
 23rd International Conference on Electricity Distribution Lyon, 15-18 June 2015 
 

Paper  0458 

 
 

CIRED 2015  1/5 

POWER QUALITY DATA COMPRESSION USING PRINCIPAL COMPONENT ANALYSIS 
 

 

                 Huaying ZHANG, Zhengguo ZHU, Senjing YAO                       Bingbing ZHAO, Junwei CAO 

Shenzhen Power Supply Co. Ltd., China Southern Power Grid – P. R. China  Tsinghua University – P. R. China 

                         E-mail address: zhyszpower@163.com                                          E-mail address: jcao@tsinghua.edu.cn 

 

ABSTRACT 

With the increasing of non-linear, burst or un-balanced 

load, power quality issues in the grid is becoming 

important. With more power quality monitors installed 

with higher sampling rates, an expanded size of power 

quality data brings difficulty to storage, transmission and 

analysis. In this paper, principal component analysis 

(PCA), which is a popular feature extraction algorithm in 

pattern recognition, is applied to power quality event data 

compression. In a power grid, different nodes and phases 

normally have high correlations, and PCA projects 

original data to a lower dimensional space to reduce 

redundancy. The compression ratio is determined by the 

number of principal components. With more principal 

components, the error of data recovery is reduced. We also 

compare the performance of two derivative algorithms, 

probabilistic PCA (PPCA) and kernel PCA (KPCA). 

Experimental results show smaller errors with higher 

complexity, comparing PPCA and KPCA with PCA. 

INTRODUCTION 

Ideal signals of a power grid should be perfect sine waves 

with constant frequency. In three phases AC, the voltage 

and current of each phase are expected to be symmetric. 

However, with the increasing of non-linear, burst or un-

balanced load, power quality issues in the grid is becoming 

important. Nowadays, power quality problems can have a 

threat to safety and stability of the power grid, resulting in 

huge financial loss [1]. 

 

Since some power quality issues are transient, e.g. voltage 

sags, data sampling for power quality monitoring requires 

high frequency, resulting in large amount of data. For 

example, the city Shenzhen of P. R. China has deployed 

over 600 power quality monitoring nodes for several years 

[2]. Management and analysis of such big data is becoming 

a challenging issue. The large volume of power quality 

monitoring data brings difficulty to storing, transmitting, 

querying and data mining. Applications of such big data 

for advanced analysis are indeed required, though 

currently with very high overhead. 

 

More data may not show more information, since 

correlations may bring redundancy. In this work, features 

of power quality monitoring data are further investigated. 

We believe there are high correlations among different 

channels and nodes of power quality monitoring data, 

which make data compression or feature extraction 

possible. For example, power quality events, happening 

simultaneously among the three phases, are highly 

correlated. A highly efficient data compression method 

should be able to reduce overhead for data storage and 

analysis. 

 

Data compression is not a new research topic, and many 

approaches have been investigated to reduce data sizes by 

improve coding scheme such as Huffman coding. In recent 

years, many methods have been proposed specially to 

compress power quality data using wavelet and wavelet 

packet transforms [3-6]. In [3] and [4], compression is 

achieved by thresholding wavelet transform coefficients 

and reconstructing the signal using significant coefficients. 

Using the same transform thresholding techniques, 

variations of the wavelets, such as slantlets, are used in [5]. 

In [6], minimum description length criterion is used for 

compressing with wavelet packets. 

 

In this work, principal component analysis (PCA) [7] is 

adopted for power quality event data compression. PCA is 

a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly 

correlated variables into a set of values of linearly 

uncorrelated variables, so-called principal components. 

 

In the second section, we will give a brief introduction to 

PCA, and its derivative algorithms, PPCA (Probabilistic 

Principal Component Analysis) [8] and KPCA (Kernel 

Principal Component Analysis) [9]. PPCA can better keep 

features of sample data, instead of simply removing non-

principal components, which improve performance on 

succeed recognition and classification. KPCA map the 

data to Hilbert space by using kernel function, which 

makes it easier to extract principal components. In the third 

section, we will compress real PQ data using these three 

algorithms with reconstruction. Performance metrics 

include compression ratio and recovery error. The paper 

is concluded in the fourth section with an introduction to 

future research directions. 

 

PCA, KPCA AND PPCA 

PCA 

Suppose that we have N samples of n -dimension vector

x , and each row is a sample, column is 1 2, , mx x x . We 

wish to reduce the dimension from n  to m . Principal 

component analysis completes this by finding linear 

combinations,
1 1 2 2, , m ma x a x a x , called principal 
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components, which have maximum variance, and subject 

to being uncorrelated with previous principal components. 

The PCA tries to reduce dimensions of data considerably 

while still retaining much of the information in it. Figure 

2.1 shows that how PCA works. The principal component 

orientation (also the signal) has maximum variance 

compared to non-principal component (also the noise). 

 

 
Figure 2.1. An illustration of PCA 

 

Specific steps of PCA are derived as follows: 

 

Normalize the sample data by: 
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where: 

( )ix  is the mean of 
ix  

( )ix  is the standard deviation of 
ix  

 

Compute the covariance matrix of sample data after 

normalization: 
TXX  

 

Compute the eigenvalues and eigenvectors of 
TXX  and 

sort all eigenvalues. Select the corresponding eigenvectors 

the biggest m  eigenvalues as principal component 

orientation. 
1 2, , m    

 

Then we compute the projection of sample data on 

principal component (also the compressed data): 
1 2( ) [ , , ]m Ty t X    

 

PPCA 

Compared with traditional PCA, PPCA get more 

information from non-principal components instead of 

simply discarding it. PPCA suppose the non-principal 

components as noise which is subject to Gaussian 

distribution. By using maximum likelihood estimation 

(MLE), we can get the parameters of the distribution. 

 

Specific steps of PPCA is derived as follows: 

 

Each sample data is a n -dimension vector, and there is a 

m -dimension( m < n ) vector t  which satisfies 

t Wx      

where: 

W  is a n m matrix 

  is the sample mean 

  is noise 

 

Hidden variable x is subject to Gaussian distribution 

~ (0, )x N I  

1 N

i

i

x
N

   ， ~ (0, )N   is the diagonal 

covariance matrix. 

 

By further derivation, the MLE of PPCA is 
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where: 

( 1, 2, )i i m m n     is the d q  smallest 

eigenvalues of sample covariance matrix 

1

1
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S x u x u
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1 2( , , )q q q ddiag       

qU  is a matrix composed of eigenvectors corresponding 

( 1, 2, )i i m m n     

I  is a ( d q )-dimension identity matrix 

 

The data after compression x  is 

( )Tt W x    

 

KPCA 

There are many algorithms using the Kernel method in 

pattern recognition such as support vector machine (SVM). 

Because the relationship may be not clear in lower 

dimensional space, the kernel converts it into higher 

dimensional space which is called feature mapping. In the 

new space, extract principal components or classification 

is possible. 

 

Kernel methods owe their names to the use of kernel 

functions, which enable them to operate in a high-
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dimensional implicit feature space without ever computing 

the coordinates of the data in that space. Most popular 

kernel functions are linear kernel, Gaussian kernel, 

sigmoid kernel, etc. 

 

In the high-dimensional space, we define a mapping 

dX F ： which convert a d-dimension vector to 

Hilbert space. In this space, the covariance matrix is: 

1
( ) ( )TK X X

N
   

 

Then compute the eigenvalues and eigenvectors of K  

which are: 
1 2 1 2, , , , ,m m       

and the largest p eigenvalues are: 
1 2, , p    

 

Then normalize corresponding eigenvalues which makes: 

2 1i

i



  

 

Then we can compute the projection on principal 

components: 

1

( ) ( ) ( )
m

t j t

j i i

i

X V X X   


  

 

EXPERIMENTAL RESULTS 

Experiment data of this paper is the power quality events 

record of Shenzhen city from 2010-2012.  Table 3.1 is an 

example. It shows the high correlation between three 

phases in voltage sag depth data. 

 

Phase A B C 

Fuyong Station 0.305 0.313 0.328 

Qingshui Station   0.813 0.816 0.803 

Shuitian Station 0.782 0.756 0.778 

Yuxin Station 0.424 0.43 0.421 

Tangwei Station 0.25 0.235 0.227 

Table 3.1. Co-relation between three phases in  

voltage sag depth data 

 

Experimental results are included in Figure 3.1.The x-

coordinate shows that a total of 400 samples are utilized in 

this work. The y-coordinate is the voltage sag depth of the 

samples. Original data are presented in blue circles and 

recovered data after data compression are presented in red 

stars. 

 

 
(a) With 2 principal components 

 
(b) With 1 principal component 

Figure 3.1. Comparison of original and recovered data on 

voltage sag depth 

 

Regarding data compression, two most essential 

performance metrics are compression ratio and recovery 

error. From Figure 3.1, it is illustrated that original data 

compressed with 2 principal components can be recovered 

with less errors, compared that only 1 principal component 

is utilized. These are also investigated quantitatively. 

 

Firstly consider the compression ratio. Suppose that the 

sample data are composed of N n -dimensional vectors, 

and we extract m  principal components. The following 

data need to be stored: 

- the projections of N  eectors on m  principl  

components, m N in l   

- m principl  component eectors, m n  in l   

- slmp e melns, n  in l   

Therefore, the compression ratio (CR) is: 

m N m n n
CR

n N

   



 

 

Then consider the recovery error, which measures the 

difference of original data and recovery data. 
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Table 3.2 compares the compression ratio and recovery 

error with 1 or 2 principal components. The compression 

rate with only 1 principal component can reach 33.8% with 

the given dataset, but the recovery error is as high as 8.15%. 

With 2 principal components applied, the recovery error is 

reduced to 2.87%, though the compression rate is 

increased to 67.4%. In actual applications, there is always 

tradeoff to be made between these two performance 

metrics. 

 
Number of principal components 1 2 

Compression ratio 0.338 0.674 

Recovery error 8.15% 2.87% 

Table 3.2. Compression ratio and recovery error 

with 1 or 2 principal components 

 

Table 3.3 compares the performance of PCA, PPCA, and 

KPCA. Since compression ratios of these three methods 

are all the same, therefore, just recovery errors are listed. 

As we can see, the recovery errors of PPCA and KPCA are 

only 5.61% and 5.82% with 1 component, which are 

significantly smaller than that of PCA. This proves that 

PPCA and KPCA can indeed extract more information 

with same data size. PPCA achieves this by estimation of 

noise and KPCA by using kernel functions. 

 
Number of principal 
components 

1 2 

PCA 8.15% 2.87% 

PPCA 5.61% 1.06% 

KPCA 5.82% 1.22% 

Table 3.3. Recovery errors of PCA, PPCA and KPCA 

with 1 or 2 principal components 

 

In this paper, we just implement PCA on data between 

different phases. In fact, many power quality events are 

caused by other events spread in grid, leading to higher 

correlation. At the same time, different physical quantity, 

e.g. voltage, current, active power, reactive power, are also 

correlated, making data compression by PCA is more 

feasible. 

 

CONCLUSIONS 

In this paper, PCA is applied for compression of data 

pertaining to the Power Quality events. Unlike 

compression algorithms using wavelet, PCA is simple and 

easy to put into practice. The compression performance is 

evaluated by compression ratios and errors between 

original data and recovery data. We also use PPCA and 

KPCA, which are derivative algorithms of PCA, to 

implement data compression. Performance of these 

methods is compared, and we find that PPCA and KPCA 

both have smaller errors than PCA but with higher 

complexity. 

 

Future research directions include the application of the 

methods presented in this paper to more data, e.g. power 

experience [10], coupling of data compression with data 

cleaning [11], power quality data optimization [12], and 

advanced data analysis on power quality events [13]. All 

these work will be carried out using real power quality data 

collected in the city Shenzhen of P. R. China. 
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