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Abstract 
Data streaming applications, usually composed 

with sequential/parallel tasks in a data pipeline form, 
bring new challenges to task scheduling and resource 
allocation in grid environments. Due to high volumes 
of data and relatively limit storage capability, resource 
allocation and data streaming have to be storage 
aware. In this paper, Genetic Algorithm (GA) is 
adopted for task scheduling of pipelines, based on on-
line measurement and prediction with Gray Model 
(GM). On-demand data streaming is introduced to 
avoid data overflow using repertory strategies. 
Experimental results show that balance among task 
executions with on-demand data streaming is required 
to improve overall performance, avoid system 
bottlenecks and backlogs of intermediate data, and 
increase data throughput of pipelines as a whole. 
 
1. Introduction 
 

Grid data streaming applications require bring-data-
to-program supports. Storage availability has to be 
considered during task scheduling and resource 
allocation. A grid data streaming application is 
decomposed into several tasks which are executed in a 
form of pipelines. Genetic Algorithm (GA) [1] is 
adopted for task scheduling, based on on-line 
performance measurement and prediction with Gray 
Model (GM) [2]. On-demand data streaming is 
introduced to avoid data overflow using repertory 
strategies, and implemented using GridFTP [3] of the 
Globus Toolkit [4] by tuning the data transfer 
parallelism. Experimental results included in this work 
show that our approach makes better use of CPU 
cycles as well as improving data throughput of overall 
pipelines with storage constraints. 

 
2. System Implementation 
 

The system architecture for grid data streaming 
pipelines is shown in Figure 1. 
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Figure 1. System Architecture 

GM(1,1) is applied to make a prediction of 
performance of tasks, which provides information for 
heuristic task scheduling with genetic algorithm.  

Data supply plays a key role in achieving high 
throughput, and it must be storage aware to avoid data 
overflow while guaranteeing no task will starve for 
data. Repertory policy is introduced to control the start 
and end of data transmissions, and then storage usage 
will just be reasonable. To cooperate with the 
consuming speeds, data transmission rates will be 
adjusted by tuning parallelism (p) in GridFTP. 

 
3 Performance Evaluation 
 

A case study is illustrated in Figure 2 and some 
experimental results are provided. 

 
Figure 2. A Case Study 

Job mapping is made with GA to keep balance 
among tasks as much as possible and avoid 
performance bottleneck. Data supply is another key 
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factor to gain high throughput, which is designed to 
guarantee just enough data while avoiding redundant 
backlogs of interim products of each tasks, in order to 
make full use of computational capacity with just 
reasonable storage and bandwidth. Actually, job 
mapping and data supply must be storage aware, for 
available storage is usually small compared with the 
high volumes of data to be processed. Some 
experimental results are provided as follows. 

3.1. Large storage without repertory strategies. In 
this case, data are supplied continuously and this 
scheme is not storage aware. With two different 
parallelism of GridFTP, the same throughputs are 
obtained, with too many backlogs for there are some 
bottlenecks in the pipelines. 

Table 1. Experimental Result I 

Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9 
Data 

Throughput
8 0 334 335 0 332 0 0 0 0 165 
2 0 84 85 0 85 0 0 0 0 164 

 
3.2. Bottlenecks are eliminated. When the pipeline is 
kept balanced, the throughput will be increased 
dramatically with enough data supply while inadequate 
data supply will also hinder the throughput. 

Table 2. Experimental Result II 

Backlog of Data p 
s1 s2 s3 s4 s5 s6 s7 s8 s9 

Data 
Throughput

8 0 167 168 0 166 83 84 0 0 248 
2 0 0 0 0 0 123 123 0 0 124 

 
3.3. Limit storage with repertory strategies applied. 
In this case, data supply is not continuous but 
intermittent for it is controlled by the repertory strategy. 
It is storage aware for data supply will be stopped or 
resumed according to storage usage. The same 
throughput is achieved with much less intermediate 
backlogs, i.e., the same amount of data can be 
processed with much less storage. 

Table 3. Experimental Result III 

Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9 
Data 

Throughput
8 0 12 13 0 11 0 0 0 0 165 
2 0 11 12 0 10 0 0 0 0 164 

Backlogs of data at each task do not increase 
linearly over time as illustrated in Figure 3. It is 
obvious that in a long run, the storage usage will not 
increase linearly, which is very important in the data 
streaming applications. 

 
Figure 3. Backlogs of Data with Repertory 

Strategies Applied at Task s2 (p=8) 
 

4. Conclusions 
 

The the-faster-the-better principle does not apply to 
data streaming applications in some situations. 
Balances among dependent tasks of a pipeline become 
essential to achieve high performance. Implementation 
of data streaming applications not necessarily requires 
large data storage capability. Storage aware resource 
allocation using repertory strategies is proposed in this 
work so that applications can gain high data throughput 
with relatively small storage. 

Actually, job mapping and data supply are of the 
same importance for the throughput of data streaming 
applications in the form of pipelines. Bottlenecks in the 
pipeline must be eliminated if possible; data supply 
must coordinate with the processing capacity of the 
pipeline while being storage aware. In this way, high 
throughput can be achieved 

 
References 
 
[1]. J. H. Holland, Adaptation in Natural and 

Artificial Systems, University of Michigan Press, 
1975. 

[2]. L. Man, “An Application of GM(1,1) Model: the 
Prediction of flight safety”, J. Gray System, Vol. 
1, No. 1, pp. 99-102, 1989. 

[3]. B. Allcock, J. Bester, J. Bresnahan, A. L. 
Chervenak, I. Foster, C. Kesselman, S. Meder, V. 
Nefedova, D. Quesnal, and S. Tuecke, “Data 
Management and Transfer in High Performance 
Computational Grid Environments”, Parallel 
Computing, Vol. 28, No. 5, pp. 749-771, 2002. 

[4]. I. Foster and C. Kesselman, “Globus: A 
Metacomputing Infrastructure Toolkit”, Int. J. 
Supercomputer Applications, vol. 11, No. 2, 1997, 
pp.115-128. 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

time

ba
ck

lo
g 

of
 d

at
a


