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Abstract—accurate load modeling and parameter identification 

of power systems is always a difficult problem, remaining unsolved 
but critical for stability analysis, prediction and decision-making of 
power systems. The development of wide area measurement system 
(WAMS) provides possible ways to further address the challenge. 
In this work, based on an existing load modeling method for online 
identification of dominant parameters, we put forward an 
improvement with the clustering method, to get the reactance of 
the composite load model as a secondary dynamic parameter. 
Corresponding theoretical analysis, design principles and system 
implementation are presented. The reactive power dumping time 
constant during disturbance is chosen as the clustering feature. 
Simulation results show effectiveness of our improvement with 
satisfactory accuracy. 

Index Terms—parameter identification, clustering, secondary 
dynamic parameters, WAMS, composite load modeling 

I. INTRODUCTION 
OWER system modeling and simulation serves as useful tools 
in the analysis, design, construction and operation of power 

systems[1]. Mathematical models that can effectively represent 
characteristics and performance of actual power systems are 
essential to obtain accurate simulation results. Nowadays, the 
rapid growing of power consumption and the expanding scale of 
inter-connected power grid has resulted in higher requirements 
for power system modeling. 

As we know, power systems consist of three parts: generation, 
transmission and distribution, and loads. The models and 
parameters of the first two parts are getting mature. However, 
load modeling is still a challenging issue due to the complexity, 
time variation and stochastic characteristics of loads. The 
development of phasor measurement units (PMU) and wide area 
measurement systems (WAMS) paves the way to address the 
load modeling challenge [2][3].WAMS can provide 
synchronized real-time data at a regional and national scale[4], 
which are likely to lead to measurement based composite load 
modeling with higher accuracy and real-time characteristics[5]. 

In previous work, online real-time dynamic measurements 
based identification is proposed in [6][7]. Due to high 
requirement for real-time performance, this method can only 
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identifies 4 dominant parameters of the composite load mode, 
ignoring some secondary dynamic parameters. In this work, 
challenges for online identification of secondary dynamic 
parameters are further addressed. 

Studies in [6] and simulation results in this paper show that 
secondary dynamic parameters, such as rotor reactance and 
stator reactance, can greatly influence identification results. 
Unfortunately, the reactance parameters can hardly be identified 
directly. According to theoretical analysis, direct response 
analysis gets more of qualitative results due to the system 
complexity. Instead of getting identifying values, we employ 
clustering based methods to roughly get secondary parameters to 
meet practical requirements. Performance evaluation shows that 
satisfactory classification accuracy can be achieved. 

Measurement-based methods have been proposed to obtain 
mechanism model of a certain load cluster [8][9].Theoretical and 
practical issues relevant to load modeling and identification are 
hot research topics [10]; and various approaches are applied and 
developed for composite load modeling. A hybrid learning 
algorithm combines genetic algorithm (GA) and nonlinear 
Levenberg-Marquardt (L-M) algorithm [11], which takes 
advantages of the global search ability of GA and the local 
search ability of L-M algorithm. However, heuristic algorithms 
are not feasible for fast online identification due to the massive 
search space. Reducing identified parameters has been proposed 
in [12], with similar motivation of our work. Instead of full 
parameter identification, an adequate parameter set can be 
chosen to reduce computing overhead while still maintaining the 
model’s capability on describing load dynamics[13][14].While 
support vector based clustering methods are also adopted in 
[14][15] for load modeling, we apply clustering for online 
identification of secondary dynamic load parameters. Although 
clustering method is used in component-based modeling [15], its 
usage in measurement based load modeling is rare. 

The rest of the paper is organized as follows. The issue of 
dynamic parameter identification is described in Section II, with 
special focus on the necessity of secondary parameter 
identification; our clustering approach is presented in Section III 
with both theoretical analysis and simulation study. Detailed 
information on design principles, system implementation and 
performance evaluation is included in Section IV; Section V 
concludes the paper with future research directions. 
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II. DYNAMIC PARAMETER IDENTIFICATION 

A. Dominant Parameter Identification 
The algorithm we tried to improve belongs to 

measurement-based modeling approach [16], aiming at 
identifying dominant dynamic parameters of a mechanistic 
model of power loads. Fig. 1 shows the structure of the model. 

 
Fig. 1 Model structure 

The model is the parallel connection of a constant resistance 
and an induction motor, shown in Fig. 2. 
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Fig. 2 Induction motor model structure 

According to the mechanism analysis of the algorithm [17], 
there are four dominant parameters in the model, the portion of 
dynamic load Pct, initial slip s0, rotor resistance Rr, and inertia 
time constant H. To search in the four-dimension parameter, the 
algorithm is divided into two steps. The first step is based on 
analysis of the “0+” response of the composite load model to 
identify the percentage of the dynamic load and the angel of 
transient electrical force of rotor. After that, based on Volterra 
Model and pattern recognition [18], the algorithm is able to 
derive four parameters. Other parameters in the model are called 
secondary parameters and set as typical values. However, 
sensitivity analysis [19] and simulation experiments show that 
so called secondary parameters such as rotor reactance Xr and 
stator reactance Xs are also of great sensitivity to model 
accuracy. 

B. Secondary Parameter Identification 
In actual power systems, secondary parameter values have 

great dispersion and cannot be represented by typical values. 
Only identifying four dominant parameters is not enough in 
practice. A case study is given below where two loads with same 
load parameters expect for Xs are linked to the same bus (to 
ensure the synchronization of voltage). The IEEE-14 Bus 
System [20]is selected as the simulated system, as illustrated in 
Fig. 3. 

In the simulation experiment, the two loads are linked to Bus 
14. Load 2 is set as typical values while Load 1 is not. 

Their parameter settings are listed below: 
H      Pct    Rs        Xs   Xm    Rr   Xr 

Load 1：2  .40     .0116  .095  3.50  .020   .12 
Load 2：2  .40     .0116  .295  3.50  .020   .12 
Then parameters are identified using the algorithm [6][7]via 

perturbation analysis. The result is shown below: 
Pct       Rr         s0         H 

Load 1：19.6381    0.0378    0.0052    1.5323 
Load 2：35.3709    0.0182    0.0096    2.3134 
As shown in above results, secondary parameters can greatly 

influence identification results. Hence it is necessary to gain 
more information about secondary parameters. Unfortunately, 
the rotor reactance Xr and stator reactance Xs can hardly be 
identified directly. According to theoretic analysis in Section III, 
direct response analysis is more of qualitative results due to 
system complexity. Instead of identifying exact values, 
clustering is adopted to roughly identify secondary parameters 
for fast online usage. 
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Fig. 3 IEEE-14 Bus System structure 

III. THE CLUSTERING APPROACH 
The basis of clustering is feature selection and extraction. The 

reactive power response curves of two loads are shown in Fig. 4. 

 
Fig. 4 Reactive power response curves of two loads 

There are three major differences between the responses of 
the two loads. The first one is the dumping time constant during 
the disturbance. The second one is the peak amplitude after the 
disturbance and after the resection of the disturbance. The third 
one is the vacillation mode after the resection of the disturbance. 
The third one requires more data samples, while the second one 
is greatly influenced by many other factors such as the 
seriousness of the disturbance. Hence, we finally selected the 
first difference as the clustering feature. 

There are three major differences between the responses of 
the two loads. The first one is the dumping time constant during 
the disturbance. The second one is the peak amplitude after the 
disturbance and after the resection of the disturbance. The third 
one is the vacillation mode after the resection of the disturbance. 
The third one requires more data samples, while the second one 
is greatly influenced by many other factors such as the 
seriousness of the disturbance. Hence, we finally selected the 

Load 1 

Load 2 
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first difference as the clustering feature. 

A. Theoretical Analysis 
To theoretically prove that the dumping time constant during 

the disturbance is the main feature for clustering, eigenvalue 
analysis is used. Theoretical analysis is also compared with 
simulation results in the following section. 

A widely used electric motor mathematic model is shown 
below: 
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where: 
f0 is 50Hz, the power-frequency; Id is the current in Axis d; Iq 

is the current in Axis q; TE is electromagnetic torque; TM is 
mechanical torque. And it has: 
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The states are the voltage in Axis d Ed, the voltage in Axis q 
Eq, and the per-unit rotational speed of the motor ωr. 

Since the mathematic model is nonlinear, linearization is 
necessary before eigenvalue analysis. We use Taylor expansion 
for linearization. The first step is to get initial values.  

Given the initial voltage U0 and set B=0, 

0 0 0

2 2 2 2 2 2

2 2
2 2 2

2

0

; ; ;

' ; ' 2 ; ' ;

' ' '; ; ;

4; ;
2

rm r m sm s m p s r s m m r

s sm s m p s rm

s m s rm

r

X X X X X X X X X X X X X

A R X B R X C X R X

A P B P C PA R B X C R X
U U U

R B B ACs R
R A

= + = + = + +

= + = = +

= − = − = −

− + −
= =

           (3) 

The initial value of ωr is: 
ω0=1-s0                           (4) 
And given Uq= U0，Ud=0, 
According to equations, 
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The initial value of the three states is easy to figure out. 
Abbreviate the mathematic model as, 
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and abbreviate f(x) as: 

1 2 3

4 5 6
2 2 2

7 8 9 10 11

( )
d q r q

d q r d

d q r d q

A E A E A E
f x A E A E A E

A E A E A A E A E

ω
ω

ω

 + +


= + +
 + + + +

        (9) 

According to the initial values that have been figure out, 
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Abbreviate above expression as: 
0A Cx+                       (11) 

Equation 11 lays out the linear analytical description of the 
composite dynamic load model. We can get three eigenvalues of 
matrix C. Two of the eigenvalues represent a second-order 
damped oscillation. Another eigenvalue represent first-order 
attenuation. The damping of the second-order damped 
oscillation is too large that the influence of this mode can be 
ignored. Hence by analyzing the first-order attenuation mode, 
we can get the dumping time constant under different value of Xs, 
because the inverse of the only real eigenvalue is the dumping 
time constant. 

B. Simulation Results 
Theoretical analysis has proved the feasibility of clustering. 

Instead of identification of exact values, we can divide 
parameter values into intervals, and classify possible parameter 
intervals into several groups. Every group is defined as a class in 
the clustering algorithm. The whole method is divided into two 
steps. The first step is clustering samples with unknown 
secondary parameters and creating the training set, in which all 
of samples belong to a class. The second step is classifying new 
samples with unknown parameters using the training set. Hence 
we can roughly know the secondary parameters of the new 
samples. 

The algorithm used in the first step is the nl-means algorithm 
and the k-nn algorithm [19] for the second step. Another 
important issue is feature extraction for clustering and 
classifying. After several simulation experiments, we selected 
system identification method, for its better accuracy. According 
to theoretical analysis, the first-order attenuation has more 
impact. During the disturbance, the load can be considered as the 
following system, 

 Voltage
1

K
Ts+

Reactive 
Power  

Fig. 5 Approximate model during disturbance 

By using the System Identification Toolbox of Matlab, 
voltage and reactive power are chosen as input and output. Using 
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this tool, the dumping time constant can be easily figured out 
from the PSD-BPA [21] simulation result. Here we link loads to 
Bus 12, select four groups of load parameters with different Xs 
and acquired their average eigenvalues. Simulation results are 
listed in Table I. 

TABLE I 
SIMULATION RESULTS FOR CLASSIFICATION 

Disturbance Location Xs 
0.095 0.145 0.195 0.295 

Bus9- Bus7 23.31872 18.9883 15.96781 9.020386 
Bus 12vs Bus 13 25.28765 20.53009 17.16561 12.61925 
Bus 9vs Bus 14 24.09 19.31658 16.31029 11.52459 
Bus 13vs Bus 14 24.09 19.31658 16.31029 11.52459 
Bus 10vs Bus 11 23.26176 19.36558 14.85641 10.51845 
Bus 9vs Bus 10 23.26176 19.36558 14.85641 10.51845 

Average 23.88498 19.48045 15.91114 10.95429 
Compare simulation results with theoretical analysis, we can 

get the following results, as illustrated in Fig. 6. According to the 
curve, the eigenvalue reduces nonlinearly along with the 
reduction of Xs. This result shows the relationship between 
reactive power response curve and inner model parameters, 
which is the basis of the clustering approach. 

 
Fig. 6 Comparison of simulation results with theoretic analysis 

As shown in Fig. 6, simulation result is consistent well with 
theoretical analysis. That is to said, the dumping time constant 
can be used to acquire the value of parameter Xs and can be used 
as the feature of our clustering algorithms. 

IV. SYSTEM IMPLEMENTATION AND PERFORMANCE 
EVALUATION 

A. System Implementation 
One of important issues in the implementation of the nl-means 

algorithm is to choose the number of classes and the initials of 
clustering centers. The flow chart of our method is shown in Fig. 
7.  

We get 21 points Xs=0.095:0.01:……:0.295. Eigenvalues of 
these points are presented as X(i), i=1,2,……,21. In the end, we 
figure out that the number of class is eight and initial clustering 
centers of each class can be theoretical eigenvalues of load 
models with Xs of 0.095, 0.115, 0.135, 0.155, 0.185, 0.215, 
0.255, 0.295. 

For performance evaluation of the clustering approach we 
designed in Section III, we get necessary samples from 
PSD-BPA disturbance simulation results. After eliminating 
some sample points that are abnormal due to the limitation of 
calculation accuracy of PSD-BPA, we get a sample set with 160 

sample points. 
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Fig. 7 Flow chart of clustering initialization 

We get 21 points Xs=0.095:0.01:……:0.295. Eigenvalues of 
these points are presented as X(i), i=1,2,……,21. In the end, we 
figure out that the number of class is eight and initial clustering 
centers of each class can be theoretical eigenvalues of load 
models with Xs of 0.095, 0.115, 0.135, 0.155, 0.185, 0.215, 
0.255, 0.295. 

We get 21 points Xs=0.095:0.01:……:0.295. Eigenvalues of 
these points are presented as X(i), i=1,2,……,21. In the end, we 
figure out that the number of class is eight and initial clustering 
centers of each class can be theoretical eigenvalues of load 
models with Xs of 0.095, 0.115, 0.135, 0.155, 0.185, 0.215, 
0.255, 0.295. 

For performance evaluation of the clustering approach we 
designed in Section III, we get necessary samples from 
PSD-BPA disturbance simulation results. After eliminating 
some sample points that are abnormal due to the limitation of 
calculation accuracy of PSD-BPA, we get a sample set with 160 
sample points. 

After running clustering algorithms introduced in Section III, 
clustering error rates are shown in Table II. This is the rate that a 
sample is clustered into a class with the eigenvalue different 
from its actual eigenvalue. 

TABLE I 
CLUSTERING ERROR RATES 

Class Number 1 2 3 4 5 6 7 8 Average 
Error rate (%) 0 10 25 25 45 25 20 20 21.25 

In particular, samples can only be classified into the right 
class or adjacent classes. This situation will reduce the impacts 
of wrong classifications. Such errors may result from many 
reasons. Firstly, the system is too small that the modes of the 
disturbance itself will greatly influence the performance of 
power loads. And as a linked system, the response of each load 
will obviously influence others. Hence the simulation result will 
be different from single power load. Such errors can be reduced 
by using bigger systems with more data. Secondly, the 
calculation accuracy of PSD-BPA and Matlab is limited. 

Analytical result 

Simulation result 
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We group 120 samples as a training set and 40 samples as a 
testing set randomly. The flow chart of performance evaluation 
is included in Fig. 8. 

B. Simulation Results 
The classification results are included in Table III, which 

shows that the accuracy of this experiment is 100%. Even 
though this may not be the case for other situations, this 
classification result proved that using the proposed clustering 
approach and choosing the dumping time constant as the 
clustering feature is a promising way to roughly identify the 
parameter Xs in the composite load model. Proper training set 
can alleviate the influence of noises, the mode of disturbance, 
and calculation errors. 

 
Fig. 8 Flow chart of performance evaluation 

TABLE III 
CLASSIFICATION RESULTS 

Actual class 1 1 1 1 1 2 2 2 2 2 
Classification 1 1 1 1 1 2 2 2 2 2 
Actual class 3 3 3 3 3 4 4 4 4 4 

Classification 3 3 3 3 3 4 4 4 4 4 
Actual class 5 5 5 5 5 6 6 6 6 6 

Classification 5 5 5 5 5 6 6 6 6 6 
Actual class 7 7 7 7 7 8 8 8 8 8 

Classification 7 7 7 7 7 8 8 8 8 8 

V. CONCLUSIONS 
The accuracy of load models has important impact on power 

system simulation. Online identification of dynamic parameters 
has been proposed for measurement based composite load 
modeling and existing work is focused on fast identification of 
dominant parameters. 

In this work, it is pointed out some secondary dynamic 
parameters have also important impact to the model accuracy. 
We put forward a method to improve a two-step load modeling 
algorithm. We use clustering algorithms to identify parameter Xs 
in the composite load model. Based on theoretical analysis and 
simulation results, we choose the reactive power dumping time 
constant during disturbance as the clustering feature. Clustering 
and classification results and show the accuracy of our approach. 

In the future, experiments should be carried out at a larger 
scale to further validate the approach. It is necessary to study the 

influence of the variation of other load parameters on clustering 
results. More accurate load models can be applied in many 
scenarios, e.g. energy management systems, power quality 
management, wide-area monitoring and control. 
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