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Abstract

In this research, we approach the problem of grid workload man-
agement with the development of a multi-tiered architecture that em-
ploys performance prediction and a hierarchy of homogeneous brokers to
meet quality-of-service contracts and improve resource efficiency. By cou-
pling application performance data with iterative heuristic algorithms,
the framework is able to balance the processes of minimising run-to-
completion time (makespan) and idle time, whilst adhering to service
deadlines on a per-task basis. This paper provides a brief introduction
to the architecture, and then focuses on the lowest tier which is respon-
sible for scheduling tasks on grid-enabled resources. Experimental results
demonstrate that these components are able to adjust to the conflicting
requirements of system metrics and QoS contracts in real-time, using the
just-in-time capabilities of the PACE prediction environment and the it-
erative workload management algorithms.

1 Introduction

It is anticipated that grids will develop to deliver high performance computing
capabilities with flexible resource sharing to dynamic virtual organisations [8].
Essential to this growth is the development of fundamental infrastructure ser-
vices that will integrate and manage large heterogeneous pools of resources, and
offer them seamlessly to differentiated users. A key service is workload man-
agement, which involves distributing tasks and data over a selection of appro-
priate resources and coordinating communication and transfer systems. While
commonality exists between grid workload management and task scheduling
on MIMD architectures (and clusters), the dynamic and diverse nature of the
grid, coupled with multiple domains of administration, differentiates this type
of scheduling from traditional multi-processor work.

The research presented in this paper considers the allocation of independent
tasks to groups of distributed, heterogeneous systems where performance mod-
els exist and hardware has been characterised using benchmarking tools. The
resulting system, known as Titan, adopts a multi-tiered approach to workload
management, where standard grid protocols (such as Globus [7]) are used as
the top tier, a collection of service-providing brokers are used at the middle tier
and a localised scheduling system is used at the lowest tier.
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This paper focuses on the lowest-level tier where the performance prediction
environment PACE [9] is used to estimate execution times for a particular task
on a given a set of architecture types prior to run-time. This is combined
with iterative heuristic algorithms to select schedules and organise the task
queue to a given metric or sets of metrics. The rationale for selecting such an
algorithm is that it adapts to minor changes in the problem space (such as a
host disconnecting, or a user submitting a task), and can be guided by means
of a fitness function to improve task allocation according to multiple metrics.

There are a number of other active grid projects that address workload and
resource management issues, most notably AppLeS [2], Nimrod [3] and Ninf [10].
Scheduling in AppLeS and Ninf utilise the NWS [11] resource monitoring service
and are based on performance evaluation techniques; a different approach is
taken in our work which is based on the performance prediction capabilities
provided by PACE. The PACE evaluation engine is parametric which is similar
to the kernel module of the Nimrod architecture; Nimrod also utilises hybrid
heuristic algorithms [1] for allocating jobs in a grid environment.

The organisation of this paper is as follows: section 2 introduces the workload
management problem and how a performance prediction system can assist; in
section 3, the algorithm used in the lowest tier is presented along with the coding
scheme. Section 4 discusses the implementation and introduces preliminary
experimental data; conclusions are presented in section 5.

2 Workload Management

While grid computing is not aimed specifically at the high performance com-
munity, many organisations regard the grid as a means to deliver commodity
computation that exceeds the capabilities of their current systems. While grid
software environments will exist at the organisational level, harnessing the com-
puting power of local clusters and dual-mode workstations, it is envisaged that
full computational grids will exist across many organisations, geographic regions
and domains of administration.

This presents difficulties when attempting to improve single application per-
formance which in the past may have included the tuning of a specific algorithm,
the re-mapping of data, or the adjustment of communication behaviour. These
factors can all be considered, to some extent, during development where appro-
priate decisions can be made based on application usage and expected behaviour.
In a grid setting, system-wide issues such as contention, load and congestion can
incur a major impact on performance and are difficult factors to predict a priori,
particularly when access to system information is restricted. Additionally, com-
putational systems will invariably provide services to customers with conflicting
needs and requirements. Contract issues including deadline and response times
must therefore be balanced in order to meet respective service-level agreements.

It is therefore non-trivial for workload management systems to select suit-
able resources for a particular task given a varied, dynamic resource pool. The
search space for this multi-parameter scheduling problem is large and not fully
defined until run-time. As a result, a just-in-time approach to performance pre-
diction is adopted in this research along with a collection of distribution brokers
and localised workload management systems, so that run-time variables and re-
source load can be used to assist task and resource allocation while maintaining
prescribed service contracts.



2.1 Titan Architecture

To address the issue of scalability, Titan adopts a loosely hierarchical structure
consisting of workload managers, distribution brokers and Globus interoper-
ability providers. These services represent different tiers in the framework and
can be provided by any distributed Titan node. While different behaviours are
exhibited by individual nodes depending on whether they are configured for a
particular tier, essentially each node is identical.

The top tier provides Globus interoperability via a layer that allows tasks
to be submitted to the distribution broker on the local node or to other nodes
directly. The distribution broker systems are based on the A4 advertising and
discovery agent structure [4]. At the lowest tier, the workload managers are
responsible for apportioning tasks to resources.

The hierarchical multi-tiered structure is illustrated in figure 1. Tasks are
submitted to a service broker by Globus or an A4 portal through the interoper-
ability layer. The distribution broker subsequently integrates the local workload
manager (if one exists) to ascertain whether the task can execute on the avail-
able resources and meet service quality metrics (QoS contracts). If successful,
the task is submitted to the local manager for scheduling. If not, the broker
will attempt to locate a remote resource using the discovery and advertisement
processes.
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Figure 1: The Titan architecture consisting of distribution brokers that communicate
with other brokers and workload managers to execute tasks in accordance with service
policy restraints. An interoperability layer provides an interface to Globus permitting
job submission to a particular broker.

Middle Tier

In a pure ‘discovery’ environment, tasks that cannot run on a local work-
load manager force the distribution broker to probe or ‘discover’ other brokers
on demand. While this has a performance impact on the network, it may be
applicable to a system with high dynamics. In an ‘advertisement’ orientated
environment, brokers will publish their schedules periodically so that lookups
are not required. In practice, a trade-off is found between these extremes and
can be configured as the system is running as it is set by a series of broker
policies that determine what information is cached and how.



This paper concentrates on the lowest tier whose objective is to organise
tasks in a manner that satisfies contract policies and system metrics (such as
minimising execution time or idle time). At each tier a different strategy is
employed but the overall effect is the same - tasks enter the system with re-
quirements that are used in conjunction with performance prediction to map
tasks to resources.

2.2 Task Allocation

In this work, the localised scheduling problem is defined by the allocation of
a group of independent tasks T = {To,T1,...,Th—1} to a network of hosts
H ={Hy,Hy,...,Hpy_1}. Tasks are run in a designated order ¢ € P(T') where
P is the set of permutations. £; defines the j'* task of £ to execute where
Ve;,38; C H,B; # 0, that is, each task in £ has a suitable host architecture
on which to run. To provide a compact representation of a schedule, a two
dimensional coding scheme is utilised:
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where Sy, is the k" schedule in a set of schedules S = {S,S1,...,S,-1} and
M;; is the mapping of hosts to a particular application:
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The objective of the framework is to produce schedules that fulfil system
and user requirements. This is achieved using an algorithm that selects suitable
candidate schedules from S and produces new schedules in S’. A fitness function
is used to guide the selection of successful schedules by ejecting poor schedules
from the system and maintaining good schedules in the representation space.

In order to obtain the fitness values, application start and end times must
be calculated and composited into a schedule. In the first instance, we consider
the simpler case where all the hosts are architecturally identical and that the
communication costs between hosts are similar. In this homogeneous situation,
the predicted execution time for each task is simply a function, pey:();, of 3;
which is the number of allocated resources for task ¢;. Assuming that this func-
tion is known in advance, and that a run-to-completion (non-overlap) strategy
is adopted, the end time for a particular task is equal to the earliest possible
start time plus the expected execution time, and can be readily obtained from
the schedule representation Sj.

Each arrangement of 3; is a unique performance scenario that will result in
a different run pattern for each task. While distributed applications exist that
benefit from as many hosts as are available, most will experience degradation
in performance as the communication costs become dominant. It is therefore
important that 3; is selected appropriately depending on the task involved.



In the case where all the architectures are identical, the number of different
performance scenarios is simply equal to the number of hosts. It is therefore
straightforward to formulate the function peg¢();, either by retaining historical
data or by one-shot executions. However, in a heterogeneous grid environment,
the architectural and system diversity is enormous and the potential number
of performance scenarios increases exponentially. For m = 64, the number of
possible scenarios is of the order of 103 in the extreme case where each host is
entirely different. For any non-trivial resource network, it would be impossible
to obtain peg:(); in real time prior to scheduling.

2.3 Performance Prediction

The PACE system provides a method to obtain p.,:() dynamically, given an
application model and suitable hardware descriptions. The models are accurate
for predicting the behavioural properties of scientific computing applications on
static, pre-modelled architectures. For applications whose internal structures
have a low level of data-dependency, the performance models can be within 5%
of the actual run-time.

PACE models are modular and are constructed by a set of hierarchical
layers. At the uppermost level, applications are captured as a sequence of
parallel subtasks; where each subtask is subsequently described using control
flow and resource usage information. The parallel characteristics of the sub-
tasks are described using parallelisation templates which allow the computation-
communication interactions between processors to be described. At the lowest
level in the model the target hardware is characterised.

When combined, the modelled system components form a complex represen-
tation which can be used to establish prediction metrics for the execution of a
particular application on a target architectural platform. The level of detail in
the model can be chosen so as to improve accuracy and models are accumulated
so that they can be reused. The use of separate parallelisation strategies also
provides a convenient means of analysing the effects of different parallelisation
strategies on resource usage and execution time.

As the models are parameterised, it is possible to evaluate pe,¢(); with differ-
ing host allocations and task models. Additionally, the models evaluate rapidly
permitting many enquiries per second. However, while PACE can provide the
timing data, the combinatorial problem still exists as there are many possible
arrangements of task orders and host mappings, even for a limited number of
tasks and hosts.

3 Localised Workload Management

Workload managers utilise PACE and iterative heuristics to explore areas of the
solution space to find good-quality schedules. Such algorithms are well-suited
to search problems of this nature [6] and have been applied to a number of
similar areas such as dynamic load balancing [12]. The approach used in this
work generates a set of initial schedules, evaluates the schedules to obtain a
measure of fitness, selects the most appropriate and combines them together
using operators (crossover and mutation) to formulate a new set of solutions.



This is repeated using the current schedule as a basis, rather than restarting the
process, allowing the system to capitalise on the organisation that has occurred
previously.

As with other iterative searching algorithms, this process is based upon
the notion of a fitness function that provides a quantitative representation of
how ‘good’ a solution is with respect to other solutions. In this manner, a set
of solutions can be created and evaluated with respect to multiple metrics to
isolate superior solutions. This ‘survival of the fittest’ approach maintains good
solutions and penalises poor solutions in order to move toward a good-quality
result.

3.1 Task Organisation
3.1.1 Timings

In order to evaluate the fitness functions that drive the scheduling process, the
expected end-time te; for each task in the schedule queue must be determined.
This is derived from the task start-time plus the task’s execution time, given by
the following expression:

tej = ts; + Pext(Bj); (3)

The start time, ts;, can be considered as the latest free time of all hosts
mapped to the application. If all of the mapped hosts are idle, then ts; is set
to the current system time ¢, hence:

tsj = max, {trji} (4)
where tr;; is the release time for task j on host i. For tasks {...¢;_1 that
execute on H;, this is set to the end time of the application. Where there are
no previous applications on this host, then this is set to the host release time,
hr;, which is the time when H; is expected to become available. It is based
upon tasks in the running queue and is set from te; when tasks move out of the
scheduling state. It is defined as:

brji = max {TRjir} (5)

o ter, if <y
TRJ"‘{ hri, if >3] ©

3.1.2 Fitness Function

The most significant factor in our fitness function is the makespan, w, which is
defined as the time from the start of the first task to the end of the last task. It
is calculated by evaluating the PACE function pe.(); for each host allocation
and combining this with the end time of the task:

w= max  {te;} (7)

Equation 7 represents the latest completion time of all the tasks. The aim
of the process is to minimise this function with respect to the schedule - which



bear similarities to orthogonal rectangular packing. It is in fact an extension of
the classical multi-processing (MS) scheduler problem, with the difference that
the host pool is diverse and dynamic. The MS problem is known be intractable
in the general case [5] and NP-hard for the case m > 5.

While schedules can be evaluated on makespan alone, in a real-time system,
idle time must also be considered to ensure that unnecessary space is removed
from the schedule queue. Titan employs an additional function (8) that penalises
early idle time more harshly than later idle time, using the following expression:

AT}l idl idl
Tk = wp Z ( w% (2wy, — 2719 — AT e)) (8)
where T} is the start of the idle time, and AT}4® is the size of idle time space
which can be calculated as the difference between the end time of task and the
start time of the next task on the same host.

This idle weighting function is therefore a decrease from 100% weighting
at (T; = 0,AT; = w) to 0% weighting at (T; = w, AT; = 0). The reason for
penalising early idle time is that late idle time has less impact on the final
solution as:

1. the algorithm has more time to eliminate the pocket.

2. new tasks may appear that fill the gap.

A linear contract penalty is also evaluated which can be used to ensure that
the deadline time for a task, d;, is greater than the expected end-time of the
task.

n—1
Or = > _max{(te; — d;) 0} 9)
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The three fitness functions are combined with preset weights to formulate
an overall fitness function (10). Using these weights, it is possible to change
the behaviour of the scheduler on-the-fly, allowing the scheduler to prioritise on
deadline or compress on makespan for example.

o= (WD) + (W™ 5 wy) + (W % 6) (10)
B Wi+ Wm 4 We

The fitness value is normalised to a cost function using a dynamic scaling
technique, and then used as the basis for the selection function. Schedules with
a higher fitness value are more likely to be selected than a schedule with a fitness

approaching 0.

3.1.3 Crossover / Mutation

The selected schedules are subject to two algorithmic operators to create a new
solution set, namely ‘crossover’ and ‘mutation’. The purpose of crossover is to
maintain the qualities of a solution, whilst exploring a new region of the problem
space. Mutation adds diversity to the solution set.

As the schedules are represented as a two dimensional string that consist of
a task ordering part (which is g-ary coded) and a binary constituent (which is



binary coded), the genetic operators have to be different for the task order and
host mappings. Each operator acts on a pair of schedules, and is applied to the
entire solution set.

S — S’ — S
crossover mutation

(11)

The task crossover process consists of merging a portion of the task order
with the remaining portion of a second task order, and then re-ordering to
eliminate illegal orders. The mutation process involves swapping random task
orders. For example, two task orders can be represented as follows:

KA = [T07T37T57T27T6;T47T1]
lp = [T57T47T3:T2aT1;T3;T6]

£4 and g can be combined at a random point to produce a new schedule
task list ¢, where €4 denotes the 0% element of £4. Task duplications are
then removed by undoing the crossover operation for the repeated task, as illus-
trated in the following expression where (73) denotes a task duplication which
is resolved by setting the first (T5) to the value of £p .1

¢ = [EA.(): ZA.I) EA.2; gB.37 EB.47 ZB.5; EB.G]
[To, (T3),Ts, T, T1, (T3), T6)
= [Ty, Ty, T5,T>,T1, T3, Tg)

Random changes are then applied to £ to give the mutated representation
2", illustrated with the bracketed tasks in the following expression;

o= [TOa Ty, T5,Ts, (Tl)a T3, (TG)]
= [T07T4;T57T27T63T37T1]

The host map crossover process also merges two schedules together, us-
ing a simpler binary copy. The mutation process randomly toggles bits in the
hostmap, while ensuring that topology rules have not been broken (such as try-
ing to run the task on zero hosts for example). Expression 12 represented a full
schedule of seven tasks and five hosts.

e = [T07T47T57 T27T67T37 Tl]

M" = [[1,1,0,1,1],[1,1,0,0,0],[0,0,1,0,0], (12)
[0,0,0,1,0],[0,0,0,0,1],[1,1,0,0,1],
[13 ]-a ]-5 ]-7 ]-]]

Figure 2 depicts a visualisation of this representation. The tasks are moved
as close to the bottom of the schedule as possible, which can result in a task
that has no host dependencies being run prior to a task earlier in the task order.
This is illustrated with Ts being scheduled before Ty despite being further on in
the task order.
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Figure 2: Visualisation of the schedule given in expression 12. Task T} is run earlier
than T} as it requires H> which is not used by either Tp or Tj.

4 Implementation

The research presented in the previous section has been developed into a working
system for scheduling sequential and parallel tasks over a heterogeneous network
of resources. The algorithm introduced in section 3 forms the centre point of
the workload managers and are responsible for selecting, creating and evaluat-
ing new schedules. Connection to the PACE system is achieved by a remote
evaluation library, with a performance cache to store timings for subsequent
re-use.

4.1 Workload Management Process

The core data type is the Task. Tasks are submitted to the workload manager
from the distribution brokers, and enter a pool of Task objects. The scheduler
maintains continuous visibility of this pool and applies the strategies described
earlier to form solution sets. The scheduler also accepts host information from
a second pool which is updated by an on-line host gathering and statistics
module. Currently, this information is gained from UNIX ‘uptime’ and ‘sar’
commands, although a small agent is being developed to remove the operating
system dependence that this approach involves.

At each iteration, the best solution is compared with an overall fittest solu-
tion. This allows the scheduler to maintain a copy of the best schedule found to
date, whilst allowing the process to explore other regions of the problem space.
If a significant change occurs in either the host or task pools, then this schedule
is deemed ‘stale’ and replaced by the fittest schedule in the current generation.

Periodically, the scheduler examines the bottom of the schedule and if there
are any tasks to run, will move them into the run queue and remove them from
the scheduling queue. Figure 3 provides a summary view of this system.

4.2 Evaluation

Figure 4 illustrates the best schedules of three scheduling approaches for 9500
generations. As expected, the heuristic methods offer a significant improvement
over a random search. The first approach acts on host mappings only, resulting
in rapid reduction in makespan before settling on a solution (not necessarily
global). The second approach acts on both the host mappings and the task
orders to reduce the makespan further and in less generations. This process is
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Figure 3: Flowchart diagram of the system implementation.

computationally expensive however, as the crossover and mutation stages for
task re-ordering are significantly more complicated than the operators for the
binary host mappings.

In figure 5 the weighting function of (10) is demonstrated with a static set of
32 tasks, with 16 tasks having a synthetic deadline imposed after approximately
10000 generations. For the purposes of this experiment, generation countis used
as ‘time’. The initial rise of fitness is indicative of the algorithm rapidly moving
away from the random data set. At this stage, all the tasks are within their
QoS restrictions and so makespan is the dominant variable for organisation. At
generation 10000, the deadline metrics start to effect the schedule queue and the
manager attempts to compensate. This has an immediate effect on the global
fitness. In this experiment tasks are not removed from the queue and therefore
the deadline metric becomes progressively dominant. After 12500 generations,
the schedule is deadline-driven as opposed to makespan-driven, demonstrating
how multiple parameters can be considered dynamically.

5 Conclusions and Further Work

The work presented in this paper is concerned with improving the task allo-
cation process in grid environments using a multi-tiered framework based on
Globus providers, distribution brokers and workload managers. This paper has
focused primarily on the iterative heuristic algorithms and performance predic-
tion techniques that have been developed for the workload managers.

A test suite has been implemented to tune the algorithm parameters and the
PACE models. The results demonstrate that the scheduler converges quickly
to a suitable schedule pattern, and that it balances the three functions of idle
time, make span and the quality-of-service metric deadline time.

Further work will examine the relationship between low-level scheduling and
the middle tier of workload management and top tier of wide area management.
It is envisaged that this framework will develop to provide complimentary ser-
vices to existing grid infrastructures (i.e. Globus) using performance prediction
and service brokers to meet QoS demands for grid-aware applications.
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optimal.
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Figure 6: Typical screen shot of the scheduler before the workload manager has
reorganised the tasks. The makespan at this time is between eight and nine minutes.

Current best makespan is 202 seconds, after 1500 generations.
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Figure 7: After 1500 iterations, the schedule has been condensed to just over three
minutes.



