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Abstract 

Selecting and utilizing proper virtual machines in a virtualized cloud platform to achieve high 

availability, throughput, reliability, as well as low cost and makespan is very important. The 

importance lies in the adaptive resource provisioning to satisfy variant of workloads. An 

Adaptive Accessing Aware Algorithm (A5) is proposed in this paper to deal with this conflicting 

objective optimization problem. The main strategy of A5 is selecting adaptive upper/lower bound 

of service capacity to decide the time for scheduling redundant virtual machines and a Pareto-

front based multi-objective optimization method to decide the number of scheduling virtual 

machines. We carried out experiments in simulation, which show that A5 can achieve much 

higher performance improvements in four different workload testing environments, compared 

with other three commonly used methods. 
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I. INTRODUCTION 

A. Research Background & Motivation 

The advent of Cloud Computing [1], which leverages virtual clusters to extremely large scale, 

widely distributed, commodity-computer data centers and consistent service provisions are requiring 

reliability, availability, throughput and lower cost. However, the optimization over all these conflicting 

metrics is difficult. For example, improving throughput leads to the scaling the cost of using more 

number of virtual machines. 

Recently we have witnessed lots of proposals to deal with this problem. Failover clustering [2] 

combines one or more nodes, or servers, with two or more shared disks. If one server fails to provide 

service, failover strategy migrate the running applications to other server in the disk groups. Data 

Redundancy [3] is also very popular to provide high availability solutions. Hadoop [4], an open source 

project and a light-weight implementation of Google File System (GFS) [5], replicate each file twice to 

ensure availability. 

The major challenges are concluded as follows. 

(1) Low utilization. There is an inborn conflicting between redundancy and utilization. Redundant 

virtual machines (VMs) are used as replications to provide sustainable services for high availability. 

Low utilization problem emerges when workloads are relatively light since lots of VMs are idle. 

How to provide a flexible strategy to effectively utilize these resources adaptively is one of the 

technical challenges.  

(2) High cost. Replications of data require software and hardware investment and maintenance cost. 

How to minimize the overall cost  and keep the system availability at an acceptable level to adapt to  

variant system workloads is another challenge. 

(3) Low reliability. The reliability of the system may not grow linearly with the redundancy of the 



 

system which may result in extra cost. using How to ensure high reliability adaptively with 

consideration of cost is also difficult. 

An Adaptive Accessing Aware Algorithm (A5), is proposed in this work, aiming at addressing the 

above issues. The major contributions include: 

(1) Global optimization of throughput, availability, reliability and cost aware. Reliability and cost 

of different redundant VMs have different impacts on throughput and availability. A selection 

strategy based on achieving Pareto-front with multi-objective programming is brought in to address 

this global performance metrics balance problem. 

(2) Adaptive accessing aware. Arrival/departure rate of workloads influence service capacity 

differently. Different requests exert different pressure on system performance since the various 

resources they require to use and their own complexity are also different. A5 is proposed to 

adaptively adjust itself for this situation and automatically change its scheduling policy to optimize 

the objectives in (1). 

(3) Adaptive upper and lower bounds of redundant VMs. When the Cloud platform is overburden 

(or over idle), an adaptive threshold of choosing available redundant VMs to enrich the active 

redundant list (or in an opposite direction) is effectively calculated to take full advantage of 

redundant resources. We use a heuristic method to balance low service capacity with the cost of 

frequently schedule in redundant VMs for lower bound selection. Also, we balance high service cost 

with the cost of frequently schedule out redundant VMs for upper bound selection. 

B. Related Work 

Redundant systems [6] have long been used as an effective strategy to deal with low reliability, error 

prone problems not only in computational cluster systems, but also in mechanical engineering, 

electrical system design, etc. The redundant resource allocation is an NP-hard problem [7, 8, 9] which 

makes it not able to be solved by polynomial algorithm. H. Lee [10], et al made a comprehensive 



 

comparison of two famous strategies: max-min approach and the Nakagawa and Nakashima method, to 

conclude the advantage and disadvantage of them. Performance of Nakagawa and Nakashima method 

depends strongly on initial redundant strategy, which limits its implementation in real cluster 

applications. Based on the max-min method, our A5 is an adaptive extension of this method, which 

includes objectives more than only reliability. A. Azaron, et al. [11] proposed a new methodology for 

the reliability optimization of a k dissimilar-unit (or heterogeneous) non-repairable cold-standby 

redundant VMs and apply the shortest path technique in stochastic networks to evaluate the reliability. 

The evaluation of reliability technique is similar in A5. Different from this work, A5 tends to find a 

proper interval to ensure the selected active redundant system running with a highest reliability. D. 

Salazar, et al [12] detailed the redundancy strategies in constrained multi-objective reliability problems, 

and then uses evolutionary algorithms (MOEA) to identify a set of optimal solutions (Pareto-front) to 

ensure the selected solutions not to be dominated by any other possible solutions. A5 absorbs the 

advantage of Pareto-front which order the redundant VMs based on their reliability, cost and service 

capacity. Most of these works are more theoretically based, and many mature methodologies can be 

rectified to suit for redundant cluster systems in our A5 as described above. 

Other than that, many research on computational resource allocation and cluster reliability 

awareness provide lots of solutions to deal with similar problems. Redundant strategy has been proven 

to be very efficient in P2P file sharing system [13] named Hyper-Chord. Different from that, our 

proposed A5 is not a structured architecture. D. W. Coit [14] researched on many cold-standby 

redundancies to maximize system reliability from theory and proposed its implementation in cost-

efficient engineering designs. B. Hong, et al [15, 16, 17] also consider adaptive resource allocation 

problem with equal-sized task to maximize the throughput. Instead, A5 algorithm tends to consider 

tasks with unequal sizes (which brings in different pressure on system performance), and uses more 

performance metrics to heuristically and adaptively dispatch the redundant VMs.  



 

Grid workflow scheduling problems for performance improvement are investigated in [18, 19, 20, 

21]. Our A5 differentiate from these works in that it mainly deals with virtualized cloud platform, in 

which virtual resources are provisioned on demand. Most of the previous related works for grid or P2P 

resource scheduling are based on the fully utilization of all the resources. This is a very different point. 

     The remainder of the paper is organized as follows. Section II introduces the redundant virtualized 

Cloud platform model and traditionally used max-min optimization strategy. Section III introduces the 

rationale of A5. Section IV gives out A5 algorithm and the analysis. Abundant experiments and 

performance evaluation are conducted in section V to show the efficiency of A5 over other methods. At 

last, some conclusions are made and future works for improvements are listed in section VI. 

II. REDUNDANT VIRTUALIZED CLOUD PLATFORM 

A. Preliminaries of Dynamic Redundant VMs 

In Fig. 1, we depict the Virtualized Cloud platform built with 4 virtual clusters over 3 physical 

clusters. Each physical cluster consists of a number of interconnected servers, represented by the 

rectangular boxes with 3 different shadings for the 3 physical clusters shown. The virtual 

machines are implemented on the servers (physical machines). Each virtual cluster can be formed 

with either physical machines or VMs hosted by multiple physical clusters. The boundaries of the 

virtual clusters are shown with 4 dot/dash-line boxes. The provisioning of VMs to a virtual cluster 

can be dynamically done upon user demands. 
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Figure 1. A virtualized Cloud platform with 4 virtual clusters deployed on 3 physical clusters 

Theoretical notations we use in our experiment are firstly summarized in Table 1. Fig. 2 shows the 

workload generation scenario and sketch of our scheduling systems. 

TABLE 1. NOTATIONS OF USE 

Notations Descriptions 

s Number of physical clusters 

ni Number of total VMs in physical cluster i (i [1,s]) 

mi Number of available VMs for physical cluster i 

xij Number of VMs in physical cluster i and we choose VM j to use 

C Maximum allowable system cost 

cij, rij Cost, weight and reliability of choosing virtual machine j in physical cluster i 

Rs, Ts, Cs  Overall reliability, throughput and cost 

Ri(xi),Ti(xi) Ci(xi) Reliability, throughput and cost of virtual machine xi 

 

Figure 2. Workload generation scenario and sketch of our scheduling systems 

There are three lists in our experiments.  
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1. Active redundant list (ActiveReduList): It holds redundant VMs that are currently in use 

represented by the green rectangular box in Fig. 2.  

2. Available redundant list (AvaiReduList): It holds redundant VMs that are prepared to use 

represented by the white rectangular box in Fig. 2. We schedule redundant VMs into ActiveReduList 

from AvaiReduList when the cloud platform is overburden (EnActiveReduList) or release extra 

redundant VMs when it is over idle (DeActiveReduList).  

3. Failed redundant list (FailReduList): It holds VMs that are failed currently or permanently 

represented by the red rectangular box in Fig. 2.  

     Based on these analysis, we can see that the workloads generated by all terminal users feeding into 

physical cluster i (i[1,s]) and its redundant virtual servers ij (j[1, mi]) form a queue service model. 

But this queue characterizes itself in the following two aspects, which is different from traditional 

queue theory. 

(1) Rather than one workload have to be pended until its previous one finished its service, Multi-thread 

processing allows all workloads arrived at one physical cluster could be executed concurrently, 

which violates the most basic premise in queue theory[23]. 

(2) Availability of VM violates another basic premise that service provider should be always reliable. It 

is very common that some services are possibly to be terminated because of the potential failures of 

VMs. 

Different from queue theory that service provider has stable service capacity (SC), our system 

provides dynamic service capacity SC(t) in that there are some reliability concerns and variable service 

providers’ scenarios. Too high SC means too many redundant VMs, which brings in cost problem. On 

the other hand, too low SC brings in problems of low throughput. 



 

B. Max-Min Approach 

The most commonly used max-min approach are first developed by Ramirez-Marquez et al [22], 

which takes into account the reliability of the whole system as the optimizing objective. It is 

constrained by the cost since its basic premise is that a subsystem with redundant VMs has a higher, or 

at least an equal reliability than the original system. Based on these results, the max-min approach for 

redundant system can be formulated as follows (we use reliability as an example): 
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The problem of maximizing the reliability of each component subject to cost and weight constraint 

equals to maximizing the reliability of minimal reliable component. In this way, the objective function 

can be reformulated as  
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This is an integer programming problem and there are many existing methods, such as interior point 

cutting plane method or branch-and-bound algorithm, to solve it. Also we can transform the 

constrained optimization problem into unconstrained problem by bring in a penalty function. 

III. ADAPTIVE ACCESSING AWARE STRATEGY 

A. Preliminaries of A5 

A5 addresses a multi-objective optimization problem, which includes four performance metrics: 

throughput, cost, makespan and reliability. Detailed introduction of these metrics are given in section 

III.B. 



 

 

Figure 4. Arrival and departure of workloads, the length of rectangular box represent its EET. 

The main principle of A5 is demonstrated in Fig. 4. During [T0, T1], a dense arrival rate with long 

Expected Execution Time (EET) requests, which leads to A5 to choose proper redundant VMs, 

EnActiveReduList, to alleviate the burden. During [T2, T3], a dense departure rate leads A5 to release 

redundant VMs, DeActiveReduList, to ensure a low cost. Problem arises that when and how should we 

do this. In the following sections, an upper/lower bound selection method answers the ―when‖ problem 

and a Pareto-front based multi-objective optimization scheduling answers the ―how‖ problem. 

In view of the above analysis, the following concepts and analysis are under consideration when we 

design redundant strategy. 

(1) Real time service capacity (SC(CurTime)). Based on X. Yang’s work [24] on service 

capacity in P2P systems, the increase of peer nodes’ join can increase system performance from β to 

βm as the replica increase m times. This can be applied here straightforward since we share a similar 

scenario. If the current SC of our platform at time t is SC(t), another redundant VM with service 

capacity SC’(t) is chosen to enlist in need, then the service capacity can be simplified as (SC(t)+ 

SC’(t)). Similar rule can be applied in delist. 

(2) Adaptive upper and lower bound of service capacity. Upper/lower bound at current time, 

which are denoted as UpperBound(CurTime) and LowerBound(CurTime) respectively, are used for 

deciding when to increase/decrease redundant VMs. Suppose the system is preferably to run at an 
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average SC as shown in Fig. 5, if SC(CurTime) > UpperBound(CurTime), it means that extra 

service capacity is used and we decide to do DeActiveReduList. On the other hand, if SC(CurTime) 

< LowerBound(CurTime), more VMs are needed because of low service capacity. The major 

difficulty of making the decision is how to adaptively decide the two bounds. If 

UpperBound(CurTime) is too high as shown in 1, it will potentially enlist many redundant VMs 

until it is the time to release, which makes the system runs at a very high SC but leads to 

unnecessary running cost. On the contrary, if it is set too low as shown in 2, the bound is easy to go 

over, which leads to frequently DeActiveReduList() and brings other cost overhead. Similar 

dilemma exist in the selection of LowerBound(CurTime). Proper and adaptive decision of the two 

bounds can decrease total cost and increase throughput significantly. 

 

Figure 5. Demonstration of upper/lower-bound 

(3) En/De-ActiveReduList strategy. Three metrics, namely SC, cost and reliability, are considered 

altogether. In Fig. 5, we want to choose a combination of redundant VMs (EnActiveReduList) that 

can lead to the SC increasing to a value very close to average SC with low cost and high reliability. 

The optimization problem can be formulated like this: 
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s is the index of the selected redundant VMs in the available redundant list and asc denotes the 

average service capacity. It is a multi-objective optimization problem. DeActiveReduList can be 

similarly formulated as follows (suppose the current time is t1), 
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s is the index of the selected redundant VMs in active redundant list.
 

(4) Pareto-front based scheduling. Mathematically, achieving Pareto-front is defined as a multi-

objective optimization problem. Supposing our bi-objective optimization problem is min (J1(), 

J2()) and we plot all (J1, J2) pairs in Fig. 6. Intuitively we can see red dots  1  are better, at least 

not worse, than other white dots from both J1 and J2. Thus they are called Pareto-front. If we 

remove  1 ,  2  forms the Pareto-front of the remaining space. In this way, we can get a series of 

ordered layers  1 , 2 ,…. This rule can also be similarly applied in more objectives. 
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Figure 6. Demonstration of Pareto-optimal sets 

B. Optimization Metrics Analysis 

Based on the above analysis, we reformulate the optimization objectives as follows: 

            max ,min ,max ,minR ET M ET T ET C ET

 ET, R, M, T, C are short for Experimental Time span, Reliability, Makespan, Throughput and Cost 

respectively. The definition of each metric is as follows: 



 

a. R(ET): average(max(Reli(ActiveReduList(i)) at time t)), i[1, length (ActiveReduList) at time t].  

b. M(ET) is defined as:  t = [t0, t1], if ActiveReduList during t is not null, M(T) = M(T) + t. 

c. T(ET) is defined as: Number of Workloads/M(T). 

d. C(ET) is defined as:  t = [t0, t1], if ActiveReduList at t is not null,  n in ActiveReduList, C(ET) = 

C(ET) + Cost(ActiveReduList(n)) * [t1 – t0].  i = En/De-ActiveReduList() at time t’, C(ET) = C(ET) + 

SchedCost(i). 

Explanation of the four performance metrics: 

If ActiveReduList is not empty at time t, the reliability of the whole system is decided by the 

maximum reliability of the VMs in the list. A5 tries to find an average best during the ET as shown in a.  

Makespan is defined as the aggregated timespan that at least one vm is being in use. If 

ActiveReduList is not empty at time t then it means there are still workloads under processing. The 

makespan should include all this part of time as shown in b.  

Throughput is defined by the total workloads divided by the total makespan, which shows how many 

workloads are processed on average during the whole experimental time as shown in c.  

In d, we can see that the cost is composed of two parts. The first part is the service cost, which equals 

to how long each redundant VM n is used ([t1 – t0]) and its unit cost (Cost(ActiveReduList(n))). The 

second part is the scheduling cost, which includes scheduling in/out cost of redundant system i to/from 

ActiveReduList (SchedCost(i)). 

IV. ADAPTIVE ACCESSING AWARE ALGORITHM 

Algorithm 1 below is the main body of A5. It uses reliability, cost, throughput and makespan based 

on definition in section III. At the beginning of the experiment, the workload increases with large bulks 

of requests, which decrease service capacity under the LowerBound(CurTime), A5 then enriches the 

active redundant list by invoking EnActiveReduList(). As the experiment goes on, more requests are 



 

finished.  This alleviate service capacity above UpperBound(CurTime), A5 invokes DeActiveReduList() 

to avoid too much cost problem. How to find a proper pair of UpperBound/LowerBound dynamically is 

demonstrated in Algorithm 2, then the strategies of enriching/releasing redundant VMs are shown in 

Algorithm 3. 

A. A5 Algorithm 

Algorithm 1. A5 Algorithm 

1. Initialize Flag, WLoadNum, Start(i), Leave(i), i[1, WLoadNum]; 

2. Initialize ReduNum, ActiveReduList = {}; AvaiReduList = {11, 12,…,nmn}; FailReduList = {}; 

Capa(AvaiReduList[k]); Reli(AvaiReduList(k)); Cost(AvaiReduList(k)); k[1, ReduNum]; 

3. Initialize CurSC, CurLoc, CurCost, CurReli, Pretime, PreSC, CurM; 

4. while(CurLoc <= Leave(WLoadNum))             // experiment not end 

5.    PreSC = CurSC;        //get PreSc to calculate SCInc in Algorithm 2 

6.    if(ActiveReduList != null)  

7.       for each (j in [1, length(ActiveReduList)]) 

8.          if(!Avai[ActiveReduList[j]]) 

9.          EnList(FailReduList, ActiveReduList[j]); 

10.          CurSC –= Capa[ActiveReduList[j]]; 

11.          end if                         //ActiveReduList[j] failed, decrease its sc 

12.       end for 

13.    end if                               //record fail node at CurTime and CurSC 

14.    for each (i in [1, WLoadNum]) 

              //new workload i arrive, decreasing current service capacity 

15.       if(Start(i) == CurTime) CurSC –= EET[i]; end if 

              //old workload i depart, increasing current service capacity 

16.       if(Leave(i) == CurTime) CurSC += EET[i]; end if 

          //makespan calculation flag according to b. in section III. B. 

17.       if (CurTime > Start(i) && CurTime < Leave(i)) Flag = 1; end if 

18.    end for  //find next start or leave request and their influence on CurSC 

19.    while(CurSC < LowerBound(CurTime)) // invoke algorithm 2 

20.       EnActiveReduList();          //Overload, invoke algorithm 3 

21.    end while                         

22.    while(CurSC > UpperBound(CurTime)) // invoke algorithm 2 

23.       DeActiveReduList();        //over idle, invoke algorithm 3 

24.    end while 

25.    if (Flag == 1) CurM += 1 / CurSC; end if    //makespan calculation 

//CurLoc goes for one step unit and calculate the time consuming 

26.    CurLoc++; PreTime = CurTime;  CurTime += 1 / CurSC;   



 

27.    for each (j in [1, length(ActiveReduList)]) 

28.       TotalCost += Cost(ActiveReduList [j]) / CurSC 

29.    end for   //Find TotalCost and Total Reliability currently 

30.    TotalReli += max(Reli(ActiveReduList))  

//according to a. in section III.B. 

31. end while 

32. MakeSpan = CurM;      //summarize to get makespan and throughput 

33. Throughput=WLoadNum/MakeSpan;//according to c.in section III.B 

 

Algorithm 2. Upper/LowerBound(CurTime) 

34. TimeInc = CurTime – Pretime; 

35. SCInc = CurSC – PreSC; 

//If SCInc < 0, SC decreased, Upper/Lower bound decrease accordingly, else Upper/Lower 

bound increase accordingly 

36.      UpperBound = UpperBound + SCInc/ (TimeInc*f); 

37.      LowerBound = LowerBound + SCInc/ (TimeInc*f); 

38.     Asc = (UpperBound + LowerBound)/2; 

39. end 

 

Algorithm 3. En/De-ActiveReduList() 

40. {{1},{2},…,{j}/{k}}=ParetoFront(Avai/ActiveReduList) 

41. for each ({n} in {{1},…,{j}/{k}}) 

42.     if ({n} != null)//{n} contains the nodes in n
th

 layer of pareto front 

43.       order Avai/Active-ReduList by Capa{n} ascending 

44.       else if( n1, n2{n} && Capa[n1]== Capa[n2])  

45.              order Avai/Active-ReduList by Cost{n} descending. 

46.          end if 

47.       else 
48.           order Avai/Active-ReduList by Reli{n} ascending. 

49.           s = SelectFirstof({n});                       //the best one in list 

50.           Delist(Avai/Active-ReduList, s); 

51.           Enlist(Active/Avai-ReduList, s); 

52.           TotalCost += (SchedCost(AvaiReduList(s)) + SchedCost(ActiveReduList(s)));               

//cost of schedule in/out 

53.           CurSC = CurSC +/– Capa[s];          //change sc 

54.     end if 

55. end for 

 



 

{1},{2},…,{j}/{k} are ordered layers of Avai/Active-ReduList respectively based on (5) in section 

III.A. For the redundant VMs of one Pareto-front layer, the selection are ordered by service capacity, 

cost and reliability. In this way, we can guarantee an optimum selection of preferable suitable VMs. 

A flowchart in Fig. 7 is used to illustrate the application procedure of our A5 algorithm. 

No

Yes

No

Yes

start
Workload 

Generation

CurSC lower than 

LowerBound

CurSC higher 

than UpperBound

EnActiveReduList Adjust LowerBound

DeActiveReduList Adjust UpperBoundd

 

Figure 7. A flowchart to illustrate the algorithm 

B. Algorithm Analysis 

In our algorithm, the current time is CurTime and the service capacity is CurSC. Each CurLoc goes 

one step forward and the time it takes is different because of different CurSC. There are three points 

that affect CurSC. 

(1) Fail of running VM i. If VM i fails to provide service, the system would decrease service capacity 

by Capa[i], which is shown in line 6 to 13. To make things simpler, we unify the unit of Capa[i] into 

CurSC to make them directly addable/subtractable as shown in line 10 of Algorithm 1 and line 53 of 

Algorithm 3.  

(2) Arrive/Leave of requests. Newly arrived requests decrease service capacity depending on their 

EET. The algorithm simulates this scenario by automatically generating workloads with different 

EET to show their different impacts on service capacity. Similar with (1), we also unify the unit of 

requests’ impact EET into service capacity to make then addable/subtractable as shown in line 15, 16 

of Algorithm 1. 

(3) The increase/decrease of redundant VM list. As shown in algorithm 3, if we schedule redundant 



 

VM s into ActiveReduList, the CurSC would increase by Capa[s] and vice versa. We bring in the 

concept of Pareto-front to order the performance metrics, namely sc, cost and reliability as shown in 

Algorithm 3, into different layers (line 40, algorithm 3). We then select from the first layer on, which 

contains VMs with better sc (line 43), cost (line 45) or reliability (line 48). This is in the sense of 

pareto optimal as the red dots compared with the white dots in Fig. 6. 

The decision of when to increase/decrease redundant VMs depends on LowerBound/UpperBound. 

The two bounds are decided by the rate of fluctuation of service capacity. As shown in Algorithm 2. 

Here we only introduce the situation that should increase redundant VMs. Intuitively, LowerBound 

should decrease, at least not increase, as CurSC decreased, but it should not be faster than, or even 

equal to the rate of CurSC since if so, redundant VMs would never be used. We heuristically divide the 

rate by f (f > 1) in line 36 and 37, to deal with this problem. After the setting of LowerBound, 

UpperBound changes with the same ratio. Abundant experiments show that the selection of f differs 

with the four experimental environments. 

V. PERFORMANCE EVALUATION 

Simulation test bed is set with 100 redundant VMs that can provide service simultaneously. The 

service capacity is strongly dependent on CPU rate and network condition which is similar in work [25]. 

We then generated cost and reliability of each redundant system that is proportional to its service 

capacity, which is reasonable in real scenarios. To make this simulation more practical, the arrival 

frequency of each workload is a long range that shows their different impacts on the performance 

metrics. Besides that, EET is properly randomly generated based on the service capacity and reliability 

of each redundant VM as well as their arrival frequencies. 

     The workloads can be categorized into four groups. In the first group, the workload has low 

frequency and low EET (LFLE), which means each request comes very occasionally and each one 



 

consumes a minor fraction of resource. The second group has workload with high frequency and low 

EET (HFLE). The third group has workload with low frequency and high EET (LFHE), which means 

the interval arrival time of two workloads are long but each request is resource consuming. The last 

group has workload with high frequency and high EET (HFHE), which give the server most pressure. 

     The experiments are carried out using two computers separately. One is Windows XP with Intel 

Core 2 Duo T5870, 2G RAM and the other is Windows XP with Intel Pentium D 2.8GHz, 2G RAM. 

The final results are averaged by 10 experimental results. 

A. Performance of adaptive Upper/Lower bound 

Adaptive upper/Lower bound selection is an effective way to automatically adjust redundant strategy 

to deal with the frequently changing workloads. The workloads are generated in uniform distribution in 

our experiment and are set in Table 2: 

TABLE 2. WORKLOAD SETTINGS 

 Inter-arrival time EET 

LFLE U(25,30) U(3,5) 

LFHE U(25,30) U(35,50) 

HFLE U(3,5) U(3,5) 

HFHE U(3,5) U(35,50) 

 

Here we discuss a scenario that cost and reliability are proportionally correlated with service capacity. 

Service capacities of all redundant VMs are normalized to be at a mean value of 100 with standard 

deviation of 20, which is concluded by our experiments with testing a same application on different 

servers. The cost is normalized with the same mean of service capacity, but with standard deviation of 

50. The reliabilities of them are set with a mean of 90% and a standard deviation of 10%. We 



 

performed many fixed upper/lower bound (generally upper bound is set with a mean of 1.8, lower 

bound is set with a mean of 1.6, and average SC is set with a mean of 1.7) experiments and averaged 

the results. The initial setting of the adaptive strategy is the same with the mean of the fixed setting.  

The results are shown in Fig. 8. 

We can see from the Fig. 8 that with a fixed (non-adaptive) upper/lower bound choice, the 

performance in all four experiments are worse than adaptive selection. The improvements are even 

noticeable in cost because of line 45 in Algorithm 3 since cost is the second most important criterion 

for redundant strategy. The most important one is the deviation from the average SC (the first item of 

(3) and (4)), which is decisive and a guarantee that A5 can make sure the average SC not too high or 

too low, and it leads to better performance in the four metrics under the four experimental 

environments. 

 

 

Figure 8. Fixed (non-adaptive) vs adaptive upper/lower bound 
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B. Comparison with Other Methods 

We first compare the A5 algorithm with other methods on the four performance metrics. These 

methods include traditional Max-Min algorithm (MM) with fixed upper/lower-bound, Random 

Selection of redundant VMs with Fixed upper/lower-Bound (RSFB), Random Selection of redundant 

VMs with Adaptive upper/lower-Bound (RSAB). To make the experiments distinguishable, we largely 

increased the number of workloads in LFLE for the sake of making the cost and makespan not always 

close to zero. This leads to the makespan possibly larger than that in other experimental environments. 

We consider the priority of performance metrics in an order of throughput, cost and reliability. This 

leads to a possible lower reliability of A5 than other methods a little bit, which is ignorable. The 

experimental results are shown in Fig. 9. 
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(a) Comparison over makespan                        (b) Comparison over throughput 
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(c) Comparison over cost unit                        (d) Comparison over reliability 

Figure. 9. Comparison of different methods 

We can conclude the experiments as follows. 



 

(1) In LFLE, workloads exert no pressure on the system, thus the performance of each method is 

similar. Optimization strategy has no noticeable effect when the service capacity is much larger than 

the impact of the workloads. This advantage of A5 becomes more obvious as the system works in a 

much higher workload scenario. 

(2) Random selection strategy of redundant VMs, which simplify the process, is at the cost of larger 

makespan, higher cost to schedule the improper redundant VMs and lower throughput. This problem 

becomes even worse as the workload becomes heavier (with higher arrival rate and longer EET). A5 

save more than 70% cost and nearly 36.8% of makespan than that of MM. Compared with other 

methods, the number is not so much, but the improvement is very clear in all the figures. 

(3) Adaptive upper/lower-bound selection is better than fixed choice. We can conclude that from Fig. 8 

and Fig. 9. When this adaptive bound is combined with a proper selection of the redundant resources 

(A5), the effects are even better. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed A5, An Adaptive Accessing Aware Algorithm to improve throughput and 

reliability as well as reduce makespan and scheduling cost of a Virtualized Cloud platform consists of 

many virtual machine resources. The adaptivity is shown not only in upper/lower-bound selection 

adaptively to decide when to schedule in/out redundant VMs list, but also in Pareto-front based 

redundant VMs selection adaptively to decide how to execute that schedule. Abundant experiments 

show that this method outperform other strategies in the above performance metrics.  

In future research, we will consider investigating different patterns of arrival rate of workloads with 

uniform, exponential and normal distributions. Also we will consider the scenario of using predictive 

methods to ensure even better performance. Last but not least, we intend to implement this algorithm 



 

into the real data centers in Tsinghua University with 128 nodes, which will be able to provide 

sufficient service capacity to validate the effectiveness of this algorithm. 
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