In Proceedings of 15" Annual UK Performance Engineering Workshop (UKPEW
1999), Bristal, UK, July 1999, pp. 413-424.

M odelling of ASCI High Performance
Applications Using PACE

Junwei Cao, Darren J. Kerbyson, Efstathios Papaefstathiou, and
Graham R. Nudd"
June 14, 1999

Abstract

There is a wide range of models being developed for the performance
evaluation of paralled and distributed systems. This has become an
important area of research especially with the development of dynamic
processing capabilities promised with Computationa GRIDs [3]. A
performance modelling approach described in this paper is based on a
layered framework of the PACE methodology. In this system, the model
described by a Performance Specification Language (PSL) provides the
capability for rapid calculation of relevant performance information
without sacrificing accuracy of predictions. An example of the
performance evaluation of an ASCI kernel application, Sweep3D, is used
to illustrate the approach. The validation of the mode is shown for a cross-
platform anaysis on two parale and distributed architectures with
different problem sizes. Results show that a reasonable accuracy
(approximately 10% error at most) can be obtained with arapid evaluation
time (typically less than 2s).

1 Introduction

Performance evaluation is an active area of interest especially within the paradle and
distributed systems community where the principle am is to demondrate
substantially increased performance over traditiona sequential systems.

Computational GRIDs, composed of distributed and often heterogeneous
computing resources, are becoming the platform-of-choice for many performance-
challenged applications [3]. Proof-of-concept implementations have demonstrated
that both GRIDs and clugtered environments have the potential to provide great
performance benefits to distributed applications. Thus, at the present time,
performance analysis, evaluation and scheduling are essentid in order for applications
to achieve high performance in GRIDs environments.

The techniques and tools that are being developed for the performance evaluation
of parale and distributed computing systems are manifold, each having their own
motivation and methodology. The main research projects currently in progressin this

" Department of Computer Science, University of Warwick, Coventry, CV4 7AL.
Email: {junwel, djke, stathis, grn} @dcs.warwick.ac.uk

areainclude:

» POEMS[2]. The am of this work is to create a problem-solving environment
for end-to-end performance modelling of complex parale and digtributed
systems. This spans application software, run-time and operating system
software, and hardware architecture. The project supports evaluation of
component functionality through the use of analytical models and discrete-event
simulation a multiple levels of detail. The anaytica models include
deterministic task graph analysis, and LogP, LoPC modé s [4].

» Parsec [1]. A paralle smulation environment for complex systems, which
includes a C-based simulation language, a GUI (Pave), and a portable run-time
system that implements the simulation operations.

» AppLeS|[14]. An application-level scheduler using expected performance as an
aid. Performance predictions are generated from structural models, consisting of
components that represent the performance activities (e.g. computation or
communication activities) of the application.

» CHAOS[16]. A part of this work is concerned with the performance prediction
of large scale data intensive applications on large scale parald machines. It
includes a smulation-based framework to predict the performance of these
applications on exigting and future parallel machines.

* RSM [11]. This work consists of a simulation approach whose key is that it
supports a processor mode that aggressively exploits instruction-level
paralelism (ILP) and is more representative of current and near-future
processors.

The motivation to develop a Performance Anaysis and Characterization
Environment (PACE) in the work presented here is to provide quantitative data
concerning the performance of sophisticated applications running on high
performance systems [10]. The framework of PACE is a methodology based on a
layered approach that separates out the software and hardware system components
through the use of a parallelisation template. Thisisa modular approach that leads to
readily reusable modes, which can be interchanged for experimental analysis.

Each of the modules in PACE can be described at multiple levels of detail in a
similar way to POEMS, thus providing a range of result accuracies but at varying
costs in terms of prediction evaluation time. PACE is aimed to be used for pre-
implementation analysis, such as design or code porting activities as well as for on-
the-fly use in scheduling systems in similar manner to that of AppLeS.

The core component of PACE is a Performance Specification Language (PSL)
[12]. PSL provides the syntax and semantics to describe workloads for both sequential
and parallel parts of an application. This includes control flow information, resource
usage information (e.g. number of operations), communication structures and
mapping information for aparallel or distributed system.

In the work presented in this paper, the use of the PACE system is described
through an example application kernd — Sweep3D [8]. Sweep3D is a part of the
Accderated Strategic Computing Initiative (ASCI) application suite [9], which has
been used to evaluate advanced paralld architectures a Los Alamos National
Laboratories. The capabilities for performance eval uation within PACE areillustrated
through the cross-platform use of Sweep3D on both an SGI Origin2000 (a shared
memory system), and a cluster of SunUItral workstations.

The rest of the paper is organised as follows: Section 2 describes the performance

modelling approach based on the PACE conceptual framework. Section 3 gives an
overview of the Sweep3D application and how it is described within PSL. Section 4
illugrates the performance predictions that can be produced by PACE on the two
systems considered. Preliminary conclusions are discussed in Section 5.

2 PACE Performance M odelling Approach

The main concepts behind PACE include a layered framework, and the use of
associative objects as a basis for representing system components. An initia
implementation of PACE supports performance modelling of parallel and distributed
applications from object definition, through to mode creation, and result generation.
These factors are described further below.

2.1 Layered Framework

Many existing techniques, particularly for the anaysis of serial machines, use
Software Performance Engineering (SPE) methodologies [15], to provide a
representation of the whole system in terms of two modular components, namely a
software execution model and a system model. However, for high performance
computing systems, which involve concurrency and parallelism, the model must be
enhanced. The layered framework is an extension of SPE for the characterisation of
parallel and distributed systems. It supports the development of three types of modds:
software model, paralelisation model and system (hardware) modd. It allows the
separation of the software and hardware model by the addition of the intermediate
parallelisation model.

The framework and layers can be used to represent entire systems, including: the
application, parallelisation and hardware aspects, asillustrated in Figure 1.

Application Domain

Applicaiion Layer |

| Subtask Layer |
v 4
[| Parald Template Layer |]
v 4
[| Hardware L ayer |]

Figure 1. The Layered Framework

The functions of the layers are:

» Application Layer — describes the application in terms of a sequence of parallée
kernels or subtasks. It acts as the entry point to the performance study, and
includes an interface that can be used to modify parameters of a performance
study.

» Application Subtask Layer — describes the sequential part of every subtask
within an application that can be executed in parallel.

» Parallel Template Layer — describes the parallel characteristics of subtasks in
terms of expected computati on-communication interactions between processors.

» Hardware Layer — collects system specification parameters, micro-benchmark

results, statistical models, anaytical models, and heuristics to characterise the
communication and computation abilities of a particular system.

According to the layered framework, a performance modd is built up from a
number of separate objects. Each object is of one of the following types. application,
subtask, parallel template, and hardware. A key feature of the object organization is
the independent representation of computation, paralleisation, and hardware. Thisis
possibl e due to strict object interaction rules.

All objects have a similar structure, and a hierarchical set of objects, representing
the layers of the framework, is built up into the complete performance model. An
example of a complete performance model, represented by a Hierarchical Layered
Framework Diagram (HLFD), is shown in Figure 6.

2.2 Moddl Creation

The creation of a software object in PACE system is achieved through the Application
Characterization Tool (ACT). ACT aids the conversion of sequentid or paralle
source code into the PSL via the Stanford Intermediate Format (SUIF) [5]. ACT
performs a static analysis of the code to produce the control flow of the application,
operation counts in terms of high-level language operations [13], and aso the
communication gructure. Thisprocessisillustrated in Figure 2.

Source
Code I

| Application !

A 1 i

SUIF C =L Laver
Front End T | Parallelisation i
i) !

Laver |

Figure 2. Model Creation Processwith ACT

In PACE a Hardware Model Configuration Language (HMCL) alows users to
create new hardware objects by specifying system-dependent parameters. On
evaluation, the relevant sets of parameters are used, and supplied to the evaluation
methods for each of the component models. An example is shown in Figure 3
illugtrating the main subdivision currently considered involving a digtinction between
computation, communication, memory and 1/0 models. Currently analytical models
have been developed for all of the components shown in Figure 3[6].

Hardware Object
[€Pu [Cac] [hc | [sat] [] |
[Memory [CacheLL1] [CacheL2] [Main] |
[Network [“Sockets] [mPL] [PvM] |

Figure 3. Example Har dwar e Object

2.3 Mapping Relations

There are gtrict mapping relations between source code of the application and its
performance model. Figure 4 illustrates the way in which independent objects are
abstracted directly from the source code and built up into a complete performance
model which can be used to produce performance prediction results.

Application Modd Scripts
ENE Paralldl Template

Abstracted
Paralle 4\
B Y
' btaské

, Part,
Figure 4. Mapping Relations

1!

Hardware Object (HMCL)

Serid
Part

The mapping relations are controlled by the PSL compiler and the PACE
evaluation engine, which will be described further in the next section through the use
of the example application — Sweep3D.

3 Sweep3D: An Example Application

In this section we illustrate the PACE modelling capabilities for performance
prediction of Sweep3D — a complex benchmark for evaluating wavefront application
techniques on high performance parallel and distributed architectures [8]. This
benchmark is also being andysed by other performance prediction approaches
including POEMS [2]. This section contains a brief overview and the model
description of this application. In Section 4 the model is validated with results on two
high performance systems.

3.1 Overview of Sweep3D

The benchmark code Sweep3D represents the heart of area ASCI application [9]. It
solves a 1-group time-independent discrete ordinates (Sn) 3D cartesian (XYZ2)
geometry neutron transport problem. The XYZ geometry is represented by a 3D
rectangular grid of cells indexed as |JK. The angular dependence is handled by
discrete angles with a spherical harmonics treatment for the scattering source. The
solution involves two main steps:

* the streaming operator is solved by sweeps for each angle, and
* the scattering operator is solved iteratively.

A sweep (Sn) proceeds as follows. For one of eight given angles, each grid cell has
4 equations with 7 unknowns (6 faces plus 1 centra); boundary conditions complete
the system of equations. The solution is by a direct ordered solve known as a sweep
from one corner of the data cube to the opposite corner. Three known inflows allow
the cell centre to be solved producing three outflows. Each cell's solution then
provides inflows to 3 adjoining cells (1 in each of the |, J, & K directions). This

represents a wavefront evaluation in dl 3 grid directions. For XY Z geometries, each
octant of angles has a different sweep direction through the mesh, but al anglesin a
given octant sweep the same way.

Sweep3D exploits parallelism through the wavefront process. The data cube
undergoes a decomposition so that a set of processors, indexed in a 2D array, hold
part of the datain the | and J dimensions, and al of the datain the K dimension. The
sweep processing consists of pipelining the data flow from each cube vertex in turn to
its opposite vertex. It is possible for different sweeps to be in operation at the same
time but on different processors.

)
i
()
i

oS So SoSo S oS =2
e
i e—ecoee
RSN N NN N 5 o 5 o 5
RN ..’—’—————
i.....i...—’ —————
N
S
J .~H=EE”—— |

Figure 5. Data Decomposition of the Sweep3D Cube

For example, Figure 5 depicts a wavefront (shaded in Grey) that originated from
the unseen vertex in the cube, and is about to finish at vertex A. At the same time, a
further wavefront is starting at vertex B and will finish at vertex C. Note that the
example shows the use of a 5x5 grid of processors, and in this case each processor
holds atotal of 2x2x10 data elements (data set of 10x10x10).

3.2 M odel Description

(e ~
Application

?)Llj)tj)g?(source | | sweep fixed | |flux_er
N~ 4
F N
Parallel

Template | async | | pipeline| | 91oPd global
Object um max

NG \ \\ / /’ /)
(Herdware —)
Object SgiOrigin2000

) J

Figure 6. Sweep3D Object Hierarchy (HLFD Diagram)

We define the application object of the performance model as sweep3d, and divide

each iteration of the application into four subtasks according to their different
functions and different parallelisations. The object hierarchy is shown in Figure 6,
each object is a separate rectangle and islabelled with the object name.

The functions of each object are:

sweep3d — the entry of the whole performance model. It initidises al
parameters used in the model and calls the subtasks iteratively according to the
convergence control parameter as input by the user.

source — subtask for getting the source moments, which is actually a sequentia
process.

sweep — subtask for sweeper, which isthe core component of the application.
fixed — subtask to compute the total flux fixup number during each iteration.
flux_err — subtask to compute the maximum of relative flux error.

async —a sequential “parallel” template.

pipeine — paralel template specially made for the sweeper function.

globalsum — parallel template which represents the paralel pattern for getting
the sum value of a given parameter from all the processors.

globalmax — paralel template which represents the parallel pattern for getting
the maximum value of a given parameter from all the processors.

SgiOrigin2000 — contains all the hardware configurations for SGI Origin2000,
which is comprised of smaller component hardware models already in existence
within PACE. This can be interchanged with a hardware model of a different
system, e.g. acluster of SUN workstations.

The example model objects and their correspondence with the C source code is
shown in Figure 7. Figure 7A is the C source code of showing part of the main
function sweep, whose serial parts have been abstracted into a number of sub-
functionsin bold font. Figure 7C shows how the same source code structure is used to
provide the parallel template description. Figure 7B is an example sub-function
source code which can be converted automatically to the control flow procedurein the
subtask object as shown in Figure 7D.

Some of the main statements used in the PSL to represent the performance aspects
of the source code are as follows:

compute — a processing part of the application, its arguement is a resource usage
vector. Thisvector is evaluated through the hardware object.

loop — the body of which includes alist of the control flow statements that will
be repeated.

call - used to execute another procedure.

case — the body of which includes a list of expressions and corresponding
control flow statements which might be evaluated.

step — corresponds to the use of one of the hardware resources of the system. Its
arguement is used to configure the device specified in the current step. Thisis
used in parallel templates only.

confdev — configures a device. The meaning of its arguments depend on the
device. For example, the device mpirecv (MPI receive communication
operation) accepts three arguments: source processor ID, destination processor
ID and message size.

Sweep3D Source Code Sweep3D Performance Model Scripts
partnp pipeline { config Sy Qi gin2000 {
voi d sveep() { proc exec init { her dvare {
sveep init(); ------------mmeeeo -{---step cpu { confdev Tx sweep init; } }
for(ig=1 iq<8 iqgH) { for(phase = 1; phase <= 8, phase = phase + 1){| pvm{
octart(); step cpu { confdev Tx octart; } | |
oet_drect(); step cpu { confdev Tx get_drect; } }
for(@ =1, no <mo; no+) { for(i =% i <mo;, i =i +1) { i {
pipdineinit(); step cou { confdev Tx pipelireinit; 3 | | ...
for(kk =1; kk <= ki kk+ { for(j =1 j <kuj=j+1){ D CWMA = 512,
K loop init(); step cpu { confdev Tx Kk loopinit; } D COMB = 33. 228,
foo(x=1L x<=npei; x=x+1) D GWMC = 0. 02260,
if (ewrcv!=0) fo(y=L y<nej, y=y+1){ D GMD = -5. 9776,
info=NMA_Recv(Piib, nib, nyid=Gt nyid x, y); [D GIWE = 0. 10690,
MA_DOBE tids[ewrcv], ewrcv = Gt_ewrcv(phese, X, y); _-IDTRRO/ A= 512,
ewtag, NA_COMVIRD if(ewrcv 1=0) -7 mIE/B= 22065,
&tatus); - ----------=-m--+ H\F---- stepn]urecv{ confdev ewrcy, nyid, nib; }<J_ D TREO/ C= 0. 06438,
dse B . DTRD/D=-17891,
else ewrev(); stepcpuonnyld{ confdev Tx el se ewrcy; } ~[D TREO/ E = 0. 09145,
| } [DTENDA= 512,
conp_f ace() ; step cpu { confdev Tx_conp face; } D TEDB = 14. 2672,
h N\ for(x=1 x<npei;XxX=x+1) D TEN\D C = 0. 05225,
/if (nsrev \=0) fo(y=1L y<npej;y=y+1){ DTENDD=-12.327,
! info=MA\Rev(Fhijb, nib, nyid=Gt_nyid x y); [D TEND E = 0. 07646,
8 MA_L = tids[ns_rev], nsrev=@&t _nsrev phese, x, y); | | ...
g ns tag, NR_COWWIRD if(nsrev!=0) / }
B &tatws); stqnnprew{oorﬂda/r$rw nyid, njb; } ce{
| dse o dse S | |
B esens rev(); \ step cpu on nyid { m,Ha/Txelsersrw } ML = 0. 00602936,
| \ } MFSG = 0. 025046,
o overk(); \ step cpu { oonfdal T verk; } ML = 0. 0068927,
[U N . MG = 0. 011226,
) K } ’ '
! fest();) stepcpJ{oonfdeM st } AN = 0. 00061269,
T} el N } Ty ARDL = 0.0004727,
oo } / [AR = 0.0234027,
b RNV } g 44 ATB = 0.0433327,
L R A i g 89 C AFD! = 0. 0672354
I N g il
v B SUDt a5k 7 QWL = 0.0098327,
| ey =P =y 0uG:= 0 ez
Voi d conpu face() | proccflozvoormfa:e{(*'(}ﬂls sign*) QWL = 0.0096327,
#pragna capp | f do dsa conpute <is clc, FOJL> QG = 0. 0305927,
if (d0.0SA) { —-mmommemmeeeee |- - -case(dsdc, 1RRY); {‘ QW = 0.0100827,
i=i0-i2 do_dsa * QWIS = 0. 0223627,
#pragna capp Loop nmi comute <is clc ALL 1111, SLL> QWL = 0.0107527,
for(mh =2 <= nmh; m+) { loop (dsdlc, LFER: nmn) { - QWG = 0. 0229227,
m=n + o, cormneqsdcé\m_Am 'I1LL S, QMIL = 0.010637,
#pragna capp Loop nk loop (di's C|G’lfb§ k) { Ti| L QG= 0027327,
for(1k =1 Ik <nik Ik { oonme<sc:c QlL, AL UlieRs @Erey
k = kO + si g(1 k- : B conute Ssiche, AL [T\ e
mmcan%r(m]]rz) cal cflozvslgn FOAL = 0.030494,
for(j =2 j <jt; j+) { | oonmeqsalc TLW, 9L LFR = 0. 011834,
Fece[i H 3 [j]1[KI[1] = Ioop(qs:dc LFOR, jt) {
L Feoei4 31K + comute’<i's clc, QUL 2:ADI, AT, }
Profilin v mp* i b j][K] [nn] ; ; AR]../ I:JHJ_, AT, THL, INL> i
}} oorm.[e,/d‘/s, dec, INL>
} |
}} cormutefﬁ':s‘dc, INL>;
} } /
}
} (* Bd of ompfa:e *)
proc cflowverk { }
proc cflowlast { }
B - } D E

Figure 7. Mapping between Sweep3D M odel Objectsand C Source Code

It can be seen from the part of the Sweep3D mode shown in Figure 7 that thereisa
lot of information extracted from the source code that is used for the performance

prediction. The accuracy of the resulting model is of importance, and in Section 4

bel ow, detailed results are shown to validate the modd with measurements on the two
systems considered.

Figure 7 also shows the inner mapping between the software objects and hardware
object of the performance model. The abundant off-line configuration information
included by the hardware object is the basis to implement a rapid evaluation time to
produce the performance predictions.

4 Validation Results

In this section the preliminary validation results on execution time for Sweep3D are
given to illustrate the accuracy of the PACE modelling capabilities for performance
evaluation. The procedures in the PACE eval uation engine to achieve these results are
complex and out of the scope of this paper. Further details can be found in [10].

Figure 8 shows the validation of the PACE modé against the code running on an
SGI Origin2000 shared memory system. Note that the result for single processor input
isnot included because there are many special configurations, which are not included
to current performance model for the sequential code. As shown in the figure, run
time decreases when the number of processors increases. At the sametime the parallel
efficiency decreases too. In fact when the number of processors is more than 16, the
run time does not improve any further.

1~
5 ‘\\ grid size: 15x15x15 25 grid size: 25x25x25
Run? \ Run 20-&\
?sret]ce)3 ¥\ S MsSires time {ger) \\ —3—Modd
] ‘\-\.% . —\-\'ﬂkq
1 51
o +————""T"—TTT"T—" -
020304050607080910111213141516 020304050607080910111213141516
Processors Processors
80 —
- grid size: 35x35x35 250 grid size: 50x50x50
7078 Run |&
Run 60 \\ tll% S&k
1 N | ——
time $eet) \\ | ——Modd 151 F——Node——
40 l\ —— Measured
307 \ 100
20 50
10 \.—.\'b—l
[. S e s e e e S e p e e — OIIIIIIIIIIIIII
020304050607080910111213141516 020304050607080910111213141516
Processors Processors

Figure 8. PACE Model Validation on SGI Origin2000

By only changing the hardware object to the SunUltral predictions on this new
system can be obtained as shown in Figure 9. A cluster of 9 SunUItral workstations
was used to obtain the measurements assuming no background loading. The run time
spent is much more than that on SGI Origin2000 with the same workload. But the

trend of the curve is almost the same.

14 grid size: 15x15x15 60 grid size: 25x25x25
128 BN
Run 1 \ Run
. 4
time (g&c) ——Hiod time (sec “a—Mode
Measured) -
6 \ éo
4 201
2 1
0 T T T T T T T 0
02 03 04 05 06 07 08 09 02 03 04 05 06 O7 08 09
Processors Processors
16 — 500 —
rid size: 35x35x35 grid size: 50x50x50
140& g 4501
12 40
Run 0 .
time %389 \ —$—Modd
6! \
4
2
02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09
Processors Processors

Figure 9. PACE Model Validation on Cluster of SunUltralWorkstations

The accuracy of the prediction results were evaluated as follows:

The errors between measurements and predictions are shown in Table 1, for the SGI
Origin2000, and in Table 2 for the SunUItral Workstation Cluster. It can be seen that

Error =

| Measurement—Prediction |

% 100%.

Measurement

the maximum error is 10% in both cases, but the average error is approx. 5%.

Table 1. Prediction Error on SGI Origin2000

Err.(%) | 15X15X15 | 25X25X25 [35X35X35 | 50X50X50
1X2 6.53 10.44 7.02 -5.02
2X2 0.45 4.60 9.37 9.80
2X3 1.38 -0.73 4.47 -2.46
2X4 -5.66 0.82 1.12 -5.60
3X3 -0.29 -0.13 0.48 -4.55
3X4 -4.72 -4.92 -1.13 -7.62
4X4 -9.54 -4.90 -11.44 0.20

Table 2. Prediction Error on SunUItral

Err.(%) | 15X15X15 | 25X25X25 [35X35X35 | 50X50X50
1X2 -6.79 0.15 3.24 -1.12
2X2 7.07 8.07 5.62 5.30
2X3 4.00 1.64 -0.20 0.32
2X4 2.85 -1.49 -4.30 -10.06
3X3 5.01 342 2.27 0.82

Besides the reasonable accuracy, the performance model can be used to obtain the
evaluation resultsin arapid time period, typically lessthan 2s. Thisisa key feature of
PACE that enables the performance models to be used to aid to steer the application
execution onto an available system at run-timein an efficient manner [7].

5 Conclusions

This work has described a performance modelling approach for parale and
distributed computing using the PACE toolset. A case study of the Sweep3D
application has been given containing both model descriptions and validation results.
The main parts of the system include:

» alayered framework,

» aPerformance Specification Language (PSL),

» asemi-automated Application Characterization Tool (ACT),

» aHardware Mode Configuration Language (HMCL), and

 dtrict mapping relations to get a performance modd directly from the source
code with maximum application information.

These lead to the key features of PACE which include: a reasonable prediction
accuracy — approximately 10% error a& most; arapid evaluation time — typically less
than 2s for agiven system and problem size; and easy performance comparison across
different computational systems. It has been shown that the PACE performance
system can produce reliable performance information which may be used for
investigating application and system performance in many different ways.

The PACE system is currently being extended to provide support for performance
prediction in computational environments which may be dynamically changing, and
to aid the scheduling of multiple applications on the available resources. This
corresponds in part to the chalenges currently posed by the development of
Computational GRIDs.

Acknowledgement

Thiswork is funded in part by DARPA contract N66001-97-C-8530, awarded under
the Performance Technology Initiative administered by NOSC.

References

[1] R. Bagrodia, R. Meyer, M. Takai, Y.A Chen, X. Zeng, J. Martin, and H.Y. Song.
Parsec: A Parallel Smulation Environment for Complex Systems. IEEE
Computer, Vol. 31(10), pp. 77-85, October 1998.

[2] E. Deedman, A. Dube, A. Hoisie, Y. Luo, R.L. Oliver, D. Sundaram-Stukel, H.
Wasserman, V.S. Adve, R. Bagrodia, J.C. Browne, E. Houstis, O. Lubeck, J.
Rice, P.J. Teller, and M.K. Vernon. POEMS: End-to-end Performance Design of
Large Parallel Adaptive Computational Systems. Proceedings of the ACM 1%
International Workshop on Software and Performance, pp. 18-30, 1998.

[3] I. Foster, and C. Kesselman. The GRID: Blueprint for a New Computing

Infrastructure. Morgan-Kaufmann, July 1998.

[4] M.I. Frank, A. Agarwal, and M.K. Vernon. LoPC: Modelling Contention in
Parallel Algorithms. Proceedings of 6" ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming (PpoPP '97), Las Vegas, pp.
62-73, June 1997.

[5] M.W. Hal, JM. Anderson, S.P. Amarasinghe, B.R. Murphy, S. Liao, E.
Bugnion, and M.S. Lam. Maximizing Multiprocessor Performance with the SUIF
Compiler. IEEE Computer, Vol. 29(12), pp. 84-89, December 1996.

[6] J.S. Harper, D.J. Kerbyson, G.R. Nudd. Analytical Modeling of Set-Associative
Cache Behavior. to appear in | EEE Transactions on Computers, 1999.

[7] D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd. Application Execution
Seering Using On-the-fly Performance Prediction. in: High Performance
Computing and Networking, Springer-Verlag, 1998.

[8] K.R. Koch, R.S. Baker, and R.E. Alcouffe. Solution of the First-Order Form of
the 3-D Discrete Ordinates Equation on a Massively Parallel Processor. Trans.
of the Amer. Nuc. Soc., Vol. 65(108), 1992.

[9] D.A. Nowak, R.C. Christensen. ASCI Applications. Report 232247, Lawrence
Livermore National Laboratory, American, November 1997.

[10] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper, and D.V.
Wilcox. PACE — A Toolset for the Performance Prediction of Parallel and
Distributed Systems. to appear in High Performance Systems, Sage Science
Press, 1999.

[11] V.S. Pai, P. Ranganathan, and S.VV. Adve. RSIM Reference Manual. Version 1.0.
Department of Electrical and Computer Engineering, Rice University, Technical
Report 9705, July 1997.

[12] E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, and T.J. Atherton. An Overview of
the CHIP3S Performance Prediction Toolset for Parallel Systems. Proceedings 8"
ISCA International Conference on Parallel and Distributed Computing Systems,
Orlando, pp. 527-533, 1995.

[13]B. Qin, H.A. Sholl, and RA. Ammar. Micro Time Cost Analysis of Parallel
Computations. IEEE Transactions on Computers, Vol. 40(5), pp613-628, 1991.

[14] JM. Schopf. Sructural Prediction Models for High-Performance Distributed
Applications. Proceedings of 1997 Cluster Computing Conference (CCC '97),
Atlanta, 1997.

[15] C.U. Smith. Performance Engineering of Software Systems. Addison Wesley,
1990.

[16] M. Uysal, T.M. Kurc, A. Sussman, and J. Satz. A Performance Prediction
Framework for Data Intensive Applications on Large Scale Parallel Machines.
Proceedings of the 4™ Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers (LCR '98), 1998.

