
Performance Prediction and its use in Parallel
and Distributed Computing Systems

Stephen A. Jarvis, Daniel P. Spooner, Helene N. Lim Choi Keung, Graham R. Nudd
High Performance Systems Group, University of Warwick, Coventry, UK

saj@dcs.warwick.ac.uk

Junwei Cao
C & C Research Laboratories

NEC Europe Ltd., Sankt Augustin, Germany

Subhash Saini
NASA Ames Research Center
Moffett Field, California, USA

Abstract

A performance prediction framework is described in
which predictive data generated by the PACE toolkit is
stored and published through a Globus MDS-based perfor-
mance information service. Distributing this data allows
additional performance-based middleware tools to be built;
this paper describes two such tools, a local-level scheduler
and a system for wide-area task management. Experimen-
tal evidence shows that by integrating these performance
tools for local- and wide-area management, considerable
improvements can be made to task scheduling, resource
utilisation and load balancing on heterogeneous distributed
computing systems.

1. Introduction

The computing architectural landscape is changing. Re-
source pools that were once large, multi-processor super-
computing systems are being increasingly replaced by het-
erogeneous commodity PCs and complex powerful servers.
These new architectural solutions, including the Internet
computing model [20] and the grid computing [13, 18]
paradigm, aim to create integrated computational and col-
laborative environments that provide technology and infras-
tructure support for the efficient use of remote high-end
computing platforms. The success of such architectures
rests on the outcome of a number of important research ar-
eas; one of these – performance – is fundamental, as the
uptake of these approaches relies on their ability to provide
a steady and reliable source of capacity and capability com-
puting power, particularly if they are to become the com-
puting platforms of choice.

The study of performance in relation to computer hard-
ware and software has been a topic of much scrutiny for a

number of years. It is likely that this topic will change to
reflect the emergence of geographically dispersed networks
of computing resources such as grids. There will be an in-
creased need for high performance resource allocation ser-
vices [3] and an additional requirement for increased sys-
tem adaptability in order to respond to the variations in user
demands and resource availability. Performance engineer-
ing in this context raises a number of important questions
and the answers to each will impact on the utilisation and
effectiveness of related performance services:

What does the performance data describe? The response
of a system (or user) to the performance data will depend on
the nature of the data. This might include timing data for the
run-time of a particular application (on a given resource)
or data relating to the monitoring of various network and
computational resources, for example the communication
latencies provided by network monitors such as NWS [26].

How is this performance data obtained? Gathering per-
formance data can be achieved by number of methods.
Monitoring services provide records (libraries) of dynamic
information such as resource usage or characteristics of ap-
plication execution. This data can be used as a benchmark
for anticipating the future performance behaviour of an ap-
plication, a technique that can be used to extrapolate a wide
range of predictive results [10]. Alternatively it is possible
to extract data from an application through the evaluation of
analytical models. While these have the advantage of deriv-
ing a priori performance data – the application need not be
run before performance data can be collected [1, 21] – they
are offset by the complexity of model generation.

How is this data classified? Monitored data is often
fixed-scenario – based on a particular run on a particular
machine – in contrast, analytical approaches can produce
parametric models which allow the investigation of perfor-
mance scenarios through extrapolation. Data will also re-
late to different levels of abstraction in the system; this may



include different application software components [25] or
different machine instruction benchmarks [16] for example.

How can this data be used? Once the data has been
obtained it needs to be published. This can be achieved
through information services that ensure the shared perfor-
mance data remains current amongst the distributed nodes
in the system. The delivery of the data via information ser-
vices allows it to be used for resource scheduling [4, 24],
batch queueing [19], resource discovery [7, 8] or resource
brokerage [6, 15]. The data might also be used to man-
age workload from the point of view of service contracts,
deadlines, or other user and system defined QoS (Quality of
Service) constraints.

What will acting on this data achieve? The provision
of performance information can have a number of benefits:
distributed performance services [14] can be built that allow
middleware to steer tasks to suitable architectures; the QoS
demands of users can be serviced in resource efficient ways;
the architecture can be configured so that the best use is
made of its resources; the capabilities of the architecture can
be extended, and configurations for providing application
steering can be implemented.

This paper addresses these issues in the context of an ap-
plication performance prediction environment. The Perfor-
mance Analysis and Characterisation Environment (PACE)
[21] developed by the High Performance Systems Group at
the University of Warwick is a state-of-the-art performance
prediction system that provides quantitative data concerning
the performance of (typically scientific) applications run-
ning on high performance parallel and distributed comput-
ing systems. The system works by characterising the appli-
cation and the underlying hardware on which the applica-
tion is to be run, and combining the resulting models to de-
rive predictive execution data. PACE provides the capability
for the rapid calculation of performance estimates without
sacrificing performance accuracy. PACE also offers a mech-
anism for evaluating performance scenarios – for example
the scaling effect of increasing the number of processors
– and the impact of modifying the mapping strategies (of
process to processor) and underlying computational algo-
rithms [9].

The real-time capabilities and parametric prediction
functions (discussed in section 2) allow PACE to be used for
the provision of dynamic performance information services
(see section 3). These in turn can be used to aid the schedul-
ing of tasks over clusters of homogeneous resources (see
section 4), and provide a basis for the higher-level manage-
ment of grid system resources (see section 5). Results show
that employing performance prediction techniques at these
two system levels provides an efficient framework for the
management and distribution of multiple tasks in a wide-
area, heterogeneous distributed computing environment.

2. The PACE Toolkit

Details of the PACE toolkit can be seen in Figure 1. An
important feature of the design is that the application and
resource modelling is separated and there are independent
tools for each.

The Application Tools provide a means of capturing the
performance aspects of an application and its parallelisa-
tion strategy. Static source code analysis forms the basis of
this process, drawing on the control flow of the application,
the frequency at which operations are performed, and the
communication structure. The resulting performance speci-
fication language (PSL) scripts can be compiled to an appli-
cation model. Although a large part of this process is auto-
mated, users can modify the performance scripts to account
for data-dependent parameters and also utilise previously
generated scripts stored in an object library.

Figure 1. An outline of the PACE system including the
application and resource modelling components and the
parametric evaluation engine which combines the two.

The capabilities of the available computing resources are
modelled by the Resource Tools. These tools use a hard-
ware modelling and configuration language (HMCL) to de-
fine the performance of the underlying hardware. The re-
source tools contain a number of benchmarking programs
that allow the performance of the CPU, network and mem-
ory components of a variety of hardware platforms to be
measured. The HMCL scripts provide a resource model for
each hardware component in the system, since these mod-
els are (currently) static, once a model has been created for
a particular hardware, it can be archived and reused.

Once the application and hardware models have been
built, they can be evaluated using the PACE Evaluation
Engine. PACE allows: time predictions (for different sys-
tems, mapping strategies and algorithms) to be evaluated;
the scalability of the application and resources to be ex-



plored; system resource usage to be predicted (network us-
age, computation, idle time etc), and predictive traces to be
generated through the use of standard visualisation tools.

The PACE performance evaluation and prediction capa-
bilities have been validated using ASCI (Accelerated Strate-
gic Computing Initiative) high performance demonstrator
applications [9, 17]. The toolkit provides a good level
of predictive accuracy (an approximate 5% average error)
and the evaluation process typically completes in a matter
of seconds. The success of PACE means that it has been
used in a number of other high-performance settings, these
include the performance optimisation of financial applica-
tions [22], real-time performance analysis and application
steering [2] and the predictive performance and scalability
modelling of the ASCI application Sweep3D [9].

3. Performance Information Services

Once the prediction data has been generated by the
PACE toolkit, it needs to be stored and made available to the
system components via performance information services.
There is still some debate as to how best to implement an
information services framework in a highly distributed in-
frastructure (and how to avoid bottlenecks in information
storage and retrieval, how to ensure consistency of infor-
mation, what data models should be used etc – see [10]).
The approach used in this research is based on the Moni-
toring and Discovery Service (MDS) [11] from the Globus
toolkit [12]. This consists of a number of configurable in-
formation providers (Grid Resource Information Services)
and configurable directory components (Grid Index Infor-
mation Services).

Information about each local collection of resources (a
parallel machine or cluster of workstations, etc) is stored
at a local Grid Resource Information Services (GRIS) host.
The back-end information storage is supported through a
relational database, and this information is transferred to the
GRIS host through LDIF (LDAP Data Interchange Format)
supported information providers (see Figure 2).

Each GRIS host provides a subset of information about
resources participating in the grid. Higher-level (global) ac-
cess to the information in each of these local subsets is pro-
vided through the MDS Grid Index Information Services
(GIIS). The advantage of this is that it provides a unified
solution to the distribution of data, it is decentralised (and
therefore robust) and information providers are located log-
ically close to the entities which they describe.

The performance information service can work in two
ways; as well as storing and distributing raw performance
data from the PACE toolkit, additional meta-data1 can be

1which in this context means data which is created from the mathemat-
ical analysis of the simpler performance data parts.

Figure 2. Implementation of a performance information
service provided through the Globus MDS. Data is stored
in a local relational database and data exchange is provided
through a number of LDIF supported information providers.

generated and stored. One way in which this is achieved is
through the use of a prediction-driven scheduler.

Using the predictive data for each application it is pos-
sible to estimate how those applications might map onto a
set of resources. At the very least this provides a means
for predicting the length2 of the task queue for a particular
set of resources. This meta-data is also stored and accessed
through the performance information service.

Examples of this data, and the service provision which
it allows, are given in sections 4 and 5. Supporting results
demonstrate the effect these performance services have on
task management and resource utilisation.

4. Scheduling over Local Resources

The anticipated size of grid computing environments
necessitates a scalable approach to resource management.
In order to harness the capabilities of established schedul-
ing systems, it is beneficial to employ management frame-
works that can both consolidate key resource information
from local-level schedulers and also coordinate higher-level
task submissions between managers. This requirement has
directed a number of research projects including Condor-
G, for the management of Condor [15, 19] clusters, and
Nimrod-G, for the management of Nimrod [5, 6] experi-
ments with grid protocols.

A similar two tiered design is used in this research. An
agent system (documented in section 5) provides high-level
management to a grid resource composed of a number of
local-level clusters, which are themselves managed by a
cluster scheduler known as Titan [23]. This separation
is important as it emphasises the difference between local
scheduling and wider-area task management, the character-
istics and requirements of each being quite different.

2in terms of time rather than number of tasks



A unique feature of this work is that both local-level
scheduling and high-level task management are driven by
performance prediction data. The granularity and applica-
tion of this data is different at each level in the system, but
the decision making at each level is supported by data sup-
plied by the performance information services. Both the
scheduling service and also the agent system add meta-data
to the information services as well as using raw (and meta-)
data from it.

A characteristic of this management system is that when
applications are submitted for execution, they are given a
user (or middleware) defined deadline. The aim of the lo-
cal scheduler is to ensure that the mapping of tasks to re-
sources is done in such a way that the deadlines are met.
The scheduler is able to experiment with different runtime
scenarios which allows the impact that the task mapping
has on the overall makespan (run-to-completion time) to be
investigated.

4.1. Prediction-based scheduling

The Titan scheduler combines PACE model evaluation
with an iterative (genetic) algorithm. Such algorithms are
suitable to problems of this nature where multiple (and often
conflicting) metrics must be considered and where incre-
mental changes to the problem space will occur over time.
The application of genetic algorithms to multi-processing
systems is well documented and this approach has previ-
ously been applied to a number of similar areas such as dy-
namic load balancing.

PACE provides a means of dynamically obtaining run-
time estimates for different applications on different re-
sources through the performance information services
framework. Assuming that a run-to-completion (non-
overlap) strategy is used, Titan can estimate the completion
time for independent tasks by summing the earliest possible
start time with the predicted execution time. Additionally,
PACE can provide scaling analysis, so that Titan can limit
the number of processing elements assigned to a task de-
pending on its scaling behaviour.

The object of the scheduler is to produce schedules that
fulfil system and user requirements, by selecting suitable
candidate schedules from an existing set and producing
new modified schedules with a measurable performance
gain. A fitness function is used to guide this selection pro-
cess by retaining successful schedules in the representation
space. Titan generates an initial set of schedules, evalu-
ates the schedules to obtain a measure of fitness, selects the
most appropriate and combines them using genetic opera-
tors (crossover and mutation) to formulate a new set of so-
lutions. If all of the hosts that are mapped to a task at the
front of the queue are free, then the task is executed and
then removed from the queue.

The fitness function is derived from a weighted cost
function that evaluates the schedule makespan, the percent-
age of processor-idle time and the ability of the schedule
to meet the task deadlines. Each schedule in the solution
set can be compared by its relative fitness to obtain a rank
position, which is subsequently used to drive the selection.

The capabilities of the predictive scheduler are demon-
strated with a workload of 64 tasks queued onto 16 hosts.
The tasks are selected from a set of parallel kernels for
which PACE models are available and which exhibit dif-
ferent scaling behaviours (see Figure 3).

0

20

40

60

80

100

2 4 6 8 10 12 14 16
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Nodes

CPI
Sweep3D

FFT
Improc

Memsort

Figure 3. Set of example applications for which PACE
performance models were available. The applications were
chosen as they represent typical scientific computing pro-
grams that exhibit different parallel scaling characteristics.

The timings in Figure 3 are based on measurements ob-
tained from a cluster of 800Mhz Pentium IIIs with commu-
nication timings measured across a Fast Ethernet network.
With a population of 40, the scheduler (also running on
an 800Mhz Pentium III) is capable of performing approxi-
mately 100 GA iterations per second. Each task is assigned
an arbitrary deadline, all the tasks run to completion and
pre-empting (the ability to multi-task or micro-schedule) is
not allowed.

The results in Table 1 demonstrate the significant im-
provement (approximately 60% reduction in makespan) ob-
tained using Titan as opposed to a simple batch queueing
technique.

While batch queueing might be regarded as a worst-case
solution, it is commonly used in cluster resource manage-
ment systems; tasks are run in the order in which they ar-
rive and additional priorities are the only means by which
tasks can artificially move up the queue. The improvements
which the Titan system is able to achieve are due (in part)
to the ability to select and experiment with the predicted
scalability of each task; PACE will restrict the node usage



Makespan (
�
) Advance ( � )����� �	� ��
�

(s) ��� (s)
��� ��
��

(s) ��� (s)

8 315 159 331 311
16 566 237 376 394
24 855 310 191 441
32 1186 431 92 394
40 1426 543 -62 364
48 1738 630 -190 341
56 1991 737 -333 292
64 2280 802 -473 261

Table 1. Improvement in
�

and � of the Ti-
tan predictive scheduler over a simple batch
queueing technique.

to that which is seen as most efficient within the context of
the available hosts and the other tasks in the queue. Fur-
thermore, Titan can also use PACE to sort tasks and change
host mappings to reduce makespan. Efficient resource us-
age typically leads to a greater ability to meet deadlines (see� in Table 1), although the GA also performs a light sort on
the deadline through the weighted cost function.

These performance metrics are defined in order to allow
the comparison of different scheduling and workload man-
agement configurations:

� Total application execution time (
�
) – the period of

time when a set of parallel tasks � are scheduled onto

a set of resources:
�������������� �! #" ��$ �&%(' ����������*),+ " �.- ��% , where��$ � is the earliest possible completion time for task / ,

and
�.- � is the earliest possible start time;

� Average advance time ( � ) – the number of seconds that
the tasks complete before their deadlines: calculated

as � � 0124365�798;: 2=< 8?> 2A@� , where
�CB � is the actual run time

for task / ;

� Resource utilisation rate ( D�E ) – which for each host FGE
is: D E �

1HA2CI JLKMN2 798?> 2 < 8?O 2 @8 ; the average resource utilisa-

tion rate D for all + of F is then: D � P1JQ365?R JS ;

� Load balancing level ( T ) – is the mean square devia-

tion of D�E , U �
V P1JL3(5C7LR < R J?@;WS , as a relative deviation

over D : T �YX '[Z\ . The most effective load balancing
is when U equals 0 and T equals 1.

5. Wide-area Task Management

Wide area task management is provided through a net-
work of agents. These offer a less combinatorial approach
to wide-area scheduling and as a result deliver increased
scalability and adaptability. The agent system itself is well
documented [7, 8]; some detail is provided in order to un-
derstand the case study in section 5.1.

Each agent is composed of a series of layers: communi-
cation – through which agents are able to communicate with
each other using common data models and communication
protocols, this also provides an interface to heterogeneous
networks and operating systems; coordination – from which
task (execution) requests are submitted directly to the agent
either manually or through a job submission portal, an agent
will then allocate the task to the local resources (if they are
able to process the request) or initiate some higher-level re-
source service discovery; management – at which decision
making is supported through an interface with the local re-
source manager or information service provider.

Each agent forms part of a high-level resource network,
with each agent typically mapping to a set of resources, yet
providing high-level coordination through a process of re-
source brokerage. This network is dynamic, so agents are
able to join or leave at any time.

The agent system submits to and reads from the perfor-
mance information services. The information supported by
the agents is organised in a number of agent capability ta-
bles (ACTs). These are currently the: ]�^`_ba – service infor-
mation of the resources which the agent represents; c ^`_da
– information of the services found lower in the agent net-
work; � ^`_ba – service information from services found
higher in the agent network. Some notion of a hierarchy
is needed to support this organisation.

The content of the ACTs is maintained through two
methods of service update, these are data-pull – an agent
makes a request for data, and data-push – service infor-
mation is emitted asynchronously. The update of informa-
tion can take place periodically or when data in the network
changes. The agent system is configured so that it can in-
voke service advertisement and service discovery. When
searching for services, each agent will first evaluate whether
the request can be met locally (by querying its ]d^`_da ); if
this is not the case then the services provided by the neigh-
bouring resources are queried (through the c ^`_ba and the� ^`_da ) and the request is dispatched to the agent which
is able to provide the best service. If none of the agents
are able to meet the request then it is sent to a higher-level
node. The process of discovery terminates when the head
of the logical hierarchy is reached (and a search for suitable
resources is deemed to have failed).

There are many other ways of configuring this level of
management. While this approach is not intended to deliver



an optimally balanced grid system, it does provide a sys-
tem in which resources are located simply and efficiently
and requests tend to migrate to local rather than global re-
sources. The system also scales well as there is never a need
to broadcast advertisement or discovery requests.

5.1. Prediction-based task management

B B
/s

� �
(s) � (s) D (%) T (%)

200 1 OFF 354 -1 24 36
200 1 ON 241 78 51 63
200 2 OFF 377 -36 25 37
200 2 ON 169 72 50 67
200 5 OFF 332 -64 24 35
200 5 ON 188 62 49 58

500 1 OFF 1224 -112 28 51
500 1 ON 581 78 57 69
500 2 OFF 1123 -205 29 53
500 2 ON 349 66 57 80
500 5 OFF 1241 -276 27 51
500 5 ON 260 32 68 79

1000 1 OFF 2446 -314 36 59
1000 1 ON 1109 79 61 84
1000 2 OFF 2348 -493 39 59
1000 2 ON 646 65 74 89
1000 5 OFF 2545 -681 36 58
1000 5 ON 438 -6 77 84

Table 2. Experimental results:
B

is the total
number of requests (load);

B
/s is the request

submission rate per second;
�

represents
whether predictive management is active;

�
is

the makespan; � is the deadline-based aver-
age advance time; D is the resource utilisation
rate and T the load balancing.

The experimentation in section 4.1 is extended to a net-
work of resources consisting of 16 heterogeneous clusters
(numbered ��� to � ��� ), each containing 16 homogeneous
processors/hosts. The resource capabilities of each of the
clusters is different, ranging from SGI multiprocessors ( � �
and ��� ) to clusters of SPARCstation 2s ( ��� and � ��� )3.

Each cluster resource is represented by an agent, and
each agent maintains service information through the ACTs.
A number of experiments are run in which 200, 500 and

3 	�
 , 	� , 	� and 	�
�� represent clusters of 16 Sun Ultra 10s; 	�
��
represents a cluster of 16 Sun Ultra 5s; 	 � , 	� , 	� and 	 
�� represent
clusters of 16 Sun Ultra 1s, and 	�� , 	 
�
 and 	 
 � represent clusters of 16
SPARCstation 5s.

1000 application requests (
B
) were sent to randomly se-

lected agents at intervals of 1, 2 and 5 requests per second
(
B
/s); representing a broad spread of workloads and bursts

of activity. The deadlines for each task were randomly se-
lected from the range of predicted values, with suitable time
allowed for network latency.

The experimental results represent two scenarios:

� In the first case each of the local clusters executes the
tasks it receives in a first-come-first-served order. No
attempt is made to improve the local-level scheduling
(using Titan) or the wide-area management of tasks
(using the agent system) – that is, the predictive man-
agement system (

�
) is inactive.

� In the second case the Titan scheduler is used at the
cluster level and the agent system is employed for
wide-area task management – that is, the predictive
management system (

�
) is active.

The results for these experiments are found in Table 2.
In the case when the system load and submission rate is

low (200 requests submitted 1 per second) the first-come-
first-served implementation is able to meet most of the
deadlines set (the average advance time � is -1). As the sub-
mission rate increases, so the ability to meet these deadlines
is diminished ( � increases to -36 at a submission rate of 2
requests per second and to -64 at 5 requests per second);
this trend is also demonstrated at the higher workloads.

Activating the local- and global-level predictive manage-
ment has a positive effect on � ; when 200 requests are sent
1 per second, � equals 78, indicating spare schedule capac-
ity. When the workload and submission rate are high (1000
requests at 5 per second) the impact is marked; rather than
running 11 minutes over schedule (-681), the prediction-
based middleware is able to reduce this to -6 seconds.

The improvements to the makespan
�

and average ad-
vance time � are made through global and local level op-
timisations. This can be observed through the metrics for
resource utilisation ( D ) and load balancing ( T ). In the case
when the workload and submission rates are high, the first-
come-first-served implementation achieves a system-level
balance of 58%, while the resource utilisation rate is 36%.
There is a significant improvement to the values of these
metrics when the predictive middleware is activated, the
system balance increases to 84% and the utilisation rate to
77%. The result of this has a large impact on the overall
makespan which is improved by 82%. The detail as to how
these improvements are made is observed through the anal-
ysis of this case.

A cluster-level breakdown of these performance metrics
is presented below. Three experimental cases are included,
the results of which can be found in Table 3:



� Experiment 1: The case when the predictive manage-
ment is inactive, the OFF case above;

� Experiment 2: Represents an intermediate case, the
agent system is activated so global-level predictive
management is performed, but local-level predictive
scheduling (using the Titan system) remains inactive;

� Experiment 3: Predictive scheduling is used at the lo-
cal level and prediction-based wide-area task manage-
ment is used at the higher level, the ON case above.

The high request and submission rate imposes a large
workload on each of the contributing clusters. The more
powerful resources, ��� and � � , are better equipped to meet
the deadlines for the tasks they receive than their less pow-
erful counterparts, � � and � ��� ; this is reflected in � . The
resource utilisation rate ( D ) of these powerful resources is
also low (12 and 14%, as opposed to 54 and 51%).

Enabling the agent system (in experiment 2) increases
the number of requests directed to these more powerful re-
sources ( D of � � and ��� increases to 55 and 46%), an effect
which improves the overall system balance T to 81%. This
improvement is also reflected in the new makespan (

�
) of

1551 seconds (a reduction of 37% over experiment 1).
Considerable further improvements can be made by em-

ploying predictive scheduling at the cluster level (in exper-
iment 3). The resource utilisation rate D of all resources
improves to 77%, a marginal improvement is made to the
system balance, yet there is a significant reduction in

�
to

438 seconds (an improvement of 82% over experiment 1).
These results are interesting in a number of ways. The

use of predictive data for wide-area task management does
increase system balance, particularly when the load and
submission rate is high. This mechanism will distribute
tasks to more powerful global resources, although the over-
all resource utilisation may remain low. In order to improve
resource utilisation (as well as load balancing), additional
cluster-level management is needed.

6. Conclusions

Performance services are set to play an important role in
the management of resources in emerging wide-area, het-
erogeneous distributed computing environments. In order
to support these services, tools are required to generate
and publish performance data in a unified, yet decentralised
manner. Performance data is likely to come in a number of
forms, but by distributing this data, developers will be able
to provide supporting high-level performance-based mid-
dleware services.

This paper documents how such services might be built.
Raw performance prediction data is generated by the PACE

toolkit and is made available through an information ser-
vice based on the Globus MDS. This data can then be used
by supporting performance services, both at the local level
(demonstrated through the prediction-based Titan sched-
uler) and also at the level of wide-area task management
(demonstrated through the supporting agent system).

A multi-tiered approach to this service provision is likely
to prove successful. While an improvement in global load
balancing will be achieved through the wide-area publish-
ing and use of this performance data, it is only by using
this information at local and global levels in the system that
considerable performance gains will be achieved.

Acknowledgments

This work is sponsored in part by grants from the NASA
AMES Research Center (administrated by USARDSG,
contract no. N68171-01-C-9012), the EPSRC (contract
no. GR/R47424/01) and the EPSRC e-Science Core Pro-
gramme (contract no. GR/S03058/01).

References

[1] V. Adve, R. Bagrodia, J. Browne, and E. D. et. al. Po-
ems: end-to-end performance design of large parallel adap-
tive computional systems. IEEE Transactions on Software
Engineering, 26(11):1027–1048, 2000.

[2] A. Alkindi, D. Kerbyson, and G. Nudd. Optimisation of ap-
plication execution on dynamic systems. Future Generation
Computer Systems, 17(8):941–949, 2001.

[3] R. Allan, J. Brooke, F. Costen, and M. Westhead. Grid-
based high performance computing. Technical Report of the
UKHEC Collaboration UKHEC (2000), 2000.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. Proc. of Supercomputing, 1996.

[5] R. Buyya, D. Abramson, and J. Giddy. Nimrod–G: An archi-
tecture for a resource management and scheduling system in
a global computational grid. Proc. of 4th Int. Conf. on High
Performance Computing, 2000.

[6] R. Buyya, D. Abramson, and J. Giddy. Nimrod–G re-
source broker for service-oriented grid computing. IEEE
Distributed Systems Online, 2(7), 2001.

[7] J. Cao, S. Jarvis, S. Saini, D. Kerbyson, and G. Nudd.
ARMS: an agent-based resource management system for
grid computing. Scientific Programming, Special Issue on
Grid Computing, 10(2):135–148, 2002.

[8] J. Cao, D. Kerbyson, and G. Nudd. High performance ser-
vice discovery in large-scale multi-agent and mobile-agent
systems. Int. J. of Software Engineering and Knowledge En-
gineering, Special Issue on Multi-Agent Systems and Mobile
Agents, 11(5):621–641, 2001.

[9] J. Cao, D. Kerbyson, E. Papaefstathiou, and G. Nudd. Per-
formance modelling of parallel and distributed computing
using PACE. in Proceedings of 19th IEEE International
Performance, Computing and Communication Conference
(IPCCC’00), pages 485–492, 2000.



Experiment 1��� �
(s) � (%) � (%)

C � -115 12 87� 
 -481 27 84� � -710 37 83� � -320 22 89� � -766 40 87� � -1171 54 87
C � -1161 54 90
C � -137 14 85� � -533 33 79� � -381 27 87� 
�� -381 24 82� 
�
 -996 53 83� 
�� -624 35 87� 
�� -946 49 87� 
 � -976 46 85

C 
 � -1097 51 83

System -681 36 58

Experiment 2�
(s) � (%) � (%)

-611 55 91
-567 58 87
-575 57 87
-309 40 88
-538 55 87
-577 54 83
-544 51 84
-377 46 88
-437 49 79
-540 54 90
-322 36 87
-544 56 86
-598 53 89
-409 45 81
-418 43 85
-580 52 88

-502 50 81

Experiment 3�
(s) � (%) � (%)

-32 68 85
-28 80 93
-53 92 94
32 65 95
-48 88 91
-22 88 94
3 77 80

19 66 94
53 74 90
-6 79 95
56 58 89
-13 87 92
-44 86 92
41 73 91
29 74 90
-2 75 86

-6 77 84

Table 3. Cluster breakdown of experimental results for 1000 requests at 5 per second: In experiment 1
the predictive middleware (wide- and local-area) is off; in experiment 2 wide-area task management is
performed but performance-driven local scheduling is not; in experiment 3 the predictive middleware
is on. The results for the more powerful resources ( � � and ��� ) and less powerful resources ( ��� and
� ��� ) are highlighted.

[10] P. Dinda. Online prediction of the running time of tasks.
Cluster Computing, 5(3):225–236, 2002.

[11] S. Fitzgerald, I. Foster, and C. Kesselman. Grid informa-
tion services for distributed resource sharing. 10th IEEE Int.
Sym. on High-Performance Distributed Computing, 2001.

[12] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Intl J. of Supercomputer Applications,
11(2):115–128, 1997.

[13] I. Foster and C. Kesselman. The GRID: Blueprint for a New
Computing Infrastructure. Morgan-Kaufmann, 1998.

[14] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid ser-
vices for distributed system integration. IEEE Computer,
35(6):37–46, 2002.

[15] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. Proc. of the 10th IEEE Sym. on High
Performance Distributed Computing, 2001.

[16] C. Herder and J.J.Dujmovic. Frequency analysis and timing
of Java bytecodes. San Fransisco State University Technical
Report, SFSU-CS-TR-00.02, 2000.

[17] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasser-
man, and M. Gittings. Predictive preformance and scala-
bility modelling of a large-scale application. Proceedings of
Supercomputing ’01, 2001.

[18] W. Leinberger and V. Kumar. Information power grid : The
new frontier in parallel computing? IEEE Concurrency,
7(4), 1999.

[19] M. Litzkow, M. Livny, and M. Mutka. Condor – a hunter
of idle workstations. Proceedings of 8th Int. Conf. on Dis-

tributed Computing Systems (IPDCS98), pages 104–111,
1998.

[20] W. McColl. Foundations of time-critical computing. 15th
IFIP World Computer Congress, Vienna and Budapest,
1998.

[21] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry,
J. Harper, and D. Wilcox. PACE : A toolset for the perfor-
mance prediction of parallel and distributed systems. Int. J.
of High Performance Computing Applications, 14(3):228–
251, 2000.

[22] S. Perry, R. Grimwood, D. Kerbyson, E. Papaefstathiou, and
G. Nudd. Performance optimisation of financial option cal-
culations. Parallel Computing, 26(5):623–639, 2000.

[23] D. Spooner, S. Jarvis, J. Cao, S. Saini, and G. Nudd. Lo-
cal grid scheduling techniques using performance predic-
tion. IEE Proc., Comput. Digit. Tech., 2003.

[24] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Na-
gashima. Overview of a performance evaluation system
for global computing scheduling algorithms. Proc. of 8th
IEEE Int. Symp. on High Performance Distributed Comput-
ing, pages 97–104, 1999.

[25] J. Turner, D. Spooner, J. Cao, S. Jarvis, D. Dillenberger, and
G. Nudd. A transaction definition language for Java applica-
tion response measurement. Journal of Computer Resource
Measurement, 105:55–65, 2001.

[26] R. Wolski, N. Spring, and J. Haye. The network weather ser-
vice: A distributed resource performance forecasting service
for metacomputing. Future Generation Computing Systems,
5-6:757–768, 1999.


