
Storage Aware Resource Allocation for Grid Data Streaming Pipelines

Wen Zhang1, Junwei Cao2,3*, Yisheng Zhong1,3, Lianchen Liu1,3, and Cheng Wu1,3
1Department of Automation, Tsinghua University, Beijing 100084, China

2Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
3Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

*Corresponding email: jcao@tsinghua.edu.cn

Abstract
Data streaming applications, usually composed

with sequential/parallel tasks in a data pipeline form,
bring new challenges to task scheduling and resource
allocation in grid environments. Due to high volumes
of data and relatively limit storage capability, resource
allocation and data streaming have to be storage
aware. In this paper, Genetic Algorithm (GA) is
adopted for task scheduling of pipelines, based on on-
line measurement and prediction with Gray Model
(GM). On-demand data streaming is introduced to
avoid data overflow using repertory strategies.
Experimental results show that balance among task
executions with on-demand data streaming is required
to improve overall performance, avoid system
bottlenecks and backlogs of intermediate data, and
increase data throughput of pipelines as a whole.

1. Introduction

Grid data streaming applications require bring-data-
to-program supports. Storage availability has to be
considered during task scheduling and resource
allocation. A grid data streaming application is
decomposed into several tasks which are executed in a
form of pipelines. Genetic Algorithm (GA) [1] is
adopted for task scheduling, based on on-line
performance measurement and prediction with Gray
Model (GM) [2]. On-demand data streaming is
introduced to avoid data overflow using repertory
strategies, and implemented using GridFTP [3] of the
Globus Toolkit [4] by tuning the data transfer
parallelism. Experimental results included in this work
show that our approach makes better use of CPU
cycles as well as improving data throughput of overall
pipelines with storage constraints.

2. System Implementation

The system architecture for grid data streaming
pipelines is shown in Figure 1.

 Virtual Organization

Scheduling Information
Service

Measurement and Prediction

Application Pipelines

GRAM GRAM GRAM

Resource Resource Resource

Authentication & Authorization

Data source

Data source

Data source

……

…… …
…

Network
Service

Figure 1. System Architecture

GM(1,1) is applied to make a prediction of
performance of tasks, which provides information for
heuristic task scheduling with genetic algorithm.

Data supply plays a key role in achieving high
throughput, and it must be storage aware to avoid data
overflow while guaranteeing no task will starve for
data. Repertory policy is introduced to control the start
and end of data transmissions, and then storage usage
will just be reasonable. To cooperate with the
consuming speeds, data transmission rates will be
adjusted by tuning parallelism (p) in GridFTP.

3 Performance Evaluation

A case study is illustrated in Figure 2 and some
experimental results are provided.

Figure 2. A Case Study

Job mapping is made with GA to keep balance
among tasks as much as possible and avoid
performance bottleneck. Data supply is another key

1 2

3

4

5

6

7

8

9 10I O

factor to gain high throughput, which is designed to
guarantee just enough data while avoiding redundant
backlogs of interim products of each tasks, in order to
make full use of computational capacity with just
reasonable storage and bandwidth. Actually, job
mapping and data supply must be storage aware, for
available storage is usually small compared with the
high volumes of data to be processed. Some
experimental results are provided as follows.

3.1. Large storage without repertory strategies. In
this case, data are supplied continuously and this
scheme is not storage aware. With two different
parallelism of GridFTP, the same throughputs are
obtained, with too many backlogs for there are some
bottlenecks in the pipelines.

Table 1. Experimental Result I

Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9
Data

Throughput
8 0 334 335 0 332 0 0 0 0 165
2 0 84 85 0 85 0 0 0 0 164

3.2. Bottlenecks are eliminated. When the pipeline is
kept balanced, the throughput will be increased
dramatically with enough data supply while inadequate
data supply will also hinder the throughput.

Table 2. Experimental Result II

Backlog of Data p
s1 s2 s3 s4 s5 s6 s7 s8 s9

Data
Throughput

8 0 167 168 0 166 83 84 0 0 248
2 0 0 0 0 0 123 123 0 0 124

3.3. Limit storage with repertory strategies applied.
In this case, data supply is not continuous but
intermittent for it is controlled by the repertory strategy.
It is storage aware for data supply will be stopped or
resumed according to storage usage. The same
throughput is achieved with much less intermediate
backlogs, i.e., the same amount of data can be
processed with much less storage.

Table 3. Experimental Result III

Backlog of Data p s1 s2 s3 s4 s5 s6 s7 s8 s9
Data

Throughput
8 0 12 13 0 11 0 0 0 0 165
2 0 11 12 0 10 0 0 0 0 164

Backlogs of data at each task do not increase
linearly over time as illustrated in Figure 3. It is
obvious that in a long run, the storage usage will not
increase linearly, which is very important in the data
streaming applications.

Figure 3. Backlogs of Data with Repertory

Strategies Applied at Task s2 (p=8)

4. Conclusions

The the-faster-the-better principle does not apply to
data streaming applications in some situations.
Balances among dependent tasks of a pipeline become
essential to achieve high performance. Implementation
of data streaming applications not necessarily requires
large data storage capability. Storage aware resource
allocation using repertory strategies is proposed in this
work so that applications can gain high data throughput
with relatively small storage.

Actually, job mapping and data supply are of the
same importance for the throughput of data streaming
applications in the form of pipelines. Bottlenecks in the
pipeline must be eliminated if possible; data supply
must coordinate with the processing capacity of the
pipeline while being storage aware. In this way, high
throughput can be achieved

References

[1]. J. H. Holland, Adaptation in Natural and

Artificial Systems, University of Michigan Press,
1975.

[2]. L. Man, “An Application of GM(1,1) Model: the
Prediction of flight safety”, J. Gray System, Vol.
1, No. 1, pp. 99-102, 1989.

[3]. B. Allcock, J. Bester, J. Bresnahan, A. L.
Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnal, and S. Tuecke, “Data
Management and Transfer in High Performance
Computational Grid Environments”, Parallel
Computing, Vol. 28, No. 5, pp. 749-771, 2002.

[4]. I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit”, Int. J.
Supercomputer Applications, vol. 11, No. 2, 1997,
pp.115-128.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

time

ba
ck

lo
g

of
 d

at
a

