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Abstract—In view of the impact of the uncertainty of renewable
energy on microgrid operation, traditional deterministic power
flow calculation becomes more and more difficult to fully describe
system operation states and power flow distribution. Considering
the randomness and correlation of source and load in a microgrid,
this paper establishes a probabilistic power flow model for micro-
grid systems. The probabilistic power flow solving algorithm we
propose is based on `1-minimization, which effectively improves
the computing efficiency of probabilistic power flow of microgrid
with high-dimensional input random variables. By simulating on
the modified IEEE 30 node, the accuracy and effectiveness of the
proposed method are verified by comparing with the traditional
Monte Carlo method.

Index Terms—`1-minimization, microgrid, probabilistic power
flow (PPF), uncertainty

I. INTRODUCTION

In order to deal with the global energy crisis and envi-
ronmental pollution, developing clean energy is a common
measure of all nations in the world. A microgrid is a power
generation and distribution system that integrates distributed
generators (DGs), energy storage systems (ESSs), and loads
[1]. It can effectively accommodate clean energy and has
a wide application prospect. However, with the increasing
penetration of renewable energy, the uncertain factors caused
by intermittent energy (such as wind power and solar en-
ergy) are increasing, which challenges the stable operation
of microgrid. Due to the influence of these uncertainties,
traditional deterministic power flow analysis methods are no
longer suitable for the analysis of microgrid operation states,
thus accounting for the development of probabilistic power
flow (PPF) calculation.

PPF calculation is of great significance to ensure the safe
and stable operation of microgrid. It takes multiple uncer-
tainties of microgrid into account, analyzes the probabilistic
characteristics of power flows, and helps to detect potential
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system crises. PPF was first proposed by Borkowska in the
1970s [2]. Its essence is to solve the power flow equations with
nodal injection power as input random variables and power
system state variables as output random variables, so as to
obtain the probabilistic characteristics of power systems.

Existing probabilistic power flow solving methods mainly
include simulation methods, analytical methods, approximate
methods, and polynomial chaos expansion methods:

• Monte Carlo (MC) method and its improved algorithms
are widely used as the representative of simulation meth-
ods [3], [4]. The basic idea is to sample input variables
on a large scale, then get the corresponding sample
solutions, and finally analyze the statistical data of the
sample solutions. These methods have the advantages of
simple principles and convenient operations. However,
their convergence rate are usually very low, and large-
scale sampling will lead to low calculation efficiency.
Large sample MC method is usually used as a compar-
ative standard for the accuracy evaluation of other PPF
methods.

• Analytic methods mainly refer to the cumulant method
[5]. It has fast calculation speed because it does not
need sampling, and the solution of PPF can be acquired
through simple arithmetic operations. The disadvantage is
nonetheless that the linearization of power flow equations
is required. Consequently, when input random variables
fluctuate greatly, it is difficult to guarantee the accuracy
of the calculation results.

• Point estimate method is a typical approximation method,
which uses the probability distribution of known random
variables to find the moments of state variables [6]. This
method takes less time and has high precision of means
and variances of output random variables. However, the
accuracy of higher-order moments is too low to provide
the probability distribution of output random variables.



• Polynomial chaos expansion (PCE) is an important
method in uncertainty quantification theory [7]. It has
been widely used to solve PPF in recent years. In this
method, random variables are expanded under a set of
multiple standard orthogonal random polynomial basis
functions, and then expansion coefficients are obtained by
solving equations. The PCE method has good accuracy
and efficiency. However, it is not suitable for high-
dimensional problems due to the curse of dimensionality.

Based on existing methods, this paper proposes a novel
method of applying `1-minimization theory from optimization
theory in solving microgrid PPF [9], which makes full use of
the sparsity of PPF expansion [8]. Although our method draws
support from PCE random polynomial expansion in form,
it solves expansion coefficients with the sampling method.
This avoids solving large-scale complex equations in PCE
method and eliminates the problem of dimensionality curse.
At the same time, compared with traditional MC method, our
method greatly reduces the number of samples and improves
the efficiency of MC method.

The rest of this paper is organized as follows: Section II
describes the PPF model of the microgrid system; Section III
introduces in detail the processing of the correlation of random
input variables in PPF and the procedures of `1-minimization
algorithm; numerical results and relevant analysis are provided
in Section IV; Section V finally concludes this paper.

II. PROBABILISTIC POWER FLOW MODEL FOR
MICROGRIDS

The randomness of microgrid power flow considered in this
paper mainly comes from the power fluctuation of load nodes
and renewable power generation nodes, e.g., photovoltaic
(PV) generators and wind power generators. Therefore, this
section mainly focuses on the probability models of loads, PV
generators, and wind power generators.

A. Probabilistic Model of Loads

The randomness in the power fluctuation of load nodes
results from the influence of environment, time, user behavior,
and other uncertain factors. Generally, this randomness can be
described by normal distribution with the following probability
density function (PDF) [10]:


f(PL) =

1√
2πσPL

exp[− (PL − µPL
)2

2σ2
PL

],

f(QL) =
1√

2πσQL

exp[− (QL − µQL
)2

2σ2
QL

],

(1)

where PL is the load active power, µPL
and σPL

are the
expectation and standard deviation of PL respectively, QL is
the load reactive power, and µQL

and σQL
are the expectation

and standard deviation of QL respectively.

B. Probabilistic Model of Photovoltaic Generators
The randomness of the output power of PV panels mainly

comes from the randomness of light intensity. In a fixed
period of time, the light intensity approximately follows Beta
distribution [11], and the active power of PV generation is
directly proportional to the solar radiation intensity. Therefore,
the PV active power output also follows Beta distribution with
the following PDF:

f(P̂PV ) =
Γ(α+ β)

Γ(α)Γ(β)

(
P̂PV

)α−1 (
1− P̂PV

)β−1
, (2)

where P̂PV is the ratio of PPV , PV active power output,
to Pmax

PV , the maximum active power of photovoltaic power
supply, Γ(·) is Gamma function, and α and β are coefficients
of Beta distribution. Since the factors of photovoltaic power
generators are basically constant, PV reactive power can be
determined by PV active power.

C. Probabilistic Model of Wind Power Generators
Wind power is mainly affected by wind speed, which has

randomness according to region, season, temperature, and
other factors. The most commonly used probability model to
describe wind speed is two-parameter Weibull distribution with
the following PDF [12]:

f(v) =
k

c

(v
c

)k−1
exp[−

(v
c

)k
], (3)

where v is the wind speed, and k and c are the shape parameter
and scale parameter of Weibull distribution respectively.

The relationship between wind active power and wind speed
satisfies the following piecewise function:

PW (v) =



0 v ≤ vci,
Pr(v − vci)
vr − vci

vci ≤ v ≤ vr,

Pr, vr ≤ v ≤ vco,
0 v ≤ vco,

(4)

where Pw(v) is the wind active power at wind speed v, Pr
is the rated power of wind turbine, and vci, vr, and vco are
cut-in, rated, and cut-out wind speeds respectively.

Combining (3) and (4), we can obtain the PDF of the active
power of wind power generation:

f(PW ) =
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] + exp[−
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] PW = 0,
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exp[−
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]− exp[−

(
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)k
] PW = Pr,

(5)
where k1 and k2 are calculated by:

k1 =
Pr

vr − vci
, k2 = −k1vci.

Constant power factor control is often used when wind
power generators are connected to the microgrid. Denote the
power factor of wind power generation by φw. Then the
reactive power of wind power generation can be expressed
as:

QW = PW tan(cos−1 φW ). (6)



D. Probabilistic Power Flow Model

Consider a microgrid system with M nodes in total, and
each node can be a load node, PV node, or wind power node.
Under given operation conditions, each microgrid node i (=
1, 2, . . . ,M ) needs to maintain power balance at all times, i.e.,
to meet the following power flow equations [13]:

Pi = Vi

M∑
j=1

Vj(Gij cos δij +Bij sin δij),

Qi = Vi

M∑
j=1

Vj(Gij sin δij −Bij cos δij),

(7)

where Pi and Qi are the active power and reactive power
injected into node i respectively, Vi and Vj are the voltage
amplitudes of node i and its adjacent node j respectively, δij
is the phase difference between i and j, and Gij and Bijare
the real part and the imaginary part of the admittance matrix.

Since the system node injection power includes random
loads, PV, and wind power generation, the injected active
power Pi and reactive power Qi are random variables. There-
fore, (17) are the PPF equations to be solved. Given the
active power and reactive power of a node, the statistical
information of voltage magnitude and voltage phase angle of
can be calculated, and then the related line power flow can be
obtained.

For the convenience of discussion, (17) can be abbreviated
as:

X = F (Y ), (8)

where X is the random vector composed of all random
variables in the power flow, including the random power
of loads, PV, and wind power generation, Y is the vector
composed of the state variables to be determined, i.e., the
voltage amplitudes and phase angles of all nodes, and F (·) is
the function determined by the relationship between random
variable X and state variable Y shown by (17).

III. SOLVING PROBABILISTIC POWER FLOW VIA
`1-MINIMIZATION

The premise of applying `1-minimization theory in solving
PPF is to calculate the PCE expansion of the random state
variables. Based on the sparsity of the expansion coefficients,
using `1-minimization can subsequently restore state variables.
The PCE expansion of random state variables requires that
random variables are independent of each other. Unfortunately,
in the same microgrid system, random variables usually have
correlation. To overcome this problem, we need to preprocess
random state variables using Nataf transform before applying
PCE expansion. This section first introduces the principle
of Nataf transform, and then provides details about the `1-
minimization algorithm.

A. Nataf Transform

Nataf transform is used to deal with the correlation between
input variables [14]. It is a mathematical method to reconstruct

the joint distribution when the marginal distribution of input
variables is known.

For any d-dimensional input variable Y = [y1, y2, . . . , yd],
denote by [ηYij

]d×d its correlation matrix, where

ηYij =
cov(yi, yj)

σiσj
,

σi and σj are the standard deviation of yi and yj respectively,
cov(yi, yj) is the covariance of yi and yj , and ηYij

is the
correlation coefficient of yi and yj . Then, random variable Y
can be transformed into a standard normal distribution variable
Z = [z1, z2, . . . , zd] by the following Nataf transform:

zi = φ−1(ϕi(yi)), i = 1, 2, ..., d, (9)

where ϕ(·) is the cumulative distribution function of yi, and
φ(·) is the cumulative distribution function of the standard
normal distribution.

In this case, the correlation matrix of Z can be calculated
based on [ηYij ]d×d, and then Z can be acquired from the
standard normal distribution [15]. We can subsequently invert
the transform in (9) to obtain the original random variable X .
As a result, the original PPF equation (8) can be rewritten as
follows:

X = F (Y ) = G(Z). (10)

After transforming the random input variable into a standard
normal distribution variable, we apply PCE expansion to the
random state variable.

B. Polynomial Chaos Expansion

PCE expansion uses a set of orthogonal polynomials as the
basis function, and then intercepts finite terms to approximate
random variables [16].

The PPF equation (10) can be expanded by Hermite orthog-
onal polynomials:

X = G(Z) =
∑
|i|≤n

ciHi(Z), (11)

where i = (i1, i2, . . . , id) ∈ Nd0 is a multilevel index that
satisfies

|i| = i1 + i2 + . . .+ id,

and n is the order of polynomial expansion. In addition, Hi(·)
is the orthogonal Hermite basis function of a d-dimensional
random variable, which can be calculated as the tensor product
of single Hermite basis functions hi(·):

Hi(Z) = hi1(z1)hi2(z2), ..., hid(zd).

Moreover, multiple orthogonal polynomial Hi(·) also satisfies:

E[Hi(Z)Hj(Z)] =

∫
Hi(Z)Hj(Z)ρ(Z) = γiχij , (12)

where χij is the following Kronecker function:

χij =

{
1 i = j,
0 otherwise,



ρ(Z) is the joint probability density function of random
variable Z, and γi is a constant. Note that ci in (11) are
the expansion coefficients to be determined. It has been
proved that Hermite orthogonal basis function is the best
square approximation of normal random variables satisfying
independent distribution. Therefore, the moment and proba-
bility distribution of random variables can be determined by
calculating the coefficients of the expansion.

Existing PCE expansion methods like Garlerkin projection
method and collocation method are prone to the problems
of complication in operation and dimensionality disaster [17]
[18]. Therefore, in this paper, we use `1-minimization method
to restore the expansion coefficients based on the sparsity of
random variable expansion. In this method, the sample solution
is used to restore the coefficients, which not only inherits
the simple operation of MC method, but also overcomes the
dimensional problem of PCE method.

C. `1 minimization

Note that the expansion coefficient c in (11) is sparse, c is
a D × d matrix, which has the form:

c =


c11 c21 ... cd1
c12 c22 ... cd2
... ... ... ...
c1D c2D ... cdD

 .

According to the sparse reduction theory [19], we can
restore c from the sample solution.

First, we randomly select N sample points
[Z(1), Z(2), . . . , Z(N)] according to the probability distribution
of random variable Z. Then, we find N sample solutions
u = [X(1), X(2), . . . , X(N)] by substituting sample points
into PPF equation (10), which also satisfies the following
equation:

u = Ψc. (13)

Ψ is called the measurement matrix, acquired by substituting
random sample points [Z(1), Z(2), . . . , Z(N)] into multiple
Hermite orthogonal polynomials:

Ψ =


H1(Z(1)) H2(Z(1)) ... HD(Z(1))
H1(Z(2)) H2(Z(2)) ... HD(Z(2))

... ... ... ...
H1(Z(N)) H2(Z(N)) ... HD(Z(N))

 .

Ψ is N×D dimensional, with D being the number of Hermite
basis functions.

Note that when D > N , (13) is an underdetermined
system and therefore has infinite number of solutions. In
order to ensure the uniqueness of the solution, additional
constraints are needed. A general way is to reduce the number
of expansion basis functions as much as possible, i.e., to
increase the sparsity of coefficient c as much as possible. As
a result, adding sparsity constraint to c yields the following
optimization problem:

min ‖c‖0 s.t. Ψc = u, (14)

where ‖ · ‖0 represents `0 norm, i.e., the number of nonzero
elements in c.

However, due to the discontinuity of `0 norm, problem (14)
is an NP-hard problem, which is difficult to solve. Therefore,
we consider the most common way to relax the problem—
substituting `0 norm with `1 norm, the sum of absolute values
of all elements in a matrix. Then problem (14) becomes the
following `1-minimization problem:

min ‖c‖1 s.t. Ψc = u. (15)

Existing research shows that the solution of problem (15)
can accurately approximate the solution of problem (14).
Moreover, solving `1-minimization problem is more conve-
nient. In this paper, sampling orthogonal matching pursuit
(OMP) algorithm is used to solve the problem [20].

In summary, the whole process of solving PPF is as follows:

Algorithm 1 Procedure of `1-minimization algorithm for PPF
1. Perform Nataf transform (10) based on probability dis-
tribution of random input X;
2. Apply PCE expansion (11) to the transformed PPF
equation;
3. Randomly select N sample points [Z(1), Z(2), . . . , Z(N)]
from normal distribution, and obtain sample solutions u =
[X(1), X(2), . . . , X(N)] by Newton-Raphson method [21];
4. Construct `1-minimization problem (15);
5. Obtain coefficient c by sampling OMP algorithm;
6. Substitute c back into expansion (11), obtain the statis-
tical information of state variable Y , and carry out further
analysis.

IV. NUMERICAL EXPERIMENT

We verify Algorithm 1, our PPF solving algorithm, on
standard IEEE 30 node. The accuracy and efficiency of the
algorithm are evaluated by comparing with MC method. The
PPF calculation program is developed by Matlab R2020, and
the power flow calculating part is implemented by Matpower
software package. The program is run on a platform with Intel
i7-8586u CPU and 2G memory independent graphics card.

A. Parameter Setting

In this paper, based on IEEE 30 node grid structure, two
wind turbines are connected to nodes 7 and 25, and two
photovoltaics are connected to nodes 2 and 19. Node 2 is set
as PV node, and other wind turbines and photovoltaic nodes
are treated as PQ nodes. At the same time, nodes 3, 12, 18,
and 26 are set as load nodes with random fluctuations. System
line parameters and reference capacity are consistent with the
30 node example of Matpower.

The parameters of wind turbines, photovoltaic, and random
loads are given in Table I, II, and III respectively.
The direct correlation coefficient of two wind turbines is 0.6,
the correlation coefficient of photovoltaic power is 0.8, and



TABLE I
PARAMETER SETTING FOR WIND TURBINES

WT Pr (MW) vci vr vco c k
WT1 15 3 20 10.7 4 0.9
WT2 14 3 22 8 3 0.9

TABLE II
PARAMETER SETTING FOR PHOTOVOLTAICS

PV PmaxPV (MW) α β φPV
PV1 50 0.9 0.85 0.95
PV2 80 0.8 0.75 0.95

the correlation coefficient matrix of four random loads is as
follows:

ρload =


1 0.6 0.2 0.7

0.6 1 0.3 0.4
0.2 0.3 1 0.4
0.7 0.4 0.8 1

 . (16)

B. Simulation results

In order to verify the accuracy of the `1-minimization-
based PPF method, the calculation results of simple random
sampling MC method with 500,000 sampling times are taken
as reference. We analyze the simulation results from the
accuracy and efficiency of the algorithm.

1) Accuracy: In this paper, the accuracy of the algorithm is
described by the average relative errors between the expecta-
tions and standard deviations of the output voltage amplitude
and phase angle of each node:

µ̄ =

M∑
i=1

(
µ`1 − µMC

µMC

)
/M,

σ̄ =

M∑
i=1

(
σ`1 − σMC

σMC

)
/M.

(17)

Table IV shows the average and standard deviation of
voltage amplitude V and phase angle δ calculated by Algo-
rithm 1 and the error value of MC method of 500000 times
as reference.

TABLE III
PARAMETER SETTING FOR LOADS

Load µPL
(MW) µPQ

(MW) σPL
(MW) σQL

(MW)
Load1 2.4 1.2 0.12 0.06
Load2 11.2 7.5 0.56 0.375
Load3 3.2 0.9 0.16 0.045
Load4 3.5 2.3 0.175 0.115

TABLE IV
ERROR ESTIMATION

`1-Minimization µ̄V σ̄V µ̄δ σ̄δ
Max Error 1.59e−6 5.08e−7 8.14e−5 6.75e−4

Average Error 2.33e−7 1.71e−7 3.53e−5 1.91e−45

Table IV shows that the expectation and standard deviation
of output state variables of probabilistic power flow obtained
by `1-minimization have high accuracy. Take node 12 as an
example. The PDFs of voltage amplitude and phase angle of
node 12 obtained by `1-minimization algorithm are given in
Fig. 1. It can be seen that the distribution function obtained
by `1-minimization basically coincides with that obtained by
MC method, which further illustrates the accuracy of our
algorithm.
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Fig. 1. Probability density function for V and δ of node 12.

Furthermore, Fig. 2 shows the sparsity of PCE expansion
coefficients of voltage amplitude and phase angle of 30 nodes
obtained by Algorithm 1. In this example, the highest order
of the basis function is 3, and the dimension of the random
variable is 16, so the number of basis functions is

P =
(16 + 3)!

16!3!
= 969.

That is, the dimension of expansion coefficient c is 969. The
sparsity s in the figure is calculated by:

s =
#{|c| ≥ τ}

969
, (18)

where #{|c| ≥ τ |} represents the number of elements in
coefficient matrix c that is greater than or equal to threshold
τ .

It can be seen from Fig. 2 that the sparsity of voltage
amplitude and phase angle of each node under the expansion
of Hermite orthogonal basis is less than 3%, which proves the
applicability of `1-minimization in solving PPF.

2) Efficiency: We continue to analyze the efficiency advan-
tages of `1-minimization algorithm.

Fig. 3 shows the convergence comparison between the errors
of expected voltage amplitudes obtained by `1-minimization
algorithm and MC method. It can be seen from the figure
that the errors of the two methods decrease as the number of
samples increases. Then the error of `1-minization algorithm
converges rapidly with the number of samples. Moreover,
when the number of samples reaches a certain level, the error
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Fig. 2. Sparsity of coefficient c.

is basically unchanged if the number of samples continues
to increase. In contrast, error convergence of MC method
is slower. Under the same sample level, the error of `1-
minimization algorithm is obviously stronger than that of
MC method. The error analysis results of other output state
variables are similar and will not be further explained.
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Fig. 3. Error estimates for `1 minimization and MC method.

Table V shows the sample sizes and time consumption
of `1-minimization algorithm and MC algorithm under the
same error level. It can be seen from the statistics that in
order to achieve the same accuracy, the operation time of `1-
minimization algorithm is about 1/20 of MC method, which
greatly improves the operation efficiency of PPF. In addition,
the sample solution is used to solve the problem just like MC
method, which simplifies the implementation process of the
algorithm.

3) Summary: Based on the above statistics and figures,
the applicability and accuracy of `1-minimization algorithm
in solving PPF problems are fully illustrated. Moreover, `1-
minimization can greatly improve the efficiency on the premise

TABLE V
COMPARISON OF CALCULATION EFFICIENCY

µ̄V σ̄V samples time cost (s)
`1-minimization 2.33e−7 5.53e−5 50 12.187

MC 1.02e−7 2.155e−5 10000 1992.643

of ensuring accuracy. Consequently, it can be widely used to
solve PPF instead of MC method.

V. CONCLUSION

In this paper, the input uncertainty of the microgrid sys-
tem is considered. First, the PPF model of a microgrid is
established. Considering that the nodes in the same micro-
grid have correlation, Nataf transform is used to decorrelate
the variables. Then, a PPF computing method based on `1-
minimization theory is proposed to solve the corresponding
output random variables of microgrid system. In this method,
given the sparsity of PPF random state variable expansion,
with the number of sample solutions much smaller than
that required by MC method, we can accurately restore the
corresponding random state variables of PPF in microgrid.
Numerical results show that the `1-minimization-based method
can greatly improve the efficiency of microgrid power flow
computing. Compared with PCE and other methods, it has
simpler principles and is easier to implement. Based on the
research of this paper, our future research will continue to
improve `1-minimization algorithm. We will consider using
reweighted `1-minimization algorithm to further improve the
efficiency of solving.
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