
MASC: a Bitmap Index Encoding Algorithm for
Fast Data Retrieval

Han Wang∗, Zhen Chen†, Yuhao Wen‡, Junwei Cao, Guodong Peng, Wen-Liang Huang§,
Ziwei Hu‖, Jing Zhou and Jinghong Guo

Research Institute of Information Technology, Tsinghua University, Beijing, China
Department of Electronic Engineering, Tsinghua University, Beijing, China

Department of Automation, Tsinghua University, Beijing, China
Email: ∗han-wang@outlook.com, †zhenchen.nslab@gmail.com, ‡wenyhinthu@gmail.com

§China Unicom Groups Labs
Financial Street, Xicheng District, Beijing, China, 100140

Email: huangwenliang@gmail.com
‖State Grid Smart Grid Research Institute, Beijing, China, 102209

Abstract—Fast retrieval in archival traffic data is essential for
network security and forensic analysis. Bitmap Index is a data
structure enabling fast search over large data collections in a
limited time, but the space consumption is always a problem.
WAH, PLWAH and COMPAX are proposed for compressing
bitmap indexes for less storage. In this paper, a new bitmap index
encoding scheme, named MASC, is proposed to further improve
the compression ratio without impairing the query performance.
Instead of being limited to a fixed length (31 bits) in PLWAH and
COMPAX, the stride size can be as long as possible to encode
consecutive zero bits and nonzero bits in a more compact way.
Instead of piggyback used in PLWAH, a new structure in MASC
called carrier is introduced as piggyback in PLWAH only carries
an individual nonzero bit. We also generalize the traditional
literal word concept in PLWAH and COMPAX. The validity
of MASC encoding scheme is demonstrated with the application
in Internet Traffic Archival system. Based on experiments with
real Internet traffic data set from CAIDA, MASC has a better
compression ratio than PLWAH and COMPAX2 without the
penalty in query performance.

Index Terms—traffic archival; network forensic; network secu-
rity; bitmap index encoding; bitmap index compression; PLWAH;
COMPAX

I. INTRODUCTION

Indexes enable fast search over large data collections in a
limited time. But traditional indexes have huge space con-
sumption, which spurs the research on index compression
for space and performance issues. Index compression is both
interested in theory and practice. Gonzalo Navarro [1] et
al. present a comprehensive survey on this research topic.
Falk Scholer [2] et al. find that index compression not only
saves the space cost, but also accelerates the query speed.
Vo Ngoc Anh and Alistair Moffat [3] et al. propose a word-
aligned binary codes for inverted index compression for full-
text search engine. Jeff Dean [4] introduces the Block-Based
Index Format, Byte-Aligned Variable-length Encodings and
then Group Variant Encoding schemes used in several gen-
erations of Google search engine for space optimization and
performance improvement.

A bitmap index is a structure that can accelerate search

queries on low-cardinality attributes. It is useful in scientific
data and traffic archival. But the space consumption is always
a serious problem. Ming-Chuan Wu [5] et al. propose the
bitmap index encoding method and its usage in data ware-
house. Kesheng Wu [6] et al. propose WAH (Word-Aligned
Hybrid) compression scheme for bitmap indexes and give a
practical implementation called Fastbit [7]. As the state-of-
art, PLWAH (Position List Word-Aligned Hybrid) [8] and
COMPAX (COMPressed Adaptive indeX) [9] compression
scheme are proposed for bitmap indexes to make further
improvement for the WAH scheme. COMPAX2 is the new
version of COMPAX scheme which provides an extended
codebook and has better compression ratio with similar query
speed compared with COMPAX.

In this paper, a new bitmap index encoding scheme, named
MASC (MAximized Stride with Carrier), is proposed to
further improve the compression ratio without impairing the
query performance. MASC uses the stride size as long as
possible, not limited to 31 bits in PLWAH and COMPAX, to
encode the consecutive zero bits and nonzero bits in a more
compact way. MASC records origin bitmap index sequences
into a new designed format. We demonstrate the validity
of MASC with the application in Internet Traffic Archival
system. Based on our experiments using real Internet traffic
data set from CAIDA, MASC has better compression ratio
than PLWAH and COMPAX2 for about 10%.

This paper is organized as follows: Section 2 introduces
the background of bitmap index encoding scheme. Section
3 describes details in the design and encoding procedure of
MASC. Section 4 presents the applications of the proposed
MASC in Internet traffic Archival system. The experiment
result is also presented with real Internet traffic trace from
CAIDA in Section 4. Finally, we conclude this paper with
future work in Section 5.

II. BITMAP INDEX

A bitmap index is a structure that can accelerate the process
of searching queries. Its format is shown as follows in Table I.



TABLE I
AN EXAMPLE OF BITMAP INDEX

Row
ID

Column
Number

Bitmap Index
=1 =2 =3 =4

1 4 0 0 0 1
2 3 0 0 1 0
3 2 0 1 0 0
4 3 0 0 1 0
5 4 0 0 0 1
6 1 1 0 0 0

The shortcoming of bitmap index is that it requires large
storage space, which has plenty of room to be improved.
A considerable amount of bitmap index encoding algorithms
have been raised and several of them are widely-used.

WAH is proposed by K. Wu, E. J. Otoo, and A. Shoshani
[6]. WAH introduces the method of dividing 31-bit chunks
into fill chunks (all of 31 bits are 0) and literal chunks (the
rest), then encodes all fill chunks into a single fill word. WAH
performs well when there are huge amount of consecutive 0’s
in the origin bit sequence.

F. Deli‘ege and T. B. Pedersen proposed PLWAH [8]. While
WAH finishes encoding after combining fill chunks, PLWAH
tries to encode the fill word and its next literal word together if
the literal word is nearly-identical to a 0-fill word. As a result,
PLWAH has better compression ratio than WAH in general.

Unlike PLWAH, F. Fusco, M. Stoecklin and M. Vlachos
propose COMPAX [9], which improves WAH in a different
way. COMPAX also tries to combine literal words and fill
words after dividing them. However, COMPAX introduces
a codebook which enables the algorithm to encode original
bit sequence in more paths. Actually, COMPAX divides bit
sequence into F (fill), L (literal), FLF (fill-literal-fill), and LFL
(literal-fill-literal) types and performs quite well compared
with WAH and PLWAH.

III. MASC BITMAP INDEX ENCODING ALGORITHM

A. MASC Encoding Scheme

We propose a bitmap index encoding algorithm which can
reduce the bitmap index size with the comparable query
performance with the state-of-art algorithms, i.e., COMPAX2
and PLWAH. For clarity, a chunk is a fixed size block in
0-1 sequences for encoding operation. For the comparison
purpose, we set chunk to 31 bits as well as indicated in
COMPAX2 and PLWAH, while the bit order is from MSB
to LSB.

In essential, MASC makes an encoding stride as long as
possible and use a concept called carrier instead of piggyback
in PLWAH. The design details of MASC are introduced as
follows.

1) A 0-fill word encodes a sequence of consecutive zero
bits. For example, the 0-fill word in Fig. 1 encodes 6
chunks (6× 31) and 5 consecutive zero bits (191 bits in
total).

Fig. 1. 0-fill word.

Fig. 2. 1-fill word.

Fig. 3. 1-carried 0-fill word.

2) A 1-fill word encodes a sequence of consecutive nonzero
bits. For example, the 1-fill word in Fig. 2 encodes 6
chunks (6 × 31) and 5 consecutive nonzero bits (191
bits in total).

3) A 1-carried 0-fill word encodes a sequence of consecu-
tive zero bits followed by consecutive nonzero bits (at
most 30 bits, 1 bit less than a complete chunk).

In Fig. 3, the 2nd bit is used as carrier flag. When the
flag is set to 1, it means that the word is a 1-carried 0-fill
word. The 3rd − 7th bit is carrier, counting the amount of
carried consecutive nonzero bits. The 8th− 27th bits are used
as a counter, counting chunks of consecutive zero bits. The
28th − 32nd bit is an additional counter, counting consecutive
zero bits that less than a chunk. In Fig. 3, the entire word
represents 14× 31 + 15 consecutive zero bits followed by 18
consecutive nonzero bits.

Actually a 1-carried 0-fill word also belongs to 0-fill word,
however a pure 0-fill word does not carry any nonzero bits
with its carrier flag set to 0, while 1-carried 0-fill word carries
up to 30 nonzero bits with its carrier flag set to 1. So in
following sections, if not special specified, when we mention
a 0-fill word, it means the word does not have a carrier.

B. MASC Encoding Procedure

The encoding steps in MASC are explained in detail as
follows.

1) Uncompressed bitmap index is divided into equal chunks
of 31 bits. There is an example shown in Fig. 4.

Fig. 4. Uncompressed bitmap index.

2) From the very first chunk, we count consecutive zero
bits or nonzero bits and encode them into MASC form.



Fig. 5. Dealing with the first 0-fill word.

Fig. 6. Dealing with the first 1-fill word.

Fig. 7. Dealing with the second 0-fill word (step 1).

Fig. 8. Dealing with the second 0-fill word (step 2).

Fig. 5 to Fig. 9 shows detailed procedure based on the
example presented in Fig. 4.

In Fig. 5, all bits in the first chunk are zero bits, and the first
13 bits in the second chunk are zero bits too. So we encode
them into a 0-fill word. However, we have to check the next
word to determine whether to combine these two words into
a 1-carried 0-fill word or not. Then we come to Fig. 6.

In Fig. 6, the last 18 bits in the second chunk and the first
19 bits in the third chunk are nonzero bits. The total number
is 37, exceeding 30 which is the limit of 1-carried 0-fill word.
So we encode them into a single 1-fill word, and the former
0-fill word would not have any carrier.

The last 12 bits in the third chunk, the whole 4th and 5th

chunk, and the first 13 bits in the 6th chunk are zero bits. As
a result, we encode them into a single 0-fill word. We should
still check if we have to combine these zero bits and following
consecutive nonzero bits into 1-carried 0-fill word.

The 13th to 16th bit in the 6th chunk are nonzero bits, no
more than the carrier limit. So we encode the four consecutive
nonzero bits and the former zero bits into a 1-carried 0-fill
word.

The last 14 bits in the 6th chunk and the whole 7th chunk
are zero bits. So we encode them into a 0-fill word without

Fig. 9. Dealing with the last 0-fill word.

Fig. 10. The encoding result using MASC.

Fig. 11. The encoding result using PLWAH.

Fig. 12. The encoding result using COMPAX.

carrier. Till now we have finished the encoding process of
MASC and Fig. 10 is the bit sequence after encoding the origin
bitmap index by MASC.

Final results of PLWAH and COMPAX2 are shown in Fig.
11 and Fig. 12 respectively. It is clearly observed that both
PLWAH and COMPAX2 encode the original bit sequence into
6 words, while MASC’s result consumes only 4 words in all.

C. Comparison among MASC, PLWAH and COMPAX2

The concept carrier in MASC and piggyback in PLWAH
are similar. However, a carrier can carry at most 30 nonzero
bits while PLWAH can piggyback only a single nonzero
bit. Besides, we generalize the concept of literal word and
eventually obsolete this concept. As a consequence, several
(no more than 30) nonzero bits can be carried by the former
0-fill word and output a 1-carried 0-fill word, while PLWAH
has to encode them in a literal word or two literal words in the
worst condition when the consecutive nonzero bits locate in
two adjacent chunks. Considering zero bits’ and nonzero bits’
distribution in real data set, zero bits and nonzero bits appear
usually in batch especially after being sorted by the hash value
of each record. Thus MASC can perform better than PLWAH.

Though both MASC and COMPAX2 use the concept of
filled words, there are many differences between them. In
Section 4, we will conduct experiments to show MASC’s
advantages over the other two encoding schemes.



D. Query Table

Inspired by Group Variant Encoding scheme used in Google
[4], we make some modification on plain MASC algorithm
to raise the query efficiency. An extra bit, i.e. the second
bit is used as a flag too. Similar to the 256-entry table in
Jeff Dean’s talk [4], we introduce the concept of query table
which contains type tag and position offset in an encoding
window. The encoding window size is typically set to 4k in
our experiment carried out in Section 4.

The second bit of 1-fill words is set to 1. Fig. 13 shows the
new 1-fill word.

Fig. 13. A 1-fill word after revision.

The encoded bit sequence shown in Fig. 10 is converted into
those in Fig. 14 as the original bit sequence shown in Fig. 4.
The italics bit shows the difference between two results.

Fig. 14. The new encoding result from original bit sequence in Fig. 4.

Query table is used during query process. It consists of two
parts: type tag and position offset.

A type tag shows whether the word contains nonzero bits.
The second bit in a 0-fill word is set to 0 and all of the rest’s
second bit is 1, as a consequence the type tag can be directly
duplicated from the second bit of words.

The position offset consists of chunk offset and bit offset.
Chunk offset shows the number of chunks from the first one
of current encoding window, while bit offset is determined by
the number of bits from the first one of current chunk. The
number of bits needed to represent the bit offset is 5. While
bits needed for chunk offset is flexible, we set it to 7 in this
example. Fig. 15 shows the whole query table for the example
in Fig. 14.

Fig. 15. Query table for the example in Fig. 4.

Consider a computer can carry out a bitwise sum in a
seconds and carry out a logical sum in b seconds. Let total
words after encoding procedure to be W . Before introducing
query table, assume that the average time for querying for a
particular record is A and the average time querying for all
records hit by a particular prerequisite (e.g. querying for all
packets satisfying the first byte of source IP in traffic is 166) is
B. Then we have A = 0.75Wa+Wb, and B = 1.5Wa+2Wb.

If we compress the whole records together, using a query
table, the time for querying for a particular record remains
unchanged, but the time for querying for all records belong
to a particular prerequisite (such as the same query above)
declines to Wa+Wb.

IV. APPLICATIONS

A. Traffic Forensic with MASC

Cisco [12] predicts that the volume of Internet traffic will
quadruple between 2011 and 2016 reaching 1.3 Zettabytes per
year in 2016. According to the internal statistics of China
Unicom [20], mobile user traffic increases rapidly with CAGR
(Compound Annual Growth Rate) of 135%. From the data of
China Unicom in 2013, its monthly records are more than 2
trillion (2 × 1012), monthly data volume is over 525TB, and
has reached 5PB.

Luca Deri and Francesco Fusco [13] [14] propose
MicroCloud-based flow aggregation for fixed and mobile net-
works. This architecture is used to provide real-time traffic
monitoring and correlation in large distributed environments.

P. Giura and N. Memon [15] propose NetStore, a column
oriented storage with IP address based on inverted indexes
for fast retrieval. Each of the segments within a column
in NetStore is compressed independently. They also discuss
different possible compression methods. As Netstore maintains
the strict time order of packets, it does not consider the
reordering of packet based on flow level and utilizing bitmap
indexing compression in its system.

CNSMS (collaborative Network security management sys-
tem) [16], vCNSMS (Virtualized Collaborative Network Secu-
rity Management System) [21] and TIFAflow (Time machine
+ FAstbit) [17] are used for traffic acquisition and aggre-
gation for forensic analysis. CNSMS is an architecture for
traffic acquisition with TIFAflow and its UTM (Unified Threat
Management) appliance for traffic aggregation used in forensic
analysis in a cloud computing based security center. TIFAflow
is a software based on probe that combines TIFA [18] with
fastbit indexing to provide granular data storage. It may be
operated as an independent prober or integrated into CNSMSs
UTM appliance.

A 10 Gbps network link can arrive at a maximum of 14.8
million packets per second. It is a big challenge to index
these packets in one second. For any mobile network operator
manages several such links, even records only flow statistics,
the volume of resulting data could easily reach Terabytes in
one year. If all mobile traffic data is recorded for forensic
analysis, the volume of the data could easily reach Petabytes.
That remains a major challenge to a mobile network operator
that it must accommodate and index such big data for further
analysis.

We apply the proposed MASC encoding scheme to record
the origin bitmap index sequences into a new format. In
the following sections, we evaluate the performance of three
bitmap index compression encodings using the real data trace
from CAIDA. Our experiment results suggest that MASC has
the best performance among all of the three encoding schemes.



B. Performance Evaluation with Real Data

We choose the real Internet trace data from CAIDA [10] to
evaluate three bitmap indexes encoding schemes.

TABLE II
CAIDA DATASET ATTRIBUTES

Column Type Bytes

Source IP int 4
Destination IP int 4

Source Port short 2
Destination Port short 2

Protocol byte 1

We make comparison among MASC and the state-of-art
algorithms, i.e., PLWAH and COMPAX2. There are totally
13,578,496 IPv4 packets in the CAIDA’s data set. We pick
out source IPs in our experiment for bitmap indexing.

Fig. 16. Bitmap indexes of a byte from Source IP in Real Internet Trace.

At first we calculate hash values of each packet’s five tuples
and reord packets by hash values. This procedure is similar
to oLSH function in COMPAX for better compression ratio.
The difference is the hashing method we used is the uniform
hashing instead of locality hashing.

After that, packets belonging to the same flow can be aggre-
gated. Then we pick out each byte in source IP address (4 bytes
in all) of each packet, converting each byte into bitmap index
and writing the bitmap index into files for further encoding.
After that, each file corresponds to a column of bitmap index
as shown in Fig. 16. Then we encode 256 × 4 bitmap files
by three encoding algorithms, i.e., PLWAH, COMPAX2 and
MASC respectively, to evaluate the encoding schemes and
make comparison among them.

From Fig. 17 to Fig. 19, it is clearly shown that MASC
has a better compression ratio. MASC’s disk consumption is
18.07% less than PLWAH’s and 16.59% less than COMPAX2.

Fig. 20 shows the relationship between nonzero bits, which
is equal to the number of matching results, and room consump-
tion. The figure shows that COMPAX2 and PLWAH have their
own comfort zone. PLWAH has better performance while the
number of matching results is smaller and COMPAX2 wins
when it becomes bigger. Their curves intersect at a point and
this characteristic is also illustrated by Fig. 12 in F. Fusco’s

Fig. 17. The size of Compressed Source IP using 3 different schemes.

Fig. 18. The size of Compressed Destination IP using 3 different schemes.

Fig. 19. The size of Compressed Ports using 3 different schemes.

paper [11]. However, MASC consumes the least space among
the three methods under almost all circumstances. From this
figure, we can also observe that MASCs curve is always below
the other two curves, which proves that MASC has the best
compression ratio compared with COMPAX2 and PLWAH.



Fig. 20. Relationship between number of matching results and room con-
sumption in byte 1 of Source IP.

C. The Benefit of Query Table for Query Performance

To pick out all records belonging to a particular prerequisite
(such as source IP = 166.*.*.*), the plain MASC has to make
more than 2.15M bitwise sum operations and 1.43M logical
sum operations on average. After complementing MASC with
query table, now we can make 1.43M bitwise sum operations
and 700K logical sum operations. That is because the type
tag lessen the workload of bitwise sum and the position offset
reduces the number of logical sum operations, since position
offset frees MASC from calculating positions once and again.

Meanwhile, PLWAH has to carry out more than 1.74M
bitwise sum and 870K logical sum operations, and COMPAX2
makes 2.05M bitwise sum and 850K logical sum operations.
As a result, MASC with query table has comparable querying
efficiency as PLWAH and COMPAX2.

V. CONCLUSION

In this paper, we propose a new bitmap index encoding
algorithm named MASC. Instead of 31 bits in PLWAH and
COMPAX, MASC uses the stride size as long as possible
to encode the consecutive zero bits and nonzero bits in a
more compact way. In essential, MASC also uses a concept
called carrier instead of piggyback in PLWAH as piggyback
only represents the individual nonzero bit. We also generalize
the traditional literal word concept in PLWAH and COMPAX
by the new designed encoding format. As inspired by index
format from Google, we also introduce the query table so that
the query process can be far better than the plain MASC. In the
experiments based on real Internet data trace, MASC shows a
better compression ratio than PLWAH and COMPAX schemes
without impairing the query performance in practice.

In the future, we will carry out more experiments on the
compression ratio and query time to make all-round evaluation
on the new algorithm.
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