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Abstract. Named Data Networking (NDN) is a paradigm shift from a tradition-
al host-to-host network to a named content based one by a wholly new designed 
network architecture. CCNx, which is the most popular implementation of 
NDN, is designed over TCP or UDP. While the current implementation of NDN 
is an overlay network, the major contribution of this paper is to propose an un-
derlay implementation of NDN by using Ethernet frames directly to encapsulate 
named data even without a MAC address. We present an underlay NDN proto-
type. In this paper, pure named content architecture is proposed, with a concrete 
implementation and performance evaluation using Ethernet frames. Our under-
lay implementation has a slightly better theoretical protocol efficiency than an 
overlay implementation. The experiment itself also demonstrates the feasibility 
of pure NDN, which is an essential evolution from a traditional address based to 
a content based network. 

Keywords: Named Data Networking, Content-Centric Networking, Underlay 
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1 Introduction 

The original motivation for networking is to share data or expensive computing re-
sources with host-to-host communication in the mainframe era. Today’s Internet is 
based on the ossifying TCP/IP protocol stack and a static host-to-host conversation 
model to disseminate contents with ever larger volumes. Named Data Networking 
(NDN), also called Content Centric Networking (CCN), is a new architecture recently 
proposed by PARC [1][2]. The fundamental principles of NDN have been provided 
by some designs such as Content-Oriented Architecture or Information-Centric Net-
working (ICN). Some related designs are DONA [3], TRIAD [4], PSIRP [5] and so 
on. NDN is a new network architecture that redesigns the model of network commu-
nication, from today's focus on where - addresses and hosts, to what - the content that 
users and applications care about. Because of this key feature, basic network functions 



such as routing, forwarding and security are named data based instead of link state or 
session based. 

The common implementations of NDN, such as CCNx [6] or NDNLP [7] are dep-
loyed upon the traditional address routing network. The overlay design is easy to be 
implemented, adapts to existing Internet architecture and could utilize some mature 
strength of the current network architecture including reliable communication, abun-
dant routing optimization algorithms and so on. However, this overlay design deepens 
the protocol stack and produces unnecessary overhead. For example in CCNx, NDN 
packets are split and reassembled through the TCP/IP stack. Besides, the routing 
process should be executed twice in both the NDN router and the common IP router. 
In [3], main stream network architectures are reviewed. Application level framing is 
proposed to achieve Integrated Layer Processing for efficient data manipulation. We 
propose an implementation of NDN over Ethernet frames and call it underlay NDN 
implementation. MAC addresses are removed from the headers of Ethernet frames 
and the link is just hop-by-hop. The principle of underlay NDN is that the NDN pro-
tocol directly runs on the layer 2 link protocol without host addresses, since the origi-
nal motivation of NDN is to shift from a where to a what model. 

In our work, the CCNx code is modified to support Ethernet frames without host 
addresses. Each network interface card (NIC) which handles the transmission of un-
derlay NDN packets is abstracted as a NDN face. The NDN packet will be transmitted 
through the face using a non-address frame protocol. The layer 2 framing protocol 
provides an agreement between the two ends of a physical link, which is the basic 
demand to support NDN. Figure 1 shows the framework of our design, which is a 
little different from the NDN overlay protocol stack. In addition, an overall design of 
an underlay NDN network is proposed and a testbed of a mini network is deployed to 
prove the functionality and evaluate the performance. 
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Fig. 1. The NDN underlay model 

For performance evaluation, tcpdump1 is used to analyze the structure of underlay 
NDN packets for protocol efficiency. The CCNx repository (CCNR) is used as the 
data source for NDN clients to fetch. Different topologies of the undelay NDN net-

1 Tcpdump: http://www.tcpdump.org/ 
                                                           



work are deployed for the CCNR data distribution to test network delay and through-
put. Besides, we use the VLC application over underlay NDN to demonstrate the 
function integrity. 

The rest of the paper is organized as follows. Section 2 gives some research back-
ground and related work. Section 3 describes detailed implementation of underlay 
NDN and the overall design of underlay NDN. Section 4 and 5 demonstrate testbed 
deployment, and performance evaluation of different scenarios with detailed discus-
sions. Section 6 concludes the paper and addresses the future work. 

2 Research Background 

2.1 CCNx 

CCNx [6] is an open source project and a software prototype that implements the 
NDN architecture. NDN has no notion of hosts at its lowest level, and the 
functionality of NDN is guaranteed by the name based routing property. The 
specification of the CCNx protocol implements the notion of NDN. It prescribes the 
format of interests and content objects, the naming and encoding specification of 
NDN packets, CCNx node models and so on. The CCNx node model implements 
three main data structures of NDN: Content Store (CS), Forwarding Information Base 
(FIB) and Pending Interest Table (PIT). The CCNx node runs as a daemon ccnd to 
process the NDN protocol, and takes charge of forwarding interests referring to the 
FIB table, caching NDN packets in CS and responds to interests with content objects 
according to PIT. 

The current implementation of CCNx is an overlay upon TCP or UDP. The 
configuration of FIB is done by the program ccndc. It can bound NDN faces with 
TCP or UDP socket file descriptions. The transmission of interests and content 
objects is through NDN faces. In CCNx, the formatted NDN packets are sent through 
TCP and UDP sockets. 

The NDN application development framework is shown in Figure 2. The 
configuration command program of CCNx, such as ccndc, and CCNx applications 
bounded with the CCNx project, such as ccnr are all based on the CCNx client 
library. The CCNx client is a local socket communication program. The command or 
application messages are encapsulated as CCNx interests or content objects and sent 
by local CCNx clients with local socket communication to ccnd. The CCNx client 
will also register NDN faces in ccnd. The ccnd daemon is the only communication 
portal among different CCNx hosts. If a developer wants to develop a new application 
of CCNx, he or she is just required to call the CCNx client library to connect with the 
ccnd daemon and follow the CCNx naming and interest specifications. Thus the 
modification of the ccnd exterior communication mechanism will not influence CCNx 
commands and applications. 
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Fig. 2. The NDN application development framework 

2.2 Related Work 

In [8], the layered network architecture is revisited. The modular design will result in 
multiple presentation conversions between different layers which contributes to 
majority of the protocol stack overhead. Application level framing is proposed to 
promote this presentation process to the application. 

The first paper which proposes the NDN architecture [1] evaluates the 
performance of the NDN implementation. The result shows that TCP throughput 
asymptotes to 90% of the link bandwidth and overlay NDN asymptotes to about 68% 
of the link bandwidth. The bulk data transfer efficiency of overlay NDN is 
comparable to TCP but lower due to its large header overhead. This paper also 
compares the relative performance of overlay NDN with HTTP and HTTPS to 
retrieve a single HTML file. In this experiment, two different NDN encapsulations are 
compared: directly into 1500 bytes Ethernet packets which have no IP or UDP 
headers and into UDP datagrams directly. The overhead of the two performances 
seems very similar to that of HTTP. In the performance evaluation of underlay NDN, 
we will refer to these two experiments to analyze NDN throughput and content 
efficiency. 

Haowei Yuan et al. [9] evaluated the content distribution performance of overlay 
NDN based and HTTP based content distribution solutions using the CCNx code. The 
performance evaluation shows that the current overlay NDN prototype 
implementation is much slower than TCP. This paper also demonstrates that more 
than 50% of the time is spent on functions related to packet name decoding in the 
overlay NDN prototype. The ccn_skeleton_decode function, which is the lowest level 
packet decoding function, takes 47.34% of the all the packet processing time [10]. 

Junxiao Shi et al. proposed a link protocol for NDN, NDNLP [7]. NDNLP runs 
between the CCN chunks and underlying network protocols including TCP, UDP and 
Ethernet links. The NDNLP protocol receives NDN packets and sends it to lower 
links. NDNLP provides two main features: fragmentation and reassembly to support 
different sizes of packets, acknowledgement and retransmission to support reliable 



transmission. The current implementation is the mode of proxy. The daemon ndnld 
receives CCNx packets from ccnd, encapsulates and sends out them in the format of 
NDNLP, receives remote NDNLP packets, decodes them and sends them to local 
ccnd. 

Our previous efforts on overlay networks include performance comparison 
between content delivery networking (CDN) and NDN [11], node placement of 
overlay networks for Internet of Things applications [12], building services [13]  and 
data storage [14] upon NDN, and bitmap indexing for big data applications [15]. This 
paper mainly discusses the underlay implementation. 

3 Underlay Implementation 

In this section we will present the implementation of underlay NDN. 
Figure 3 shows a basic deployment of underlay NDN. In our implementation, the 

Ethernet frame protocol is modified to be the NDN underlying layer 2 protocol. The 
MAC address is removed from the Ethernet header. NDN faces are bounded with NIC 
and different faces are directly connected by physical links. We implement this work 
by revising the CCNx code and building the testbed on Linux servers. In the 
following section, we will introduce enabling techniques firstly and briefly 
demonstrate the modification of CCNx codes and configurations on Linux servers. 

 
Fig. 3. The NDN underlay deployment 

Because of the removal of MAC addresses, the underlay NDN packets cannot go 
through common Ethernet switches. In addition, NDN nodes cannot connect by 
common IP routers because of lack of IP headers. Thus, the underlay NDN network of 
our implementation just consists of CCNx nodes bounded with underlay faces. Thus, 
the pure underlay NDN network should be specially designed. One of the 
demonstration systems is described in the following section. 

3.1 Enabling Techniques 

1) Jumbo frames.  

Although the default maximum transmission unit (MTU) of Ethernet frames is 1500 
bytes in most operation systems, the MTU can be changed. As mentioned above, the 



MTU is changed to support the large size of NDN segments in our work. Many NICs 
support larger Ethernet frames, which are called jumbo frames2. Jumbo frames are 
Ethernet frames with more than 1500 bytes of MTU. Conventionally, jumbo frames 
can carry up to 7000 bytes of MTU. Most Gigabit Ethernet NICs support jumbo 
frames. 

In the protocol of CCNx, the default size of segments is 4096 bytes. Thereby 
every segment should be fragmented due to the limited 1500 bytes MTU. We change 
the MTU to 7000 bytes so that the NDN segment has not to be fragmented. 
Furthermore, we will also use different sizes of segments to make full use of the 
payload. 

2) Promiscuous mode.  

Promiscuous mode3 is a mode for a wired network interface card or wireless network 
interface card that will not filter all traffic it receives rather than just receive the 
Ethernet frames which matches pending MAC addresses. In our implementation of 
underlay NDN, there is no MAC headers at all (its space is occupied by the payload). 
Therefore, we should use promiscuous mode to pass all frames that are received. Most 
of the NICs support the promiscuous mode. 

3) AF_PACKET and Raw socket.  

AF_PACKET is the first parameter of function socket(int socket_family, int 
socket_type, int protocol). This AF_PACKET sockets are used to receive or send raw 
packets at the device driver (OSI Layer 2). The socket_type could be SOCK_RAW for 
raw sockets 4  or SOCK_DGRAM for cooked packets with the link level header 
removed. In our implementation, we use raw sockets since headers of Ethernet frames 
could be handled directly. Thus, MAC addresses could be removed from Ethernet 
headers. 

3.2 Implementation 

In this section, we will demonstrate how to build a one-hop underlay NDN prototype 
with two Linux servers over Ethernet frames. The CCNx code is enhanced to support 
Ethernet frame socket transmission and underlay NDN face configuration. Linux 
servers are configured to support our non-address Ethernet frames. 

1) CCNx code modification.  

Unlike the current NDNLP implementation, we directly modified the CCNx code. 
The major work can be summarized into two parts. The first part is to revise ccnd 
related code to support raw socket communication. The second part is to revise ccndc 
related code to add underlay NDN face supports. The brief process of modification 
can be shown in the following figures. 

2 Jumbo frame: http://en.wikipedia.org/wiki/Jumbo_frame 
3 Promiscuous mode: http://en.wikipedia.org/wiki/Promiscuous_mode 
4 Raw socket: http://en.wikipedia.org/wiki/Raw_socket 
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Figure 4 shows the face registration process and figure 5 shows the message 
receiving process. We just add some flags or macros to judge the type of protocol or 
type of faces. The practical modification is a case branch and the mount of 
modification is rather small. 

2) Network configuration.  

We choose CentOS5.5 as the experiment platform. Our server’s CPU is Intel(R) 
Pentium(R) Dual CPU E2160 @ 1.80GHz and memory is 4G. NIC is TP-LINK TG-
3269C. The configuration of the network is listed below: 

• To support jumbo frames of larger MTU, for example 7000, the Linux command 
may be as follows: 

sudo ip link set dev eth0 mtu 7000 

The parameter eth0 is the name of the bounded NIC. The command including the 
following configurations requires root authority. 

• The underlay NIC should be detached from TCP/IP protocol stack, in case that the 
NIC would receive TCP/IP packets that the underlay NCN faces could not handle. 

sudo ip addr flush dev eth0 
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Fig. 4. Face registration proces     Fig. 5.    Message receiving process 



4 Performance Evaluation 

4.1 Building of Testbed 

The building of the testbed could build on the one-hop demonstration deployment. 
Testbeds of different topologies are deployed for different evaluation scenarios. In 
this paper, one-hop, two-hop and star topologies are demonstrated as show in Figure 
6. 

One-hop deployment as shown in Figure 6(a) is demonstrated before. The server 
on one end runs the CCNx repository (CCNR). 

The two-hop deployment as shown in Figure 6(b) is rather similar. The middle 
node initiates two underlay NDN faces and runs two underlay specific NICs. The two 
ends connect to the middle node’s two NICs. One end of server runs CCNR. 

The starred topology as shown in Figure 6(c) is also similar. The central ccnd 
node has three NICs connected with border ccnd. 

The direction of ccndc configuration is the direction of the arrows in the figure, 
which means the direction of forwarding. 
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Fig. 6. Network topologies 



4.2 Bulk Data Transmission 

In this section, we compare the NDN underlay implementation with NDN over TCP 
on network throughput. The CCNx repository ccnr is used to store the bulk data and 
the command ccngetfile is used to fetch files from ccnr. In particular, for the same 
size of the data, we first fetch the file from A to B, and then from A to C. Because of 
the cache of the central ccnd, we can expect better throughput from the latter scenario. 

Figures 7, 8 and 9 shows network throughput comparison between NDN underlay 
with NDN over TCP with different sizes of bulk data on one-hop, two-hop  and 
starred topologies. Beyond our expectation, we can see that the throughput of 
underlay is a littler lower than that of overlay implementation. 

 
Fig. 7. One hop performance 

 
Fig. 8. Two hop performance 



 
Fig. 9. Starred topology performance 

One of the expected properties of underlay NDN is higher throughput than overlay 
NDN. We will discuss this result in Section V-A. 

4.3 Protocol Efficiency 

In the prior experiment, we found that for the default block size 4096, the full size of 
one NDN packet is 4772. For TCP with MTU of 1500 bytes, the whole NDN packets 
will be split into 4 TCP packets with 54 bytes of TCP and IP headers. The protocol 
efficiency is defined as the ratio of the practical size of message with the total size of 
message. As shown in Table 1, the protocol efficiency of NDN underlay a little higher 
than NDN over TCP. 

Table 1. Jumbo frame structure of MTU 7000 

Network Type Protocol Efficiency Calculation 
NDN TCP 82% 4096/(4772+54*4) 
NDN Underlay 86% 4096/4772 

4.4 Video Streaming Demo 

The VLC plugin which is in the CCNx code can support video streaming applications 
[16]. The installation and execution process of VLC in CCNx-underlay is the same as 
that of CCNx. The code of the VLC plugin has not been modified from the original 
CCNx code. 

The network topology of VLC is two hop as shown in Figure 6(b). One VLC 
client requests streaming videos from the other ccnr end through the middle of ccnd. 
In our experiment as shown in Table 2, the input bitrate of the video is 468kb/s and 
the content bitrate is 489kb/s, which means normal quality for watching. 



Table 2. Result of VLC over underlay NDN 

Video 
Decoded 383 blocks 
Displayed 351 frames 
Lost 1 frames 
Input/Read 
Media data size 2974 KiB 
Input Bitrate 468kb/s 
Content Bitrate 489kb/s 

5 Discussion 

5.1 Performance Analysis 

In Section IV-B, we can see that network throughput of the underlay NDN is lower 
than that of the overlay NDN, which is beyond our expectation. Theoretically, the 
underlay NDN has simpler underlying protocols and should have better performance. 
For CCNx over TCP sockets, CCNx packets are split and reassembled through the 
TCP/IP stack. In addition, because of the IP and NDN double routing protocol, the 
same NDN packets will be forwarded duplicately. In Section IV-C, the NDN undelay 
has lower protocol overhead than NDN overlay. Thus, the NDN Underlay should 
have a better performance theoretically. 

We speculate that the code efficiency of raw sockets may be the main bottleneck 
and check the raw socket related code of the Linux kernel as follows. The kernel 
version is 2.6.36.2. As we can see in the function __raw_v4_lookup, it will check the 
type of message protocol and filter the address. This is one of the codes which will 
degrade the performance and there may be other un-optimized codes. We think that 
un-optimized code is one of the main reasons for low performance. The highly 
optimized TCP/IP layer works so fast with the Ethernet layer, that the underlay NDN 
implementation talking to the Ethernet layer directly did slow things down. 

We will improve the CCNx underlay code by revising the Linux kernel code to 
optimize raw sockets or just injecting a new transmission tunnel over the NIC driver 
in future work. 

In conclusion, we demonstrate that with NDN, TCP/IP is no longer needed, but 
also demonstrate that if TCP/IP is omitted, the replacement needs to be efficiently 
embedded, thus making optimization of surrounding layers and the OS-kernel 
necessary. 

5.2 Architecture Analysis 

As demonstrated above, our implementation of underlay NDN network is the pure 
content based network. 

Reliable hop-by-hop links are the only demand for the NDN protocol. The 
underlay NDN flattens the protocol stack and relaxes the layer 2 protocol 
requirements, which enhances the underlying link layer compatibility. The data 



representation will directly be possessed to NDN level to avoid presentation overhead. 
Data manipulation and transport control could be configured and more targeted to 
achieve selective features. 

In addition, the complete removal of the TCP/IP stack simplifies the control and 
data plates of the NDN overlay network. As we can see in papers that propose NDN 
[1][2], the NDN architecture itself is a complete and functional network architecture. 
The essential principle of the underlay NDN is to leave the routing, forwarding, 
security and other network concerned problem with the NDN architecture itself. 

6 Conclusions 

In today's Internet, high efficiency of data transmission is still very difficult and 
important. In this paper, we present a new NDN protocol implementation. We design 
the underlay NDN model and implement our design. It is an evolution from traditional 
address-related infrastructure dependencies. Although the current implementation of 
underlay NDN, CCNx-underlay, cannot surpass the TCP or UDP overlay on network 
throughput, we believed that performance of CCNx-underlay will be better than the 
overlay implementation with optimization of network programming. 

In future, we will still develop and optimize the CCNx-underlay project and 
release new versions. We will also enhance CCNx-underlay to support more 
underlying protocols. In addition, we think the naming mechanism of NDN can 
integrate networking, storage and computing and we will propose a new architecture 
of distributed computing in future work. More applications on top of our underlay 
NDN implementation will be developed in future, e.g. in the areas of Internet of 
Things, Smart Grid and Energy Internet. 
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