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Abstract—It is difficult to adjust the parameters for the 
controller in the stability control of a full bridge inverter due to 
its unknown upper bound. To solve this problem, an improved 
second-order sliding mode twisting algorithm based on adaptive 
parameter has been proposed and simulated. By adding the 
adaptive parameter method into the original second-order 
sliding mode twisting controller, improved controller not only 
automatically regulates its parameters according to states of 
system but also fully compensates the uncertainty of upper 
bound. The simulation in the output control of full bridge 
inverter illustrates that the system can reach the target value of 
voltage and current in finite time. Compared with original 
second-order sliding mode twisting algorithm, this improved 
algorithm, though under the existence of unknown upper bound, 
can effetely guarantee the finite-time stability of the system. 

Keywords—higher order sliding mode, twisting algorithm, 
adaptive, full bridge inverter 

I. INTRODUCTION 
As a typical power electronic device, inverters have been 

widely used in all walks of life in the national economy, such 
as AC drive, active filter, photovoltaic power generation and 
wind power generation. It has become an indispensable 
equipment in production and life. With the development of 
society and the progress of science and technology, the 
performance requirements of inverters become higher and 
more, particularly, including the fast dynamic and stable 
robustness output of the inverter under unstable conditions 
like voltage and frequent load changes. To meet these 
requirements, Sliding mode control strategy, as a control 
method with strong applicability to inverters, is more widely 
used in inverter control. 

In reference [1], a controller of full bridge inverter is 
designed by using the high-order sliding mode super twisting 
algorithm. The discrete control law is transferred to a higher-
order sliding mode surface, which essentially eliminates the 
influence of the traditional sliding mode chattering. In order 
to improve the performance of photovoltaic grid connected 
inverter control system in winter, a single-phase current loop 
photovoltaic grid connected inverter control system based on 
improved sliding mode variable structure is designed by using 
exponential sliding mode variable structure control law and 
square root sliding mode control law [2]. A sliding mode 
control method for DC link voltage of Z-source inverter is 
proposed in paper [3]. A DC link voltage sliding mode 
controller with the integration of inductance current error, 
capacitance voltage error and capacitance voltage error as 
state variables is designed. A direct power control strategy of 
grid connected inverter in unbalanced and harmonic power 
grid based on resonant sliding mode is proposed in document 

[4] that improved the operation performance of grid connected 
inverter in unbalanced and harmonic power grid by 
establishing the mathematical model of grid connected 
inverter in unbalanced and harmonic power grid and taking 
the sinusoidal output current or stable output active / reactive 
power as the control goal. 

Among the robust control methods against the system 
uncertainty, the traditional sliding mode control has been 
widely used because of its remarkable advantages such as 
invariance to matching uncertainty, simple realization of 
controller, rapid response, but there remain some 
shortcomings, such as chattering problem and limitation of 
relative order. The high-order sliding mode control method 
takes advantage of the traditional sliding mode control and 
solves its problems, and it can satisfy the finite time stability 
of the system. Undoubtedly, a control system with finite time 
stability is more meaningful. 

Although the uncertainty is inevitable in control systems, 
the idea of adaptive method can estimate the uncertainty or the 
limit of control parameters online in real time in order to 
maintain a stable performance, which has great practical 
significance. Existing sliding mode control methods are robust 
to the matching uncertainty, but the controller design needs to 
know the bound of the system uncertainty in advance. For the 
unmatched uncertainty with unknown upper bound, sliding 
mode control needs to be combined with other methods to 
compensate the influence of uncertainty. The sliding mode 
adaptive control method, which organically combines sliding 
mode control and adaptive mechanism, is a useful control 
strategy to solve the problem of parameter uncertainty or time-
varying parameter control [5]. 

The sliding mode adaptive method proposed in reference 
[6] corrects the control gain according to the amplitude of 
uncertainty. This method does not overestimate the switching 
gain so that it reduces the chattering, admittedly, but it needs 
to know the bound of uncertainty in advance and reduce the 
control accuracy. In the sliding mode adaptive method 
proposed in reference [7], although it is unnecessary to know 
the uncertainty bound in advance, the control gain may be too 
large, which usually leads to chattering. Literature [8] 
combines the advantages of the above two methods, uses the 
method in literature [8] to establish the sliding mode surface, 
and adopts the method in literature [9] to reduce the control 
gain, which can reduce the chattering under the unknown 
bound of uncertainty. The controller in reference [9] whose 
sliding mode surface is in the form of proportional integral 
draw lessons from adaptive state feedback to deal with the 
tracking problem under uncertainty. Reference [10] uses 
adaptive method to expand the application range of sliding 



mode observer and reduce the requirements of system for 
uncertainty. For the nonlinear unmatched uncertain SISO 
system, a controller based on adaptive multi sliding mode 
surface is proposed in document [11]. The concept of multiple 
sliding mode surfaces is used to solve the problem of 
unmatched uncertainty. The adaptive controller can realize the 
design of output error convergence and the estimation of 
boundedness of all signals. 

The adaptive method combined with the traditional sliding 
mode method has made many achievements and there is also 
room for application in the high-order sliding mode control 
method. The existing high-order sliding mode control 
methods need to know the uncertainty bound of the system in 
advance, and then select the controller parameters according 
to the uncertainty bound. In order to solve this problem, many 
literatures have combined adaptive method with high-order 
sliding mode control method with advantages and 
disadvantages. Reference [12] combines the adaptive method 
with the second-order sliding mode control method to 
counteract the influence of the uncertainty with unknown 
upper bound, but it does not give the proof of finite time 
stability. Reference [13] gives the proof of finite time 
convergence of the system under the action of the improved 
controller, but does not consider the prerequisite that the 
parameters in the finite time stability theorem must be real 
numbers. In order to reduce system chattering and deal with 
the problem of unknown uncertain boundary in a class of 
nonlinear uncertain systems, the combination of adaptive 
control and high-order sliding mode and the bipolar sigmoid 
function and controller gain with online adjustable parameters 
are introduced in paper [14], but the verification in terms of 
finite time stability is only reflected in simulation rather than 
theoretical derivation. Literature [15] requires that the 
uncertainty must meet certain assumptions in order to give the 
proof of finite time stability. To sum up, the adaptive high-
order sliding mode control method needs to overcome the 
problem of uncertainty item and give a more effective proof 
of finite time stability. The spiral algorithm of parameter 
adaptation is proposed in document [16] to realize the 
parameter self-adjustment and uncertainty compensation in 
the presence of unknown upper bound uncertainty. His 
approach is to design an adaptive controller for one parameter 
and the other parameter appears in its multiple. The proposed 
adaptive law is discrete, and this method is applied to the 
control of pneumatic actuator. 

In this paper, an improved second-order sliding mode 
spiral algorithm based on parameter adaptation is proposed. 
By designing an adaptive parameter controller for the 
controller parameters of the spiral algorithm, it not only 
realizes the automatic adjustment of the parameters according 
to the system state, but also realizes the complete 
compensation for the uncertainty with unknown upper bound. 
The improved method is applied to the control of full bridge 
inverter. Compared with the original spiral algorithm, the 
proposed algorithm can realize the self-regulation of 
parameters and ensure the finite time stability of the system in 
the presence of uncertainty with unknown upper bound.. 

II. FULL BRIDGE INVERTER MODEL 
Full bridge inverter is a switching power supply topology 

that converts DC to AC, and its topology diagram is shown in 
Figure 1. 
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Fig. 1. Topology of full bridge inverter. 

The full bridge inverter bridge is composed of four IGBTs 
divided into two groups of which Q1 and Q4 are in one group 
while Q2 and Q3 are in the other. Two groups switch on and 
off alternately, and D1-D4 are freewheeling diodes. 𝑈𝑈in 
indicates voltage source while 𝐿𝐿  is for inductance, 𝐶𝐶  for 
capacitance and 𝑅𝑅  for equivalent load. 𝑅𝑅𝐿𝐿 and 𝑅𝑅𝐶𝐶  is the 
parasitic resistance of inductance and capacitance respectively. 
Respectively, the output AC square wave voltage is obtained 
by LC low-pass filter to obtain AC sinusoidal output voltage. 
Because the output filter capacitor voltage and its derivative 
of the full bridge inverter are continuously measurable, the 
capacitor voltage and the current on the inductance can be 
taken as the phase variables to describe the system. The dead 
time of the switch and the parasitic resistance of inductance 
and capacitance are ignored. According to Kirchhoff's law of 
voltage and current, the state equation of the system is: 
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where 𝑢𝑢 ∈ {−1,1}  represents the on / off state of the two 
groups of switches respectively. When 𝑢𝑢 = 1, Q1 and Q4 are 
on; When 𝑢𝑢 = −1, Q2 and Q3 are on. 

The equations of state are listed separately: 

𝚤𝚤̇𝐿𝐿 = −1
𝐿𝐿
𝑣𝑣𝑐𝑐 + 𝐸𝐸

𝐿𝐿
𝑢𝑢                               (2) 

�̇�𝑣𝑐𝑐 = 1
𝐶𝐶
𝑖𝑖𝐿𝐿 −

1
𝑅𝑅𝐶𝐶
𝑣𝑣𝑐𝑐                               (3) 

The derivative of formula (3) is: 

�̈�𝑣𝑐𝑐 = 1
𝐶𝐶
𝚤𝚤̇𝐿𝐿 −

1
𝑅𝑅𝐶𝐶
�̇�𝑣𝑐𝑐                              (4) 

Substitute formula (4) into formula (2) to obtain: 

C�̈�𝑣𝑐𝑐 + 1
𝑅𝑅
�̇�𝑣𝑐𝑐 + 1

𝐿𝐿
𝑣𝑣𝑐𝑐 = 𝐸𝐸

𝐿𝐿
𝑢𝑢                        (5) 

Define system state variables 𝑥𝑥1 = 𝑣𝑣𝑐𝑐 , 𝑥𝑥2 = �̇�𝑣𝑐𝑐 , and 
rewrite the system state equation as: 

�
�̇�𝑥1 = 𝑥𝑥2

�̇�𝑥2 = − 1
𝑅𝑅
𝑥𝑥2 −

1
𝐿𝐿
𝑥𝑥1 + 𝐸𝐸

𝐿𝐿
𝑢𝑢                          (6) 

III. IMPROVED TWISTING ALGORITHM  
The uncertainty in system (6) is: 

�
�̇�𝑥1 = 𝑥𝑥2       

�̇�𝑥2 = − 1
𝑅𝑅
𝑥𝑥2 −

1
𝐿𝐿
𝑥𝑥1 + 𝐸𝐸

𝐿𝐿
𝑢𝑢 + 𝜎𝜎                           (7) 

where 𝜎𝜎 is bounded external interference whose boundary is 
unknown. 



Define sliding surface as 𝑠𝑠 = 𝑥𝑥1 − 𝑥𝑥1𝑑𝑑  where 𝑥𝑥1𝑑𝑑  is the 
expected value of 𝑥𝑥1. 

Calculate the first and second derivatives of the sliding 
surface respectively: 

�̇�𝑠 = �̇�𝑥1 − �̇�𝑥1𝑑𝑑                                 (8) 

�̈�𝑠 = �̈�𝑥1 − �̈�𝑥1𝑑𝑑 = �̇�𝑥2 − �̈�𝑥1𝑑𝑑 = − 1
𝑅𝑅
𝑥𝑥2 −

1
𝐿𝐿
𝑥𝑥1 + 𝐸𝐸

𝐿𝐿
𝑢𝑢 + 𝜎𝜎 −

�̈�𝑥1𝑑𝑑          (9) 

Hypothesis 𝜎𝜎  with unknown upper bound  �̅�𝐺 ≥ 0 , the 
estimated value of �̅�𝐺 is 𝐺𝐺�. 

Using the inverse system method, a new control input 𝑣𝑣 =
− 1

𝑅𝑅
𝑥𝑥2 −

1
𝐿𝐿
𝑥𝑥1 + 𝐸𝐸

𝐿𝐿
𝑢𝑢 − �̈�𝑥1𝑑𝑑 x is introduced, and a new system 

is obtained: 

��̇�𝑠 = �̇�𝑥1 − �̇�𝑥1𝑑𝑑  
�̈�𝑠 = 𝑣𝑣 + 𝜎𝜎                                    (10) 

The controller designed for the system (10) includes two 
parts. One is the ideal controller 𝑣𝑣𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖  which is continuous 
and can ensure the finite time stability when the system 
uncertainty does not exist. The other part is the compensation 
controller 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 , which can fully compensate the system 
uncertainty and ensure the realization of the system goal 
together with the ideal controller. 

𝑣𝑣 = 𝑣𝑣𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐                           (11) 

    Ideal controller 𝑣𝑣𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 adopts twisting algorithm: 

𝑣𝑣𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑟𝑟1sgn(𝑠𝑠) − 𝑟𝑟2sgn(�̇�𝑠)                       (12) 

    Adaptive compensation controller 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐: 

 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 = −𝐺𝐺�sgn(�̇�𝑠)                              (13) 

The adaptive law satisfies: 

   𝐺𝐺�̇ = 𝛽𝛽|�̇�𝑠|                                   (14) 

where the estimation error is 𝐺𝐺� = �̅�𝐺 − 𝐺𝐺� and 𝛽𝛽 is a positive 
constant. 

Define controller as: 

𝑣𝑣 = −�̂�𝑟1sgn(𝑠𝑠) − �̂�𝑟2sgn(�̇�𝑠) − 𝐺𝐺�sgn(�̇�𝑠)                   (15) 

where �̂�𝑟1  and �̂�𝑟2  represent adaptive parameters respectively, 
their upper bounds are 𝑟𝑟1 and 𝑟𝑟2。𝐺𝐺�sgn(�̇�𝑠) is compensation 
controller ,the adaptive law satisfies: 

�̇̂�𝑟1 = 𝑘𝑘1�̇�𝑠sgn(𝑠𝑠), �̇̂�𝑟2 = 𝐺𝐺�̇ = 𝑘𝑘2�̇�𝑠sgn(�̇�𝑠) = 𝑘𝑘2|�̇�𝑠|               
(16) 

where 𝑘𝑘1 and 𝑘𝑘2 are positive constants. 

IV. STABILITY ANALYSIS  
To prove that the improved stewing algorithm (15) can 

ensure the finite time stability of system (7) and the adaptive 
law meets (16). 

Proof: Choose Lyapunov function: 

𝑉𝑉1 = 𝑟𝑟1|𝑠𝑠| + 1
2
�̇�𝑠2 + 1

2𝑘𝑘1
�̃�𝑟12 + 1

2𝑘𝑘2
�̃�𝑟22 + 1

2𝑘𝑘2
𝐺𝐺�2            (17) 

The derivation of equation (17) yields: 

𝑉𝑉1̇ = 𝑟𝑟1�̇�𝑠sgn(s) + �̇�𝑠(𝑢𝑢 + 𝜎𝜎) +
1
𝑘𝑘1
�̃�𝑟1�̇̃�𝑟1 +

1
𝑘𝑘2
�̃�𝑟2�̇̃�𝑟2 +

1
𝑘𝑘2
𝐺𝐺�𝐺𝐺�̇ 

 = 𝑟𝑟1�̇�𝑠sgn(s) + �̇�𝑠�−�̂�𝑟1sgn(s) − �̂�𝑟2sgn(�̇�𝑠) − 𝐺𝐺�sgn(�̇�𝑠) + 𝜎𝜎�

−
1
𝑘𝑘1
�̃�𝑟1�̇̂�𝑟1 −

1
𝑘𝑘2
�̃�𝑟2�̇̃�𝑟2 −

1
𝑘𝑘2
𝐺𝐺�𝐺𝐺�̇ 

   = 𝑟𝑟1�̇�𝑠sgn(s) − �̂�𝑟1�̇�𝑠sgn(s) − �̂�𝑟2�̇�𝑠sgn(�̇�𝑠) + 𝑟𝑟2�̇�𝑠sgn(�̇�𝑠) −
𝑟𝑟2�̇�𝑠sgn(�̇�𝑠) − �̇�𝑠𝐺𝐺�sgn(�̇�𝑠) + �̇�𝑠𝜎𝜎 

    − 1
𝑘𝑘1
�̃�𝑟1�̇̂�𝑟1 −

1
𝑘𝑘2
�̃�𝑟2�̇̃�𝑟2 −

1
𝑘𝑘2
𝐺𝐺�𝐺𝐺�̇ 

   ≤ �̃�𝑟1�̇�𝑠sgn(s) − 𝑟𝑟2|�̇�𝑠| + �̃�𝑟2|�̇�𝑠| + �̅�𝐺|�̇�𝑠| − 𝐺𝐺�|�̇�𝑠| − 1
𝑘𝑘1
�̃�𝑟1�̇̂�𝑟1 −

1
𝑘𝑘2
�̃�𝑟2�̇̃�𝑟2 −

1
𝑘𝑘2
𝐺𝐺�𝐺𝐺�̇ 

   = −𝑟𝑟2|�̇�𝑠| + �̃�𝑟1[�̇�𝑠sgn(s) − 1
𝑘𝑘1
�̇̂�𝑟1] + �̃�𝑟2 �|�̇�𝑠| − 1

𝑘𝑘2
�̇̂�𝑟2� +

𝐺𝐺� �|�̇�𝑠| − 1
𝑘𝑘2
𝐺𝐺�̇�            (18) 

Hence, when �̇̂�𝑟1 = 𝑘𝑘1�̇�𝑠sgn(s), �̇̂�𝑟2 = 𝑘𝑘2|�̇�𝑠|,𝐺𝐺�̇ = 𝑘𝑘2|�̇�𝑠| , 
𝑉𝑉3̇ ≤ −𝑟𝑟2|�̇�𝑠|, because 𝑉𝑉3 ≥ 0,𝑉𝑉3̇ ≤ 0,  𝑉𝑉1 is bounded. Then 𝑠𝑠、
�̇�𝑠 and 𝐺𝐺�  are bounded. Thus, it can be seen that the control 
input 𝑢𝑢  is bounded, so that �̈�𝑠 is bounded. That means 𝑠𝑠 and �̇�𝑠  
are uniformly continuous, or in another word, square 
integrable. Since 𝑠𝑠 and �̇�𝑠 are  square integrable and 𝑠𝑠,�̇�𝑠 and �̈�𝑠 
are bounded, according to extended Barbalat lemma, we can 
get 𝑠𝑠 → 0 and �̇�𝑠 → 0. Therefore, the system is asymptotically 
stable. And �̇̂�𝑟2  and 𝐺𝐺�̇  can be seen as an item. In fact, 
compensation control and adaptive parameter adjustment are 
realized at the same time. 

Select another Lyapunov function in a small range before 
the system reaches zero: 

𝑉𝑉2 = 1
2

(|𝑠𝑠| + |𝑠𝑠|̇ )2                          (19) 

The derivative of equation (20) is: 

     𝑉𝑉2̇ = �|𝑠𝑠| + |𝑠𝑠|̇ �[�̇�𝑠sgn(s) − �̈�𝑠sgn(�̇�𝑠)] 

        = �|𝑠𝑠| + |𝑠𝑠|̇ ���̇�𝑠sgn(s) − �−�̂�𝑟1sgn(𝑠𝑠) − �̂�𝑟2sgn(�̇�𝑠) −
𝐺𝐺�sgn(�̇�𝑠) + 𝜎𝜎�sgn(�̇�𝑠)� 

        ≤ �|𝑠𝑠| + |𝑠𝑠|̇ ���̇�𝑠sgn(s) + �̂�𝑟1sgn(𝑠𝑠)sgn(�̇�𝑠) − �̂�𝑟2 −
𝐺𝐺� + �̅�𝐺� 

       = �|𝑠𝑠| + |𝑠𝑠|̇ ���̇�𝑠sgn(s) + �̂�𝑟1sgn(𝑠𝑠)sgn(�̇�𝑠) − �̂�𝑟2 + 𝐺𝐺��                
(20) 

Because the system is asymptotically stable, �̇�𝑠sgn(s) +
�̂�𝑟1sgn(𝑠𝑠)sgn(�̇�𝑠) + 𝐺𝐺� is bounded. Therefore, there is a constant 

𝑑𝑑 = �̇�𝑠sgn(𝑠𝑠) + �̂�𝑟1sgn(𝑠𝑠)sgn(�̇�𝑠) − �̂�𝑟2 + 𝐺𝐺� < 0        (21) 

Hence, 𝑉𝑉2̇ ≤ −𝑑𝑑𝑉𝑉𝜂𝜂 , 𝜂𝜂 = 1
2
. 

When the system reaches its origin point, the equation is 
satisfied. According to the finite time stability theorem, the 
system (10) is finite time stable in the presence of unknown 
upper bound uncertainty, and the parameters can be adjusted 
by themselves.  

When 𝑠𝑠 = 𝑥𝑥1 − 𝑥𝑥1𝑑𝑑 = 0 and �̇�𝑠 = �̇�𝑥1 − �̇�𝑥1𝑑𝑑 = 0,  we can 
see 𝑣𝑣𝑐𝑐 = 𝑥𝑥1𝑑𝑑 , �̇�𝑣𝑐𝑐 = �̇�𝑥1𝑑𝑑. In the equation (3), �̇�𝑣𝑐𝑐 = 1

𝐶𝐶
𝑖𝑖𝐿𝐿 −

1
𝑅𝑅𝐶𝐶
𝑣𝑣𝑐𝑐, 

at this time 𝑖𝑖𝐿𝐿 is also stable. The whole system is stable for a 
finite time. 



V. SIMULATION VERIFICATION  
In the simulation, take the system parameters[17] 𝐿𝐿 =

6.4mH,𝑅𝑅 = 44Ω,𝐸𝐸 = 450V,𝐶𝐶 = 25μF . Initial values of 
state are: controller parameters 𝑘𝑘1 = 1 , 𝑘𝑘2 = 0.5 ; the 
reference value of output voltage is 220sin(t); the initial value 
of each state is zero; the initial value of parameter is �̂�𝑟1(0) =
120, �̂�𝑟2(0) = 90. The improved algorithm is compared with 
the existing spiral algorithm, that is to let 𝑣𝑣 = −𝑟𝑟1sgn(𝑠𝑠) −
𝑟𝑟2sgn(�̇�𝑠), The controller parameter is taken as 𝑟𝑟1 = 120, 𝑟𝑟2 =
90,  and the initial value of the state is zero. The simulation 
results are shown in Figure 2-4. 

  
Fig. 2. Voltage errors.  

  
Fig. 3. Output voltages.  

 
Fig. 4. Output currents  

According to Figure 4, the system voltage and current 
reach the expected value in a limited time, and the proposed 
improved method performs better than the original method in 
response time and overshoot. 

When disturbance 𝜎𝜎 = 8sin (t) is added to the system, the 
twisting algorithm has certain robustness. But if the 
disturbance exceeds its bearing range, the system will diverge, 
and the improved method can adjust the controller parameters 
according to the system state to compensate the error caused 
by the disturbance. The simulation results are shown in Figure 
5-7. 

 
Fig. 5. Voltage errors after adding disturbance. 

 
Fig. 6. Output voltages after adding disturbance. 

 
Fig. 7. Output currents after adding disturbance. 



It can be seen from Figure 7 that when the system 
disturbance increases to a certain extent, the system has 
diverged under the original spiral algorithm, while the 
improved algorithm can still maintain the stability of the 
system. 

Simulative experiment in application scenario - 
photovoltaic grid connection:  

The grid connected power generation system is an 
important direction of solar energy utilization research. The 
essential task is to control the output voltage of inverter to be 
consistent with the frequency, phase and amplitude of the grid 
voltage. At the same time, the output grid connected current is 
a stable sine wave with less harmonic content and small 
distortion rate, and its frequency and phase are consistent with 
that of the grid voltage. 

Admittedly, the prerequisite of the conclusion above is 
that E equals 450 V. However, in real systems, E is 
hypersensitive to the light intensity and external temperature. 
Therefore, to verify the superiority of the proposed algorithm, 
the system is simulated under uncertain light intensity and 
external temperature. In the simulation, E=500V is set for 1-
10s while E=450V for 10-20s and E=350V for 20-30s. The 
results are shown in Figure 8 to Figure 10. 

 
Fig. 8. Voltage errors after adding uncertainty. 

 
Fig. 9. Output voltages after adding uncertainty. 

 
Fig. 10. Output currents after adding uncertainty. 

The simulation results demonstrate that when the external 
input light intensity or temperature changes, the proposed 
improved method can maintain the voltage and current 
tracking the given value immediately without impact on the 
simulation results. By contrast, the original method shows 
significant fluctuations. 

VI. CONCLUSION  
In order to overcome the influence of full bridge inverter 

on control performance in the presence of unknown upper 
bound uncertainty, an improved high-order sliding mode 
twisting algorithm control strategy is proposed by combining 
the adaptive algorithm with the twisting algorithm. With 
designing an adaptive parameter controller for the controller 
parameters of the twisting algorithm, it not only realizes the 
automatic adjustment of the parameters according to the 
system state, but also realizes the complete compensation for 
the uncertainty with unknown upper bound. When the system 
uncertainty does not exist, the influences of the improved 
method and the original twisting algorithm on the system 
performance do not have differences. When the bound of 
uncertainty is beyond the tolerance of twisting algorithm, the 
system diverges under the original method and meanwhile, the 
improved algorithm can still ensure the finite time stability of 
the system. 
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