

In Proceedings of 5th International Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM 2000), Manchester, UK, April 2000, pp. 393-396.

Dynamic Application Integration
Using Agent-Based Operational Administration

Junwei Cao, Darren J. Kerbyson, and Graham R. Nudd
Department of Computer Science, University of Warwick, U.K.

{ junwei, djke, grn} @dcs.warwick.ac.uk
http://www.dcs.warwick.ac.uk/~hpsg/

Abstract
Operational Administration Agents (OAAs) can be used as the kernel of many
practical application systems to implement integration functions [Cao99]. The
dynamic application integration discussed in this work is essential for the OAAs to
support openness, scalability and maintenance of the application system.

Dynamic application integration can be achieved by reconfiguration of multi-
agent system. Traditional coordination mechanism, multicast communication, has
obvious shortcomings if used in loosely coupled C/S system. In this work a new
mechanism of using rule-based reasoning in a three-tier capability model is presented
to solve the problems and improve the performance of agent coordination.

1 Introduction
Many practical application systems are basically distributed multi-server-multi-client systems.
The coordination of different kinds of C/S computing system was summarized in [Adler95],
which shows that an agent-based design can be used to coordinate client interactions with
multiple services. An agent-based system is one in which the key abstraction used is that of an
agent [Jennings98]. Operational Administration Agents (OAAs) are such an agent-based
system designed to serve as matchmakers between the clients and servers [Cao99].

There are also some agent systems that support automatic mechanism for agents to find
each other. In DPSS system [Brooks97], when an agent is started on the new host, it wil l
inform all other agents about the new server on the host. Though multicast communication is
very simple and easy to implement, it is not the most efficient way especially in loosely
coupled C/S systems whose servers are only needed by a small group of the system end-users.

In this paper, a three-tier capability model used in the OAAs aims to maximize the
efficiency of the system running normally. A simple rule-based reasoning is also added to
each agent to support the special dynamic functions. The new mechanism can be exploited to
support the dynamic reconfiguration and application integration much more efficiently than
multicast in loosely coupled C/S system.

2 Operational Administration Agents
The OAAs architecture is illustrated in Figure 1. Each host has only one agent which is
responsible to manage the local clients and servers of the applications. Agents have exactly
the same structure, which consist of communication, control, and allocation layers. The agent
receives the requests from both local clients and remote agents, and takes them as the same.
The broker is the kernel of the OAAs system that is responsible to manage the global
information. An application is divided into a client and a server. The server can be installed in
one of the host and client in all of the hosts licensed. In fact, the server of one application may

require the information from the server of the other application and, thus, can be taken as a
client of that application.

OA A s

A pps

OA A

Cl i ent Cl i ent Cl ientServer Server

OA A OA A

Broker

Server

… …

Figure 1. Architecture of OAAs

The most essential problem is how an agent coordinating with the other agents can find
the target server for a request from a local client or a remote agent in the most efficient way
(which will be discussed in Section 3), and in this way if the dynamic application integration
can be supported (which will discussed in Section 4).

3 Three-Tier Capability Model
In order to coordinate the OAAs to find the servers, three kinds of Agent Capability Tables
(ACTs) can be used in the system to record the details of the servers and their addresses,
which include local ACT (L_ACT), global ACT (G_ACT), and local global ACT (LG_ACT).

• L_ACT is maintained by the local agent. Each agent uses one L_ACT to record the
local server information. These servers can be taken as the capabilities of the agent.
When a server is added to or removed from a host, the data file of the L_ACT will be
modified to reflect the changes at once. This means that the L_ACT can record the
real information about local servers all the time.

• G_ACT is maintained by the broker. It is actually a sum of L_ACTs. When one
modification is made in one of the L_ACTs, the new copy of the L_ACT will be sent
to the G_ACT at the same time and the same modification is made in the data file of
the G_ACT as well. So the G_ACT can record the real information about all of the
servers all the time. The contents of the G_ACT should be always consistent with
those in the local agents.

• LG_ACT is maintained by the local agent dynamically. When an agent is started on a
host, it will ask the broker for a copy of current G_ACT and store it in the memory. So
the contents of a LG_ACT only reflect the real situation of the servers on the time the
agent starts, and may or may not be true after that. When the agent is shut down, the
LG_ACT is lost.

In three-tier model three kinds of the ACTs are all used. The LG_ACT can serve as a
G_ACT locally, so no connections to the broker are needed when running normally.
However, the dynamic integration of applications can not be supported because the
coordination of agents in the three-tier model fully depends on the LG_ACTs, which can not
be changed simultaneously when servers are added to or remove from the system and, thus,
may become unreliable. This will be discussed in the next section.

4 Dynamic Application Integration
Simple rule-based reasoning can be added into the control layer of each agent to support
dynamic application integration. When an agent can not find the server information in either
L_ACT or LG_ACT, it detects that a change has occurred. It can ask the broker for help, and
modify the LG_ACT. The idea will be described in a more formal way below.

4.1 Formal Representation
The formal representation is the basis for system behavior modeling using rule-based

reasoning, which is summarized in Table 1.

Components Hi (i=1, ��� ,n), ith host in a n-host system; Ai (i=1, ��� ,n), the agent on Hi
B, the broker of the agent system; Ci, one of the clients on Hi
Si, one of the servers on Hi; s, a given service request

Processes Ci(s), Ci sends the request s; Ai(s), Ai processes the request s
Bi(s), B looks up the request s required by Ai

Evaluations l(s)∈{T, F}, evaluation result of s in L_ACT
T, within the local capabilities; F, beyond the local capabilities
lg(s)∈{Ak(k=1, ��� ,n), null}, evaluation result of s in LG_ACT
g(s)∈{Ak(k=1, ��� ,n), null}, evaluation result of s in G_ACT
Ak means s is within the capabilities of Hk; null means no service s is available

Table 1. Formal Representation

4.2 Rule-Based Reasoning
We represent the process for a client to require a service in a logical way. The reasoning
results according to the rules record the route for a request from a client to reach the target
server when the server is reconfigured dynamically. Ten rules are used.

Rule 1. Ci(s) � Ci → Ai(s)
One process always begins from a request sent from a client. This rule means that the

client only sends the request to the local agent and waits the results. The symbol → is used to
describe the route from one component to another.

Rule 2. Ai(s) � Ai → (l(s), lg(s))i
This rule means that when an agent receives a request, it will look up its own capabilities

in L_ACT and LG_ACT.
Rule 3. Bi(s) � B → (g(s))i
The broker can receive requests from agents and check the server in G_ACT. Note that

the → behind the B does not mean the broker will connect to the next agent, but that the Ai
will connect to the next agent after asking for help from the broker.

Rule 4. (T, *)i
� Si

This represents the rule that if the L_ACT shows that the service is within the local
capabilities, one of the local servers is sure to be able to provide the service and the LG_ACT
needs not be checked. The Si is normally the end of a process.

Rule 5. (F, Ak)i
� error (if k = i)

If L_ACT evaluation results show that the service can not be provided locally, the states
of the LG_ACT must be checked. The rule shows if the LG_ACT records that the service is
within the local capabilities, there must be a system error. As mentioned above, the LG_ACT
should have been informed if a local server was changed.

Rule 6. (F, Ak)i
� Ak(s) (if k ≠ i)

If the LG_ACT shows that the service is on another host, the agent will transfer the
request to that one no matter whether the information is true or fault.

Rule 7. (F, null)i
� Bi(s)

If the LG_ACT can not find the service information either, the agent will ask the broker
for help.

Rule 8. (Ak)i
� error (if k = i)

If G_ACT evaluation results show that the service can be provided locally by the source
agent, there must be a system error, because the information in L_ACT and G_ACT, which
should be always coherent, is now contradictory.

Rule 9. (Ak)i
� Ak(s) / (F, null)i

� (F, Ak)i (if k ≠ i)
If the G_ACT shows that the service is on another host, the agent will transfer the request

to that one and add this information to LG_ACT.
Rule 10. (null)i

� null
If the G_ACT can not find the service information either, there must be no the server at all

on the platform.
These rules can be organised together to give the route for a request from a client to the

correspondent server through logical reasoning and represent all of the situations of the
dynamic integration. In the next section, these are illustrated through a concrete case study.

4.3 A Case Study
The case study in this section shows how the dynamic integration is modeled exactly using
simple reasoning. The typical situation studied is that C1 on H1 want to require service s from
the server, which was just removed from the H2 and added onto the H3.

The process is shown below for the first time that C1 asks for the service s after the server
location was changed. For each step, those under the line show the evaluation results of all of
the ACTs to the service s, which replace the correspondent parts, (l(s), lg(s))i and (g(s))i, in
the process automatically. The number on top of each � indicates the rule used for the
transformation.

�
→→

�
→→

�
→

�

)2(

)3(,3212

)(211
)6(

)3(,3212

1)2,(11
)2(

)3(,3212

)(11
)1(

)3(,3212

1

iA,(T,*),(F,null))(F,A

sAAC

iA,(T,*),(F,null))(F,A

AFAC

iA,(T,*),(F,null))(F,A

sAC

iA,(T,*),(F,null))(F,A

(s)C

�
→→→→

�
→→→→

�
→→→

�
→→→

)2(

)3(,32312

)(3211
)9(

)3(,3212

2)3(211
)3(

)3(,3212

)(2211
)7(

)3(,3212

2),(211

iA,(T,*)),(F,A)(F,A

sABAAC

iA,(T,*),(F,null))(F,A

ABAAC

iA,(T,*),(F,null))(F,A

sBAAC

iA,(T,*),(F,null))(F,A

nullFAAC

iA,(T,*)),(F,A)(F,A

SABAAC

iA,(T,*)),(F,A)(F,A

TABAAC

)3(,32312

33211
)4(

)3(,32312

3,*)(3211 →→→→→
�

→→→→→

The final result C1 → A1 → A2 → B → A3 → S3 shows that five connections are needed
for the whole process. Though the server has been removed from the A2, A1 does not know
and still transfer the request to A2 according to its LG_ACT. A2 has to ask for help from the
broker and modify its LG_ACT. However, when C1(in fact it can be any other clients) asks
the service s for the second time, the broker is not needed and A2 can transfer the request
directly to A3. The final result will become C1 → A1 → A2 → A3 → S3, in which only four
connections are used. Also after A1 was restarted and its LG_ACT is now the same as the
latest G_ACT. The request will not be transferred through A2. Only three connections are
needed for a remote service requirement, C1 → A1 → A3 → S3.

5 Conclusions
In this work, a new agent coordination mechanism is presented to support dynamic
application integration. The performance of multicast is mainly relative to the system scale n.
The performance of the new mechanism is mainly relative to the server request frequency l
and the agent life cycle T. So for the reconfiguration of loosely coupled systems, where n >>
lT, the new mechanism should be more efficient.

References
[Adler95] R. M. Adler. Distributed Coordination Models for Client/Server Computing. IEEE Computer, 28(4),

1995, pp. 14-22.
[Brooks97] C. Brooks, B. Tierney, and W. Johnston. JAVA Agents for Distributed System Management. LBNL

Report, 1997.
[Cao99] J. Cao, Y. Fan, and C. Wu. Research and Design of Operational Administration Agents. Computer

Integrated Manufacturing Systems - CIMS, 5(3), 1999, pp. 39-43.
[Jennings98] N. R. Jennings and M. J. Wooldridge (eds). Agent Technology: Foundations, Applications, and

Markets. Springer-Verlag, 1998.

