual machines (VMs). 
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Experimental results show that our IOO scheduling 
achieves higher throughput and reduced memory 
demands, compared with existing scheduling methods 
like Monte Carlo  [14] and Blind Pick methods [10].  

The rest of the paper is organized as follows: 
Section 2 characterize the workflow scheduling problem 
on a set of virtual clusters in the compute cloud. Section 
3 introduces Monte Carlo and Blind-Pick scheduling 
methods. Section 4 specifies the process of iterative 
ordinal optimization. Section 5 provides an overhead 
analysis of three scheduling methods. The experimental 
settings and design of LIGO experiments are given in 
Section 6.  Experimental results are reported in Section 
7. Finally, we conclude with a review of related work 
and summarize our technical contributions.  

2. WORKFLOW SCHEDULING IN VIRTUAL 
CLUSTERS IN A CLOUD 
A physical cluster is built with a fixed number of 

interconnected servers in a datacenter. Each physical 
server can be mounted with multiple virtual machines 
(VMs). A virtual cluster is formed with multiple VMs, 
that are logically connected together over several 
physical clusters. Virtual clusters are dynamically 
provisioned to users upon demand in service-level 
agreement (SLA) between provider and clients.   

When a user job gets done by a virtual cluster, the 
VM instances are removed from the hosting servers 
and server resources can be allocated to other users. 
Figure 1 shows an example cloud platform that has 
provisioned 4 virtual clusters installed at servers 
from 3 physical clusters. Each physical cluster is 
represented by rectangular boxes with different 
shading. The servers in 3 physical clusters are 
distinguished by boxes with different shadings. 

Figure 1:  A virtualized cloud platform built with 4 
virtual clusters over 3 physical clusters. The VMs 
installed at various servers are distinguished by 
different colors. 

Each virtual cluster can be formed with either 
physical machines or VMs hosted by multiple 
physical clusters. The virtual clusters boundaries are 
shown by 4 dot/dash-line boxes. The provisioning of 
VMs to a virtual cluster can be dynamically done 

upon user demand. The queuing model of the 
workflow task dispatching is shown in Fig. 2.  

 

 

 

 

 

 

 

Figure 2.   The workflow scheduling model 
dispatches multiple  tasks to virtual clusters  
for parallel execution in a cloud platform   

In the above scheduling model, we define task class 
as a set of computing jobs of the same type and they can 
be executed, concurrently in VMs in the same virtual 
cluster. For simplicity in analysis, we assume that all 
VMs in the same virtual cluster take equal amount of 
time to execute their assigned tasks. In other word, the 
task execution time in a VM is the basic time unit in 
performance analysis.   A summary of basic notations 
used in this paper are listed in Table 1. 

Table 1.   Notations and Basic Definitions 

Term Basic Definition  
U Candidate set of all u possible schedules 

S Selection set of s schedules to simulate 

G Acceptable set of g good-enough schedules 

k Number of overlapped schedules between G and S

N The number of simulations per schedule performed 
in Monte Carlo or Blind-Pick scheduling methods 

n The number of IOO simulations per schedule  

θ A working schedule in the schedule space U 

p Average task execution time on a single VM  

d Average task memory demand on a single VM  

h   Time to simulate a schedule by Monte Carlo method

M Makespan to execute all tasks in a workflow 

T  Total workflow throughput in a cloud platform 

D Total memory demand in using virtual clusters 

H Overhead time of a particular scheduling method 

A. Workflow Scheduling Model 
Let pi be the expected execution time of a single 

VM in the i-th cluster. Let vi be the number of VMs in 
the cluster. We have βi = vi/pi as the task processing 
rate in a cluster. Let δi be the number of tasks in queue i. 
Then we have the execution time ti = δi /βi = piδi /vi by 
the i-th cluster. All virtual clusters are distinguished by 
the index i.  We define the makespan of all n tasks in a 
scientific workflow by: 

             M = Max {t1, t2, …, tc}                 (1) 
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where c virtual clusters are used and ti = pi δi /vi. This 
makespan is the total execution time between the start 
and finish of all tasks in a multitask workflow. We 
denote di as the memory used by one VM in the VCi. 
Then, the total memory demand by all VMs is: 

              
1

C
i ii

D d v
=

= ×∑                              (2) 

 A resource-reservation schedule specifies the sets 
of VMs provisioned at successive time slots, called 
periods. For example, the jth schedule θj is represented 
by a set of VMs allocated in c clusters in a schedule 
space U. This schedule is thus represented by a c-
dimensional vector:   

             θj = [v1,  v2 , . . . , vc]                        (3) 

where vi  is the number of VMs assigned in cluster i. At 
different time periods, different schedules may be 
applied. All candidate schedules at successive time 
periods form a schedule space U. The cardinality of U 
is estimated by the following expression: 

             u = (v − 1)!/[(v − c)!(v − 1)!]            (4) 

where v is the total number of VMs used in c server 
clusters. This parameter u counts the number of ways to 
partition a set of v VMs into c nonempty clusters. 

         For example, if we use 20 VMs in 7 clusters for 7 
task classes, then we need to assess u = 27,132 possible 
schedules to search for the best schedule to allocate the 
VMs. Using simulation to determine the best  schedule, 
this number is way too high. It will lead to excessive 
simulation overhead time. Thus, we need to reduce the 
schedule search space significantly.  

   The following objective function is used to search 
for the suboptimal schedule for the workflow 
scheduling. In general, we need to conduct an 
exhaustive search to minimize a pair of objective 
functions on all makespans and memory demands by 
all possible schedules:  

      ( ) ( ){ }m in , m in
j j

j jU U
M D

θ θ
θ θ

∈ ∈
             (5) 

against all possible schedules θj  in the search space U.     

     In simulating each schedule θj, we need to 
generate the value of pi and di before we can calculate 
the makespan M and memory demand D in Eq.(1) and  
(2). We use the average over all simulations on θj to get 
the minimum M(θj) and D(θj) in Eq.(5).  The random 
variables pi and di, could be also estimated offline and 
using a rough estimation. 

3. MONTE CARLO AND BLIND PICK  
 SCHEDULING METHODS 

In this section, Monte Carlo Method and Blind-Pick 
method are introduced for workflow scheduling. In 
Monte Carlo simulation, we simulate N = 1,000 runs 

for each value pi and di. to assess the expected 
makespan and memory demand.  It is desired to reduce 
the simulation runs to n = 10 runs as a rough model to 
make scheduling decisions.  

We use Monte Carlo simulation to generate optimal 
schedules under the heavy scheduling overhead. Figure 
3 shows a bi-objective optimization scenario, by which 
both the makespan and memory demand need to be 
minimized in the 2-dimensional optimization space.  
Each dot in the space corresponds to a working 
schedule that has been simulated.  

Through exhaustive simulation, the Monte Carlo 
method produces a set of “optimal” schedules along the 
skyline layer in Fig.3(a).  These optimal choices are 
marked in red dots. Mathematically, there is no 
schedule in the 2-D space, which is better or less than 
those red schedules along the skyline in terms of  
makespan and memory demand.  In other words, with a 
fixed memory demand, all skyline makespans are lower 
than those above the skyline.   

Similarly, with a fixed makespan, all memory 
demands along the skyline are lower than those above 
the skyline. Researchers working in the automation 
community, call the skyline schedules a pareto front, 
which correspond  to the acceptable or good-enough 
schedule set G. If {L1} is removed, {L2} can be 
achieved in the same way.  By processing all schedules 
in such a way, the searching space can be divided into a 
series of pareto fronts denoted by {L1},{L2},…, {L}. 
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(a) Monte Carlo method (1000 runs) leads to optimal 

schedules shown in red dots along the skyline layer L1  

{ }1L′ { }2L′
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(b) Rough model evaluation (10 runs) of all the schedules 
leads to optimal schedules scatter sparsely in the space 

Figure 3.  Monte Carlo and rough model evaluation 
of a bi-objective optimization problem. Red dots in 
(a) are good-enough schedules. In (b), the good-
enough schedules are scattered due to rough 
model evaluation. We could still find one good-
enough schedules in the skyline layer. 
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It is difficult to determine S to cover all schedules in 
G given a rough model evaluation. Optimization modes 
and noise levels introduced in section 4 are two 
important factors. With noises introduced,  the good-
enough schedules in set G are spread in multiple layers 
of the skyline under rough evaluation. 

 The rough model used Fig.3(b) results in lower 
scheduling overhead. The good-enough schedules are 
scattered sparsely in the space. This may demand a 
large selection set S to cover all these schedules. A 
smaller S is enough, but may demand heavier 
scheduling overhead. Thus, tradeoff does exist between 
s and the scheduling overhead that can be tolerated. 

In the next section, we show that applications with a 
steep optimization mode and small noise, our method 
can be quite efficient.  

4. ITERATIVE ODINAL OPTIMIZATION  
FOR WORKFLOW SCHEDULING 

Optimization mode describes how schedules are 
scattered in the searching space as shown in Fig. 4 in 
three modes. In Fig.4(a), there are 12 schedules 
scattered in 4 skyline layers. In Fig.4(b), corresponding 
optimization modes are shown. The x identifies the 
layer index, and F(x) denotes how many schedules are 
in the first x skyline layers. 

If schedules are scattered in the steep mode as 
shown in the rightmost figures in Figs. 4(a) and 4(b), it 
would be very much easy to find out the suboptimal  
schedules for the optimization problem. This is because 
most schedules are converged to the zero point, one 
search could get 5 good schedules. On the other hand,    
only one good schedule is available in the flat mode. 
The neutral mode corresponds to a uniform distribution 
in all skyline layers. We expect steep mode to ensure 
our optimization much more efficient. 

 
Figure 4.   Three optimization modes for three 
different schedules, by which 12 schedules are 
scattered to form 4 skyline layers. In (b), the 
corresponding optimization mode for (a) is shown. 
The x identifies the layer index, and F(x) denotes 
the number of  schedules in x front layers. 

The workflow scheduling for LIGO gravitational 
wave data analysis pipelines satisfies a steep mode 
shown in section 7. This leads to tradeoffs between 
scheduling overhead and performance levels desired.  

Mathematically, the noise level of the performance 
pair {M(θj), D(θj)} is determined by the maximum 
standard deviation from makespan and memory demand. 
Large number of simulation runs n leads to small noise 
while at the cost of high simulation overhead. This is as 
if we were flipping a coin, more runs (large n, small 
noise) can lead to the probability of each side closer to 
0.5, but results to more simulation time used. 

Given the above analysis, the size s of the schedule 
selection set S has been determined in  [22] as a 
function of the optimization mode and the noise level 
tolerated by numerous regression analysis on top of 
different optimization modes and noise levels.  The 
detailed expression for computing s can be found in  [22] 
and it will not be repeated here. 

        As a comparison, the U space is very large, say u 
= 27, 132 in our experiment, while the selection space 
applies to s = 190 schedules in IOO. Per each schedule 
θj simulation, the Monte Carlo and Blind-pick Methods 
need to simulation N =1,000 runs to compute the 
average throughput Rj and memory demand Dj. To 
implement the IOO-based simulation, only n = 10 runs   
of simulation is performed to generate the performance 
pair {M(θj), D(θj) } , and N = 1,000 runs followed on a 
rather smaller reduced set S.  

Algorithm 1.  Ordinal Optimization for Optimizing 
the workflow schedule  

Input:   Simulated performances of all the u schedule 
{(M(θ1), D(θ1)), …, (M(θu), D(θu))}, n=10 runs each 

Output:  A suboptimal workflow schedule to use 
Procedure:  
1. Assess the optimization mode (steep mode) 
2. Calculate the noise level (NL) 
3. Calculate the selection set S based on 1 and 2 
4. Simulate the schedules at s front skyline layers, {θ1, 

θ2 ,…, θ s}, N = 1000 runs per each schedule 
5. Plot the above schedules in as in Fig. 3, select one 

schedule in Pateto front for use 
 
Algorithm 1 specifies the ordinal optimization for 

selecting a suboptimal workflow schedule using the 
IOO method.  In Step 1, it calculates the optimization 
mode to find out how the throughput and memory 
demand are scattered in the space, as shown in Fig. 4 
and Fig. 9 in section 6(B). In Step 2, we calculate the 
noise level (NL). In Step 3, we determine the value of s 
based on  [22] and selects the schedules of the first s 
skylines as S. In Step 4, we perform n Monte Carlo 
simulations for each schedule in S. Finally, we apply 
Algorithm 1 to narrow down to the final choice.  It 
should be noted that that N >> n in general. In our LIGO 
experiments, we have applied N = 1,000 and n =10. 
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Generate candidate schedule set 
U over predicted workload W

Is U empty ?

Simulate each j U N times to 
determine the average throughput 
Rj and memory demand Dj for j

Remove j from U
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Plot the performances of all the 
u schedules as in Fig. 3 and 

select one in Pareto Front to use
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Randomly generate a small 
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           (a)    Monte Carlo Method based              (b) Blind-Pick Method using               (c) The IOO Method based on iterative 
                      on exhaustive search                             a reduced selection set Sbp                 ordinal optimization         
      Figure 5    Three workflow scheduling methods for simulated LIGO experiments on an elastic cloud  
                          platform with 128 VMs installed at the IBM Beijing Research Center.  

Iterative ordinal optimization (IOO) is specified to 
generate suboptimal schedules in virtual clusters with 
dynamic workload. Scheduling solutions are generated in an 
iterative way. During each iteration, suboptimal or good-
enough schedules are obtained. The IOO method adapt to 
system dynamism in terms of dynamic workload and VM 
provisioning in virtual clusters. 

Figure 5 above shows the flow charts of the three 
scheduling process for the Monte Carlo, Blind-pick and IOO 
methods. Note that the large search space U is applied in 
Monte Carlo and IOO method at the outer loop on all 
possible schedules. IOO then use a much reduced set S as 
shown in algorithm 1. The Blind-Pick Method applies the 
randomly reduced selection set Sbp. 

Let T be the time period of scheduling using the Monte 
Carlo method, and t be that for IOO. For example, at time t0, 
Monte Carlo is used for simulation. It is not until t1 can 
Monte Carlo generate its optimal schedule. While the 
solution is optimized at the time t1, It is not possible to 
generate such an optimized schedule between t1 and t2. As 
for IOO at time t1, the predicted workload is used to 
generate a suboptimal schedule at time t1+t, and then at 
t1+2t, …., similarly. 

 
Figure 6   IOO adaption to dynamic workload. 

This process is continued at each period to capture the 
variation of the workload in order to improve the 
performance. The IOO is carried out dynamically to upgrade 
the performance, iteratively. In each iteration, the workflow 
scheduling follows a steep mode to reduce the overhead and 
generate a good enough solution. From a global point of 
view, the successive iterations are processed fast enough to 
adapt to the dynamic workload of the system. 

5. DESIGN OF LIGO WORFLOW EXPERIMENTS   
In this section, we present the design of the LIGO 

experiments to test the effectiveness of the IOO scheduling 
method for scientific workflow in cloud platform. First we 
introduce the experimental settings, Then we analyze the 
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LIGO task classes that can be explored by using multiple 
VMs in the cloud. 

A. Experimental setting : 
The cloud experiments are carried out using 10 servers of 

IBM RC2 Cloud at IBM China Development Laboratory, 
Beijing (Fig.7). Each sever is equipped with Intel Xeon MP 
7150N processor, 24 GB memory. The virtualized physical 
servers in IBM Beijing Center are specified in Table 2.  

We install up to 14 virtual machines (VM) per each 
physical server. The physical server runs with the 
OpenSuSE11/OS. All LIGO tasks are written in Java. With 
10 servers, we could experiment up to a virtual cluster of 128 
VM instances. To test the scalable performance, we vary the 
virtual cluster configuration from 16 to 32, 64 and 128 VMs. 

 
Figure 7. Research compute cloud (RC2) over 8 IBM R/D 
Centers, where our experiments were conducted at the 
IBM Beijing Center. 

Table 2    Virtualized Physical Cluster 
Cluster Size 10 servers per physical cluster 

Node 
Architecture 

IBM X3950 with 16-core Xeon MP 7150N, 
24 GB memory with  the openSuSE 11 

VM 
Architecture 

CPU: 1 vCPU deployed in 1 pCPU with 1 
GB memory running with OpenSuSE 11 

VMs/Hypervisor 14 VMs in each server/Xen 3.0.3 

B. Multitask Analysis of LIGO Workflow  
The LIGO (Laser Interferometer Gravitational-wave 

Observatory) is designed for direct detection of earth’s 
gravitational waves, This is a large-scale scientific 
experiment as predicted by Einstein’s General Theory of 
Relativity a century ago. We analyze the LIGO workload to 
exploit the parallelism in using the virtual clusters in a elastic 
compute cloud. The computations involved are divided into 
seven task classes in Table 3.  It embodies three sensitive 
detectors (L1, H1, H2) on earth surface.  

 Gravitational-wave data analysis is carried out in a 
workflow pipelined manner, since multiple tasks have to be 
executed at geographically dispersed data sources 
concurrently. The verification of a LIGO workflow is 
essential to identify potential faults before the actual program 
execution. Each verification contains many subtasks over 
massive data sets. We use many virtual machines to explore 
the DoP in these task classes. Sufficient cloud resources 

(VMs) are provisioned to satisfy the demand of LIGO 
workflows. The seven independent task classes can be  
executed in parallel  [19]. 

Table 3.  Task Classes in a LIGO Workflow 
Task 
Class 

Functional 
Characteristics 

Number of  
Parallel Tasks

Class-1 Operations after tinplating 3,576 
Class-2 Restraints of interferometers 2,755 
Class-3 Integrity  contingency  5,114 
Class-4 Inevitability of contingency 1,026 
Class-5 Service reachability 4,962 
Class-6 Service Terminatability 792 
Class-7 Variable garbage collection 226 

We want to find a range of solutions to use θj to 
minimize both makespan M and memory demand D. On our 
LIGO workflow experiments, there are 7 task classes and 20 
virtual machines. There are 27,132 schedules in total to be 
evaluated. Feasible allocation schedule is θj. Then for each 
task class, the number of VMs allocated for its execution is 
identified as [1, 20]. The steep optimization mode guarantees 
that the IOO can be effectively applied in LIGO workload.  

6. EXPERIMENTAL PERFORMANCE RESULTS 
In this section, we report the experimental results, First 

we show snap shot of the simulated schedule distribution of  
our experiment. Then we report the scheduling overhead, 
makespan and memory demands in LIGO experiments.  

A. Bi-Objective Optimized Scheduling  
In Fig. 8, we map the schedule performance pair {M, D} 

into a 2-dimensional space. Each schedule is simulated 1000 
runs to assess its makespan M and memory demand D. Each 
schedule is represented by a black dot. The small circled dots 
(in blue color) form the G set of good-enough schedules. The 
suboptimal schedules generated by IOO method are 
identified by large red circles. Some accepted suboptimal 
schedules overlap with the blue schedules at the skyline. This 
graph illustrates clearly the effectiveness of the IOO scheme 
to make fast scheduling decision in a large-scale cloud, while 
still delivering a set of good-enough schedules. 

B. Simulated Scheduling Overhead  
Traditional method uses the Monte Carlo  [14] 

simulation to exhaust the entire schedule space. For each 
schedule, one must implement all task classes on all virtual 
clusters. The time used for this exhaustive search  causes a 
great amount of scheduling overhead. The IOO method 
require the least scheduling overhead as demonstrated in 
Fig.10. The schedules are generated by testing an estimated 
search time by averaging over a small set of schedules. The 
tradeoff of our IOO method is that it avoids  the exhaustive 
search in using Monte Carlo method. Good-enough 
schedules can be found in a few iterations of the IOO 
process. 
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Figure 8. The scheduling results of a  bi-objective 
scheduling over the LIGO workload. There are 27,132 
schedules (dots) shown in the 2-D performance space.  

Figure 9. The optimization mode of the performance of 
n simulation runs in IOO. It is a steep type 
corresponding to the good-enough schedule
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(b) 50% good-enough schedules  

 

Figure 10     Simulation overhead time plotted against 
the cluster size under two user choices (10% and 50%) 
of good-enough schedules. 

 As shown in Fig.10, IOO performance for workflow 
scheduling is evaluated by overhead time comparison 
among three methods over 16, 32, 64, 128 virtual 
machines. This comparison is made under two acquisition 
of good enough schedules (10% versus 50%).  If a higher 
percentage of good-enough schedules is demanded, the 
scheduling overhead will increase.  

As the cluster size scales from 16 to 128, we observe 
that IOO method has an scheduling overhead reduction of 
to tens or hundreds times than using the Monte Carlo 
method. The scheduling overhead of Blind-pick is slightly 
lower than the Monte Carlo method, but still much higher 
than the IOO method. As the number of VMs increases, 

the tradeoff space also increases. These experimental 
results are upper bounded by the theoretical prediction 
given in Section 5. 

C. Throughput Performance and Memory Demand  
In Figs 11 and 12, the performance metrics are average 

throughput and memory demand during the whole 
experiment period. The experiments are carried out in 8 
simulation periods. Each period lasts the time h of a single 
Monte Carlo simulation. During each period, the OO is  
repeated iteratively, since the IOO scheduling time is 
much shorter. By default, we consider 20,000 LIGO tasks 
and 128 virtual machines in the cloud.  

Experiments are carried out by comparison of 3 
methods over scalable number of tasks and virtual 
machines. In Fig.11(a), we demonstrate the effect of task 
number in the LIGO application. The IOO method 
demonstrates about 3 times higher throughput than the 
Monte Carlo method as the task number varies. The IOO 
method offers 20 to 40%  times faster throughput than that 
of the Blind-Pick method as the task number varies. Figure 
11(b) shows the effects of the virtual cluster size on the 
throughput performance of the three scheduling methods. 
We observed a 2.2 to 3.5 times throughput gain of the IOO 
method over the Monte Carlo method as the cluster 
increases from 16 to 128 VMs.  The IOO method has 
about 15% to 30% throughput gain over the Blind-Pick 
method as the cluster size increases. 

Figure 12 shows the relative memory demands of 3 
workflow scheduling methods. The results are plotted as a 
function of the task number and cluster size.  The Monte 
Carlo method has the highest memort demand. The IOO 
method requires the least memoy. The Blind-ick method 
sits in the middle. The IOO method saves about 45% 
memory from that demanded by the Monte Carlo method. 
Blind-Pick method requires 80% ~ 20% higher memory 
than IOO method as the task number increases. For 20,000 
subdivided tasks, the  memory demands are 11.5 GB, 8 
GB, and 7 GB on 128 VMs for the Monte carlo, Blind-
Pick and IOO methods, respectively. 

IOO Blind Pick Monte Carlo
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Figure 11  Relative throughput of 3 workflow 
scheduling methods against the` task number and 
cluster size  

Figure 12   Relative memory demands of 3 workflow 
scheduling methods plotted against task number and 
cluster size, separately

7. RELATED WORK AND CONCLUSIONS 
In the past, most workflow scheduling work was done  

for computational grids or on large-scale heterogeneous 
systems. Our work is the first attempt to schedule cloud 
workflows on virtual clusters. In the final section, we 
review some related work on cloud resource provisioning, 
task scheduling and ordinal optimization. We summarize 
our research findings and discuss the future extensions.  

A. Related Work  
In the past, scheduling large-scale scientific tasks to grid 

or heterogeneous systems has been studied by many 
researchers  [6],  [12],  [13],  [15],  [16]. We see an escalating 
interest on resource allocation for scientific workflows on 
the Internet clouds [11].  Many classical optimization 
methods, such as opportunistic load balance, minimum 
execution time, and minimum completion time, are 
described in  [8].  

Benoit, et al  [3] designed resource-aware allocation 
strategies for divisible loads. Li and Buyya  [12] proposed 
model-driven simulation of grid scheduling strategies. 
Zomaya, et al  [13],  [16] proposed a hybrid scheduling 
method for scheduling in large systems.  

In 1992, Ho, et al  [9] proposed the ordinal optimization 
(OO) method for discrete-event dynamic systems. Along the 
OO line, many heuristic methods have been proposed  [17], 
 [20],  [21]. Subsequently, Ho, et al  [10] demonstrated that the 
OO method is effective to generate a soft or suboptimal 
solution to most NP-hard problems. Subsequently, the OO 
technique has been applied in advanced automation and 
industrial manufacturing  [17],  [20],  [22].  

Wieczorek, et al  [18] analyzed five facets which may 
have a major impact on the selection of an appropriate 
scheduling strategy. They proposed a taxonomy to classify  
multi-objective workflow scheduling schemes. Prodan and 
Wieczorek  [15] proposed a dynamic algorithm, which 
outperforms the LOSS3 and BDLS methods to optimize bi-
criteria problems.  

In the past, Cao, et al  [5],  [20] have studied the LIGO 
problems in grid environments. Duan, et al  [7] suggested a 
game-theoretic optimization method. Dogan, et al  [6] 
developed a matching and scheduling algorithm.  

B. Concluding Remarks 
This paper offers the first attempt to extend the ordinal 

optimization for fast dynamic workflow scheduling on 

IOO Blind Pick Monte Carlo
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virtual clusters in a cloud computing platform. The major 
advantage of IOO method lies in significantly lowered 
overhead in producing suboptimal schedules. The method 
appeals especially to a scenario of time varying  workload. 
Major technical contributions of this work is the IOO 
method appeals to work well on elastic cloud under dynamic 
workload. Then we use large-scale LIGO gravitational wave 
data analysis pipelines to test the new IOO approach 
effectively. Finally, We provide the first model on workflow 
scheduling in a cloud platform. The cloud environments 
contain many uncertainty factors. Our IOO approach applies 
well in EC2-like cloud services to upgrade the throughput 
and in S3-like services to reduce the memory demand. 

The LIGO scientific collaboration research group at 
Tsinghua University will establish a new cloud 
infrastructure for enabling real-time gravitational-wave burst 
data analysis using virtualization technology. Improved 
workflow scheduling and performance optimization lead to 
faster execution of data analysis pipelines. This opens up a 
new research front for scientific cloud computing in addition 
to business applications installed at most public clouds. 
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