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H I G H L I G H T S: 

⚫ An incremental incentive mechanism considering consumer differences is proposed. 

⚫ Excessive consumer surplus is avoided through changes of incremental incentive. 

⚫ Highly flexible consumers can obtain higher revenue through the redistribution of incentive. 

⚫ A model-free approach is proposed to solve the asynchronous optimization problem. 
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Demand response has been proven to be an effective way to improve energy utilization efficiency. 

It is notable that the diversified characteristics of residential consumers, which many greatly affect 

its performance in demand response, have not been fully considered in existing incentive 

mechanisms. In this paper, an incremental incentive mechanism for incentive-based demand 

response (IBDR) is proposed, in which consumers obtain different incentives according to the 

increment of response, so that the incentive can follow the change of consumers' marginal cost. We 

theoretically illustrate that the proposed incremental incentive mechanism can effectively improve 

the profit of load service entity (LSE), as well as the benefit of highly flexible consumers, compared 

with other existing incentive mechanism. In practice, LSE's bidding strategy in the day ahead market 

is affected by the intraday IBDR strategy that cannot be known in advance. In order to solve the 

bidding problem with incomplete information in the day ahead market, we propose an asynchronous 

double-interaction deep reinforcement learning (DRL) algorithm to maximize LSE’s cumulative 

profit of multiple time slots throughout the day. Numerical simulation results show that the proposed 

mechanism can improve the consumers' response depth while reducing the unit incentive cost, and 

the proposed DRL algorithm has relatively stable and satisfactory performance even in highly 

uncertain environment. 

1 Introduction 

Demand response (DR) has become a critical part of the smart 

grid, aiming at encouraging consumers to adjust their electricity 

consumption to improve the efficiency of energy utilization [1]. 

Generally, large industrial and commercial consumers are 

considered as better candidates for DR programs, because each 

consumer can provide considerable response, and the number of 

consumers is not particularly large, which is conducive to the 

implementation of DR [2]. However, residential consumers 

with great demand side flexibility account for approximately 

50% of the peak load in many countries, while less than 2% of 

their flexibility potential is utilized [3]. Since each residential 

consumer can only provide limited response, it is necessary to 
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Acronyms 

DR demand response 

IBDR incentive-based demand response 

LSE load service entity 

DRL deep reinforcement learning 

WEM wholesale electricity market 

REM retail electricity market 

ISO independent system operator 

IIF incremental incentive function 

MPECs 
mathematical programs with equilibrium 

constraints 

TOU time of use 

RTP real time price 

Variables and parameters 

𝑅𝑖,𝑡 response of i-th consumer in time slot t 

𝑈𝑖,𝑡 revenue of i-th consumer in time slot t 

𝐿𝑖,𝑡
𝑎  actual load of the 𝑖-th consumer in time slot 𝑡 
𝑓 the incremental incentive function 

𝑔 the unified incentive function 

𝐿𝑖,𝑡
𝑏  base load of 𝑖-th consumer in time slot 𝑡 

𝐿𝑖,𝑡
𝑎  actual load of 𝑖-th consumer in time slot 𝑡 

𝐿𝑖,𝑡
𝑟  amount of load rebound of the 𝑖-th consumer 

𝜉𝑖,𝑗 load correlation coefficient of the 𝑖-th consumer 

𝑙𝑖 comfort loss function of the 𝑖-th consumer 

𝐶𝑖,𝑡
𝑝

 power purchase cost of the 𝑖-th consumer  

𝐶𝑖,𝑡
𝑐  comfort loss 

𝜆𝑡
𝑇𝑂𝑈  TOU tariff determined by LSE in advance 

𝑈𝑖,𝑡 
revenue of the 𝑖-th consumer from participating 

in IBDR 

𝐿𝑡 
electricity that LSE expects to purchase in time 

slot t 

𝑝𝑡  purchase price corresponding to 𝐿𝑡 
𝐿𝑡
𝑊 traded electricity in WEM in time slot t 

𝐶𝑊,𝑡 cost of LSE in WEM 

𝐶𝑆,𝑡 penalties paid by LSE 

𝜙 penalty function 

𝐿𝑡
𝑆 electricity made up by ISO 

𝑈𝐿𝑆𝐸,𝑡 profit of LSE in time slot 𝑡 

𝑅∗ 
desired response of consumer with incentive 

function 

𝜒𝑡  all the parameters of the IIF 

aggregate a large number of consumers to form considerable 

response ability. 

In many countries, relatively small consumers cannot directly 

participate in the wholesale electricity market (WEM) due to the 

limited ability of WEM to manage a large number of entities. 

Residential consumers have to participate in the WEM through 

load service entity (LSE) [4]. Normally, in order to provide 

energy supply services to consumers in retail electricity market 

(REM), LSE obtain electricity from the WEM through bidding. 

The economic benefit of LSE can be improved through DR, 

including price-based DR and incentive-based demand response 

(IBDR).  

Compared with price-based DR, consumers can directly 

obtain revenue in incentive-based DR(IBDR) and have higher 

initiative [5]. Besides, IBDR can provide more flexible 

dispatchable resources for the power grid, and 93% of the load 

reduction during the peak period is contributed by IBDR in the 

US [6]. Therefore, this paper focuses on IBDR issues for 

residential consumers. 

In IBDR, LSE guides consumers to change load consumption 

through incentive, and consumers participate in response when 

their cost caused by response can be matched. According to the 

theory of consumer behavior in microeconomics, the marginal 

cost of consumers increases with the accumulation of response 

and varies widely among consumers [2], but in many existing 

studies on IBDR (e.g.,[7]-[9]), the incentive obtained by 

consumers are not distinguished according to their differences, 

which limits the depth of response of highly flexible consumers 

and reduces the profit that LSE obtain from IBDR. 

In order to satisfy consumers’ electricity demands, LSE also 

needs to develop the bidding strategy. In practice, bidding is 

usually done in the day-ahead market, while IBDR is 

implemented intraday. Bidding strategy and IBDR strategy 

influence each other, but in day-ahead market bidding, IBDR 

strategy is usually not known by LSE in advance, so LSE needs 

to make bidding decisions in an environment with incomplete 

information. 

Therefore, there are two key issues that need to be addressed. 

The first is how to make full use of the differentiated 

characteristics of consumers to improve social benefits on the 

premise of ensuring fairness. The second is the optimal 

decision-making method that comprehensively considers day-

ahead electricity market bidding and intra-day IBDR.  

1.1 Related Works 

Surveys and practical experiments in existing studies verify 

that the response characteristics of consumers are affected by 

many factors and are quite different from each other [10], [11], 

which need to be fully considered in IBDR. Some studies 

attempt to categorize consumers according to their 

characteristics and then develop incentives separately. 

Consumer types are considered in [12], and incentives for 

industrial consumers and residential consumers are formulated 

separately to elicit different mixtures of IBDR resources with 

the purpose of minimizing the total procurement cost. 

Consumers in the same type are further classified into several 

categories in [13] according to their characteristics, so as to 
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increase their participation in the IBDR and to compensate for 

the discomfort, similar study has also been reported in [14]. 

However, the differences of consumers within the category have 

not been paid special attention. 

To solve this problem, an incentive mechanism is proposed 

in [15], consumers are first set with different weights according 

to the type, and then the subsidy is calculated according to the 

contribution of each consumer in IBDR. Similarly, a framework 

for aggregating residential demands enrolled in IBDR is 

proposed in [16], in which consumers obtain different 

incentives based on their actual response. The reward allocation 

mechanism proposed in [17] can also ensure that consumers 

obtain different incentives according to their contributions.  

Although the above-mentioned IBDR mechanism takes full 

advantage of the differences of consumers, there are still some 

shortcomings. When the number of consumers is large, the 

implementation of IBDR faces a dilemma. Developing 

differentiated incentive for each consumer is almost infeasible 

in practice although it can maximize the effect of IBDR, because 

the detailed characteristic information of each consumer is 

difficult to be obtained, and the computational efficiency also 

faces great challenge. Besides, differentiated incentives for 

consumers may cause issues of fairness.  

Besides, the consumers’ comfort loss function is nonlinear 

and concave [10], i.e., comfort loss caused by unit response 

increases with the response depth. In the existing mechanism, 

consumers get the same incentive per unit of response, so 

existing mechanism fails to track changes in consumer comfort 

loss, resulting in excessive consumer surplus in the early stage 

of the response [18], thereby reducing the efficiency of IBDR 

and the profit of LSE.  

In addition to the problem of mechanism design, strategy 

optimization in a coupled environment is also one of the 

important problems need to be solved. Numerous existing 

works have been dedicated to solving this problem, mainly 

converting them to mathematical programs with equilibrium 

constraints (MPECs) [19][20]. In order to realize the bidding 

decision with incomplete information, some studies introduce 

iterative methods [21][22]. However, the diversity of residential 

consumers makes it difficult to choose an appropriate model and 

identify corresponding parameters to accurately describe the 

response behavior of each consumer, which makes traditional 

solving methods ineffective.  

To address the lack of an accurate consumer model in practice, 

model-free deep reinforcement learning (DRL) is applied in [23] 

to solve the coupled problem of bidding and IBDR without 

explicit models, but it is assumed that bidding and IBDR are 

completed in the same time slot, which is inconsistent with the 

reality.  

1.2 Research gaps and contributions 

In summary, the current research has shortcomings in both 

incentive mechanism and optimization strategy. In terms of 

incentive mechanism, the contradiction between the full 

utilization of consumer differentiation and computational 

efficiency in IBDR has not been well resolved. Since the 

incremental incentive cost is positively related to the total 

response of consumers in the existing incentive mechanism, the 

response depth of highly flexible consumers is limited. Besides, 

the uneven distribution of consumer surplus also reduces LSE 

profits. In terms of optimization strategies, since intraday IBDR 

strategy and day-ahead bidding strategy interact with each other 

and are executed at different time periods in practice, 

optimization strategy with incomplete information for day-

ahead bidding need to be developed. 

The main contribution of this paper is to propose an incentive 

mechanism to improve the efficiency of IBDR for differentiated 

residential consumers while ensuring fairness and 

computational efficiency. The superiority, efficiency and 

fairness of the proposed incremental incentive mechanism is 

verified through mathematical analysis and simulation. 

Meanwhile, an asynchronous double-interaction DRL 

algorithm is proposed to solve the bidding optimization problem 

without IBDR information. The main importance and 

contribution can be summarized as follows.  

(1) An incremental incentive mechanism is proposed, in which 

the incremental unit incentive cost in IBDR is decoupled 

from the total response. We demonstrate theoretically that 

the unified incentive mechanism in the existing research is 

a special form of the proposed incremental incentive 

mechanism. 

(2) Compared with the unified incentive mechanism in existing 

research [10]-[23], the proposed mechanism can improve 

the response depth of highly flexible consumers in IBDR, 

and can balance the consumer surplus per unit of 

incremental response by tracking the changes in consumer 

response elasticity to avoid excessive consumer surplus, 

thus the profit of LSE in IBDR can be improved.  

(3) An asynchronous double-interaction DRL algorithm based 

on deep deterministic policy gradient (DDPG) is proposed 

to solve the bidding optimization with incomplete 

information, as well as the difficulty that the parameters of 

diversified consumer model cannot be accurately identified 

in practice, so as to maximize the cumulative profit of 

multiple time slots throughout the day of LSE. 
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1.3 Organization of the paper 

The rest of this paper is organized as follows: Section 2 

illustrates the framework of the system, introduces the proposed 

incremental incentive mechanism and the corresponding models. 

The superiority, efficiency and fairness of the proposed 

mechanism are demonstrated in Section 3. Section 4 proposes 

the asynchronous double-interaction DRL algorithm and 

numerical simulation is given in Section 5. Finally, the 

conclusions and further works are drawn in Section 6. 

2 System and model 

This paper considers LSE that provides energy supply 

services as well as IBDR program for multiple consumers in 

REM. Assume one day is decomposed into 𝑇 time slots and 

each time slot is represented by 𝑡. As shown in Fig. 1, LSE 

provides power supply services to consumers and bids for the 

required electricity from WEM. When the clearing price in 

WEM is high, LSE implements IBDR to improve profit. The 

power demand of consumers needs to be satisfied in any case, 

otherwise LSE has to pay penalties due to the power imbalance. 
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Fig. 1.  Bidding and IBDR architecture 

 

2.1 Incremental Incentive Mechanism Formulation 

According to the elasticity theory in economics, consumer’s 

price elasticity of response 𝐸 in IBDR can be defined as follows 

[24]: 

𝐸 =
𝑑𝑅/𝑅

𝑑𝐼/𝐼
,                                  (1) 

where 𝑅  is the response of consumer, and 𝐼  is the incentive 

price. Due to the loss of consumer comfort, 𝐸 decreases with the 

increase of 𝑅. Meanwhile, due to the diversity of consumers, the 

changing trend of 𝐸 among consumers is different. However, in 

the existing incentive mechanisms, all cumulative response of a 

consumer in an IBDR event is settled at the same incentive price, 

in the sense that the changes in 𝐸 cannot be fully reflected.  

In order to trace changes in 𝐸, while taking full advantage of 

the differences among consumers, an incremental incentive 

mechanism is proposed in this paper, in which consumers obtain 

revenue based on the increment of response: 

𝑈𝑖,𝑡(𝑅𝑖,𝑡) = {
∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑖,𝑡

0
, 𝑅𝑖,𝑡 > 0,

0,                                   𝑜𝑡ℎ𝑒𝑟𝑠,

                       (2) 

where 𝑓  is the incremental incentive function (IIF), and it is 

monotonically increasing, so that the unit revenue obtained by 

the consumer increases with the response depth. Note, any 

function satisfying the above requirements can be used as IIF in 

the proposed mechanism, e.g., linear function, polynomial 

function, exponential function, etc. 

2.2 Consumer Modeling  

Consumers purchase the required electricity from LSE in 

each time slot according to their power demand and participate 

in IBDR to improve their benefit. Assuming that the 𝑖 -th 

consumer’s base load in time slot 𝑡 is 𝐿𝑖,𝑡
𝑏 , which is also the 

baseline for calculating the consumer’s response in the IBDR. 

In this sense, the response 𝑅𝑖,𝑡 of the 𝑖-th consumer in time slot 𝑡 
is  

𝑅𝑖,𝑡 = 𝐿𝑖,𝑡
𝑏 − 𝐿𝑖,𝑡

𝑎 ,                                (3) 

where 𝐿𝑖,𝑡
𝑎  is the actual load of the 𝑖-th consumer in time slot 𝑡. 

When consumers participate in IBDR during time slot 𝑡, part 

of the load is transferred to the subsequent time slot due to the 

influence of transferable load, e.g., temperature control load, 

electric vehicle, etc., [25]. Since consumers’ load consumption 

behavior is periodic, their load rebound have similar 

characteristics in the same time slot [26], and it can be expressed 

as: 

𝐿𝑖,𝑡
𝑟 =∑𝜉𝑖,𝑗𝑅𝑖,𝑗

𝑡−1

𝑗=0

,                                (4) 

where 𝐿𝑖,𝑡
𝑟  is the amount of load rebound of the 𝑖-th consumer, 

and 𝜉𝑖,𝑗 ∈ [0,1]  is the load correlation coefficient of the 𝑖 -th 

consumer, indicating the relationship between the load 

reduction of the previous time slot and the load rebound of the 

subsequent time slot. It should be noted that the rebounded load 

𝐿𝑖,𝑡
𝑟  cannot be directly obtained in practice, and only the actual 

load including the load rebound is required to be known for 

optimization. 

The comfort loss caused by participating in IBDR is related 

to consumer’s response and flexibility, which can be expressed 

as: 

𝐶𝑖,𝑡
𝑐 = ∫ 𝑙𝑖(𝑅̃𝑖,𝑡)𝑑𝑅̃𝑖,𝑡

𝑅𝑖,𝑡

0
,                              (5) 

where 𝑙𝑖(𝑅𝑖,𝑡) is the comfort loss function of the 𝑖-th consumer.  

According to the principles of economics, the marginal cost, i.e., 

the comfort loss per unit response of consumers is increasing 

when the load demand is reduced, so 𝑙𝑖(𝑅𝑖,𝑡) is a monotonically 
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increasing function, and its form and parameters vary according 

to the characteristics of consumers.  

The power purchase cost of the 𝑖-th consumer in time slot 𝑡 
is: 

𝐶𝑖,𝑡
𝑝
= 𝜆𝑡

𝑇𝑂𝑈𝐿𝑖,𝑡
𝑎 ,                                       (6) 

where 𝜆𝑡
𝑇𝑂𝑈 is the TOU tariff determined by LSE in advance. 

Consumers obtain the optimal action in each time slot 𝑡 by 

solving the following cost minimization problem: 

𝑚𝑖𝑛
𝐿𝑖,𝑡
𝑎
[𝐶𝑖,𝑡
𝑝
+ 𝐶𝑖,𝑡

𝑐 −𝑈𝑖,𝑡] , 𝑠. 𝑡. 𝐿𝑖,𝑡
𝑎 ≥ 0,                      (7) 

where 𝑈𝑖,𝑡 is the revenue of the 𝑖-th consumer participating in 

IBDR in each time slot and can be obtained according to (2). 

2.3 LSE Modeling 

LSE needs to optimize the bidding strategy in WEM and the 

IBDR strategy in REM. In WEM, LSE buys electricity through 

bidding, and the bidding strategy 𝜋𝑏(𝑡) can be expressed by a 

monotonically increasing function [27]: 
𝑝
𝑡
= 𝛼𝑡 + 𝛽𝑡𝐿𝑡,                               (8) 

where 𝐿𝑡 is the electricity that LSE expects to purchase at price 

𝑝𝑡  in time slot 𝑡, 𝛼𝑡  determines the highest purchase price of 

LSE, and 𝛽𝑡 ≤ 0  determines the trend of the bidding curve. 

After the WEM is cleared, the electricity whose unit price is 

higher than or equal to the clearing price of the WEM is traded. 

According to (8), the traded electricity 𝐿𝑡
𝑊 can be expressed 

as 

𝐿𝑡
𝑊 = (𝜆𝑡

𝑊 −𝛼𝑡) 𝛽𝑡⁄ ,                               (9) 

where 𝜆𝑡
𝑊  is the clearing price in the WEM, and in the 

competitive electricity market, its value is not affected by the 

bidding of a single LSE. The cost of LSE in WEM 𝐶𝑊,𝑡 in time 

slot 𝑡 can be calculated: 

𝐶𝑊,𝑡 = 𝜆𝑡
𝑊
(𝜆𝑡
𝑊 − 𝛼𝑡) 𝛽𝑡⁄ .                  (10) 

Consumers’ power demand should be satisfied in all time 

slots, and if the traded electricity 𝐿𝑡
𝑊  cannot satisfy the 

consumers’ power demand, LSE has to pay penalty to the 

independent system operator (ISO) who is responsible for 

compensating the load imbalance. The penalty of LSE related to 

the electricity shortfall is as follows [23]: 

𝐶𝑆,𝑡 = 𝜙(∑𝐿𝑖,𝑡
𝑎

𝑛

𝑖=1

− 𝐿𝑡
𝑊),                     (11) 

where 𝐶𝑆,𝑡  is the penalties paid by LSE, 𝜙  is the penalty 

function whose value is positively correlated with the electricity 

shortfall. Then, the power balance constraint  

𝐿𝑡
𝑊 + 𝐿𝑡

𝑆 =∑𝐿𝑖,𝑡
𝑎

𝑀

𝑖=1

,                          (12) 

need to be satisfied, where 𝐿𝑡
𝑆 is the electricity made up by ISO 

after the LSE pays the penalty. Assuming that there are 𝑀 

consumers in the system, the total load of consumers in any time 

slot should not exceed the maximum capacity 𝐿𝑚𝑎𝑥  of the 

transmission line, i.e.,  

0 ≤∑𝐿𝑖,𝑡
𝑎

𝑀

𝑖=1

≤ 𝐿𝑚𝑎𝑥 .                            (13) 

The comprehensive profit that LSE obtains from WEM and 

REM are: 

𝑈𝐿𝑆𝐸,𝑡 =∑𝐶𝑖,𝑡
𝑝

𝑛

𝑖=1

−∑𝑈𝑖,𝑡

𝑛

𝑖=1

− 𝐶𝑊,𝑡 − 𝐶𝑆,𝑡,           (14) 

where 𝑈𝐿𝑆𝐸,𝑡  is the profit of LSE in time slot 𝑡 , 𝑈𝑖,𝑡  is the 

revenue obtained by the 𝑖 -th consumer in time slot 𝑡  by 

participating in IBDR. 

The optimization goal of LSE is to maximize the cumulative 

profit of multiple time slots throughout the day, i.e., 

𝑚𝑎𝑥
𝑓(𝑅),𝛼,𝛽

∑ 𝑈𝐿𝑆𝐸,𝑡

𝑇−1

𝑡=0

.                             (15) 

In order to ensure that there is no negative incentive in REM, 

𝑓(𝑅)  should be positive and monotonically increasing, and 

𝑓(𝑅) ≥ 0, 𝑑𝑓(𝑅) 𝑑𝑅⁄ ≥ 0 should be satisfied. In WEM, the 

bidding curve submitted by LSE should be monotonically 

decreasing, so 𝛼𝑡 ≥ 0, 𝛽𝑡 ≤ 0 should be satisfied. 

3 Analysis of Incremental Incentive Mechanism 

In this section, we theoretically analyze the superiority of the 

proposed incremental incentive mechanism, and introduce the 

Stackelberg game theory to analyze the fairness and Pareto 

efficiency of the proposed mechanism. 

3.1 Superiority Analysis 

In this part, we theoretically illustrate the advantages of the 

proposed incremental incentive mechanism through two 

propositions. 

We first show that the existing unified incentive mechanism 

is a special form of incremental incentive mechanism. When IIF 

is independent of response increment, i.e., 𝑓(𝑅) is a constant, 

let 𝑓(𝑅) = 𝐼, the revenue obtained by consumers is 

∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑖,𝑡

0
= ∫ 𝐼𝑑𝑥

𝑅𝑖,𝑡

0
= 𝐼𝑅𝑖,𝑡,                         (16) 

where 𝐼 is a constant and represents the incentive in the IBDR. 

Therefore, the consumers’ revenue is the product of unit 

incentive 𝐼 and total response 𝑅𝑖,𝑡, which is the same as unified 

incentive mechanism.  

The following two propositions discuss the advantages of the 

proposed incremental incentive mechanism from two aspects: 

changes in consumer surplus of individual consumer during the 

accumulation of response, and the distribution of response and 

consumer surplus among consumers. 
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Proposition 1: In an IBDR event of a time slot, let 𝑅1,𝑓
∗  and 

𝑅1,𝑔
∗  be the optimal response of consumer 1 in the proposed 

incremental incentive mechanism 𝑓  and existing unified 

incentive mechanism 𝑔 , respectively. LSE needs to pay the 

corresponding incentive according to the consumer’s response, 

denoted as 𝐶𝑓(𝑅1,𝑓
∗ ) and 𝐶𝑔(𝑅1,𝑔

∗ ) under the two mechanisms, 

respectively. Then we have 

𝐶𝑓(𝑅1,𝑓
∗
) < 𝐶𝑔(𝑅1,𝑔

∗
), ∀𝑅1,𝑓

∗ = 𝑅1,𝑔
∗ .                 (17) 

Proof: Assuming that 𝑓(𝑅) is an IIF, which is an increment 

function, 𝑔(𝑅) is the unified incentive function, which remains 

constant in a certain IBDR event. According to the existing 

research, the comfort loss of consumers caused by per unit load 

reduction is increasing [12]. Similar to the supply curve in 

economics, the consumer’s load reduction function can be 

expressed as 𝐼 = 𝑧(𝑅) , which represents the relationship 

between the unit incentive and the desired load reduction. In 

IBDR, consumers obtain revenue according to the incentive 

function 𝑓(𝑅) . Assuming that consumers are rational, their 

decision on load reduction is to maximize the difference 

between economic benefits and comfort loss, as follows: 

𝑅∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑅
∫ [𝑓(𝑥)− 𝑧(𝑥)]𝑑𝑥
𝑅

0
                      (18) 

where 𝑅∗ is the desired response of consumer with the incentive 

function 𝑓(𝑅) , ∫ [𝑓(𝑥) − 𝑧(𝑥)]𝑑𝑥
𝑅

0
 is the consumer surplus 

with response 𝑅 [18]. When the consumer surplus is positive, 

consumers can obtain benefit through response and choose to 

participate in the IBDR. Since the comfort loss of consumer is 

positively related to the response, 𝑧(𝑅)  is a monotonically 

increasing function. Considering that there are huge differences 

in the characteristics of consumers, and their response behaviors 

are affected by many factors, 𝑧(𝑅) may have many forms.  

As shown in Fig. 2, suppose that in a specific IBDR event, 

𝑓(𝑅), 𝑔(𝑅) and 𝐼1(𝑅) intersect at the same point. In this sense, 

the response of consumers is the same in the two incentive 

mechanisms, i.e., 𝑅1,𝑓
∗ = 𝑅1,𝑔

∗ .  

 
Fig. 2.  Schematic diagram to illustrate the incremental incentive mechanism 

The cost of LSE in the two incentive mechanisms are  

𝐶𝑓(𝑅1,𝑓
∗
) = ∫ 𝑓(𝑥)𝑑𝑥

𝑅1,𝑓
∗

0
,                            (19𝑎) 

𝐶𝑔(𝑅1,𝑔
∗
) = 𝑔(𝑅1,𝑔

∗
)𝑅1,𝑔
∗ .                            (19𝑏) 

By deriving (19), the incremental costs of the two incentive 

mechanisms can be obtained as 

∆𝐶𝑓(𝑅) =
𝑑𝐶𝑓(𝑅)

𝑑𝑅
∆𝑅 = 𝑓(𝑅)∆𝑅,                           (20𝑎) 

∆𝐶𝑔(𝑅) =
𝑑𝐶𝑔(𝑅)

𝑑𝑅
= 𝑔(𝑅)∆𝑅,                                (20𝑏) 

where ∆𝑅  is the increment of response. Since 𝑓(𝑅)  is a 

monotonically increasing function, the following inequality 

always holds: 

𝑓(𝑅) < 𝑔(𝑅),   ∀𝑅 < 𝑅1,𝑓
∗ .                                (21) 

With (18)-(21), it is easy to show that (17) holds. ∎ 

Proposition 1 describes the relationship between LSE and 

consumers in IBDR. It shows that the cost in incremental 

incentive mechanism is always lower than that in the existing 

unified incentive mechanism when consumer has the same 

response. Incremental incentive mechanism can trace the 

changes in consumer response flexibility better, so that the 

consumer surplus obtained by the consumer per unit of response 

is maintained in a reasonable range in the process of response 

accumulation, thereby reducing the incentive cost.  

Proposition 2: Assuming that there are two consumers with 

different flexibility, the response function of low-flexible 

consumer and high-flexible consumer are represented by 𝐼1 =
𝑧1(𝑅)  and 𝐼2 = 𝑧2(𝑅) , respectively. Let 𝑅2,𝑓

∗  and 𝑅2,𝑔
∗  denote 

the response of high-flexible consumer with incentive function 

𝑓(𝑅)  and 𝑔(𝑅) , respectively. The following two formulas 

always hold: 

𝑅2,𝑓
∗ 𝑅1,𝑓

∗
⁄ > 𝑅2,𝑔

∗ 𝑅1,𝑔
∗

⁄ , ∀𝑅1,𝑓
∗ = 𝑅1,𝑔

∗ ,                         (22) 

∫ [𝑓(𝑥) − 𝑧(𝑥)]𝑑𝑥
𝑅2,𝑓
∗

0

∫ [𝑓(𝑥) − 𝑧(𝑥)]𝑑𝑥
𝑅1,𝑓
∗

0

>
∫ [𝑔(𝑥) − 𝑧(𝑥)]𝑑𝑥
𝑅2,𝑔
∗

0

∫ [𝑔(𝑥) − 𝑧(𝑥)]𝑑𝑥
𝑅1,𝑔
∗

0

, ∀𝑅1,𝑓
∗ = 𝑅1,𝑔

∗ . (23) 

Proof: As shown in Fig. 2, the low-flexible consumer 

performs the same response in the two mechanisms. According 

to (18), we can obtain 𝑅2,𝑔
∗  by solving 𝑔(𝑅) = 𝑧2(𝑅) . Since 

𝑓(𝑅)  is a monotonically increasing function and 𝑓(𝑅1,𝑓
∗ ) =

𝑔(𝑅1,𝑔
∗ ), we have 

𝑓(𝑅) > 𝑔(𝑅), ∀𝑅 > 𝑅1,𝑔
∗ .                             (24) 

By substituting 𝑅2,𝑔
∗  and (24) into (18), we can obtain the 

change in consumer surplus generated by the incremental 

response: 

𝑑∫ [𝑓(𝑥)− 𝑧(𝑥)]𝑑𝑥
𝑅

0

𝑑𝑅
|

𝑅=𝑅2,𝑔
∗

= 𝑓(𝑅2,𝑔
∗
)− 𝑧(𝑅2,𝑔

∗
) > 0.  (25) 

Since increasing the response at 𝑅2,𝑔
∗  increases benefit, the high-

flexible consumer will increase the response until the consumer 

surplus increment is zero, i.e., 𝑓(𝑅) = 𝑧(𝑅). Therefore, 𝑅2,𝑓
∗  is 

obtained by solving 𝑓(𝑅) = 𝑧(𝑅) and is larger than 𝑅2,𝑔
∗ , thus 

(22) holds. Besides, according to (22) and (24), we have  

0

R2,fR2,g
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W
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{
 
 

 
 ∫ [𝑓(𝑥)− 𝑧(𝑥)]𝑑𝑥

𝑅2,𝑓
∗

𝑅1,𝑓
∗

> ∫ [𝑓(𝑥)− 𝑧(𝑥)]𝑑𝑥
𝑅2,𝑔
∗

𝑅1,𝑔
∗

,

∫ [𝑓(𝑥)− 𝑧(𝑥)]𝑑𝑥
𝑅1,𝑓
∗

0
< ∫ [𝑔(𝑥)− 𝑧(𝑥)]𝑑𝑥

𝑅1,𝑔
∗

0
,

    (26) 

and (23) holds. ∎ 

Proposition 2 describes the relationship among consumers in 

IBDR. It illustrates the increment incentive mechanism can 

increase the response depth of high-flexible consumers and 

transfer more consumer surplus to them. With the increment 

incentive mechanism, consumers who actively participate in 

load reduction can get a higher percentage of benefit, thereby 

enhancing consumers’ enthusiasm for participating in IBDR. 

3.2 Efficiency and Fairness Analysis 

Fairness is the basic requirement of an IBDR mechanism. 

According to [28], the most important fairness axioms are (i) 

sharing incentive, (ii) Pareto efficiency, (iii) strategy-proofness 

and (iv) envy-freeness. The fairness of the proposed mechanism 

is analyzed as follows: 

(i) Sharing Incentive: In IBDR, sharing incentive means that 

the revenue is allocated to different consumers based on their 

response, rather than simply distributing the revenue equally. 

With sharing incentive, if the response of consumer 𝑖 is larger 

than that of consumer 𝑗 in time slot 𝑡, then consumer 𝑖  must 

obtain higher revenue. In (2), since 𝑓(𝑅̃𝑖,𝑡) is a monotonically 

increasing function, the consumer’s revenue increases 

monotonically with respect to the response 𝑅, i.e., if 𝑅𝑖,𝑡 > 𝑅𝑗,𝑡, 

then ∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑖,𝑡
0

> ∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑗,𝑡
0

. Thereby, 𝑈𝑖,𝑡 > 𝑈𝑗,𝑡  always 

holds. 

(ii) Pareto Efficiency: The Stackelberg game model can be 

used to describe the interactive relationship between LSE and 

consumers, where LSE is the leader and formulates incentive 

strategies, and the consumer is the follower, making response 

decisions based on incentives in different time slots. When the 

Stackelberg game meets the following conditions, there exists a 

unique equilibrium solution [12], [29]. (a) The revenue of 

consumers has a unique maximum once informed of the strategy 

of LSE. (b) The profit of LSE has a unique maximum for a given 

strategy of the consumers. According to the principle of 

backward induction, the Pareto efficiency of the proposed 

mechanism is analyzed as follows [12]: 

We first analyze the optimal decision-making process of 

consumers in (a). As discussed above, consumers participate in 

IBDR only when the revenue gained by consumers are larger 

than their loss of comfort. The benefits obtained by consumers 

participating in IBDR are: 

𝑈𝑖,𝑡(𝑅𝑖,𝑡) = ∫ [𝑓𝑡(𝑥) − 𝑧𝑖,𝑡(𝑥)]𝑑𝑥
𝑅𝑖,𝑡

0

.             (27) 

The first derivative of 𝑈𝑖,𝑡(𝑅𝑖,𝑡) with respect to 𝑅𝑖,𝑡 is  

𝑑𝑈𝑖
𝑑𝑅𝑖,𝑡

= 𝑓(𝑅𝑖,𝑡) − 𝑧𝑖(𝑅𝑖,𝑡),                (28) 

where, 𝑓(𝑅𝑖,𝑡)  and 𝑧𝑖(𝑅𝑖,𝑡)  are both continuous and 

differentiable increasing functions.  

If 𝑓(0) > 𝑧𝑖(0)  and there exist 𝑅𝑖,𝑐,𝑡 ∈ [0, 𝑅𝑖,𝑚𝑎𝑥],  let 

𝑓(𝑅𝑖,𝑐,𝑡) = 𝑧𝑖(𝑅𝑖,𝑐,𝑡), then we have 

{
𝑓(𝑅𝑖,𝑡) − 𝑧𝑖(𝑅𝑖,𝑡) ≥ 0, ∀𝑅𝑖,𝑡 ∈ [0, 𝑅𝑖,𝑐,𝑡],

𝑓(𝑅𝑖,𝑡) − 𝑧𝑖(𝑅𝑖,𝑡) ≤ 0, ∀𝑅𝑖,𝑡 ∈ [𝑅𝑖,𝑐,𝑡 , 𝑅𝑖,𝑚𝑎𝑥].
          (29) 

The second derivative of 𝑈𝑖,𝑡 with respect to 𝑅𝑖,𝑡 at 𝑅𝑖,𝑐,𝑡 is 

𝑑2𝑈𝑖

𝑑𝑅𝑖
2 = 𝑓′(𝑅𝑖) − 𝑧𝑖

′(𝑅𝑖),                (30) 

According to the definition of derivative, (30) can be rewritten 

as 

𝑑2𝑈𝑖

𝑑𝑅𝑖
2 =

𝑓(𝑅𝑖,𝑐,𝑡) − 𝑧𝑖(𝑅𝑖,𝑐,𝑡)

∆𝑅

−
𝑓(𝑅𝑖,𝑐,𝑡 − ∆𝑅) − 𝑧𝑖(𝑅𝑖,𝑐,𝑡 − ∆𝑅)

∆𝑅
,     (31) 

According to (31), 𝑑2𝑈𝑖 𝑑𝑅𝑖
2⁄ < 0 holds, and 𝑈𝑖,𝑡  reaches the 

maximum value at 𝑅𝑖,𝑐,𝑡, i.e., 𝑅𝑖,𝑡
∗ = 𝑅𝑖,𝑐,𝑡.  

If 𝑓(0) > 𝑧𝑖(0)  and 𝑅𝑖,𝑐,𝑡 ∉ [0, 𝑅𝑖,𝑚𝑎𝑥],  let 𝑓(𝑅𝑖,𝑐,𝑡) =

𝑧𝑖(𝑅𝑖,𝑐,𝑡), consumer 𝑖 participating in IBDR can always obtain 

positive incremental benefit, so they participate in IBDR as 

much as possible, i.e., 𝑅𝑖,𝑡
∗ = 𝑅𝑖,𝑡,𝑚𝑎𝑥 . 

If 𝑓(0) ≤ 𝑧(0), consumer 𝑖 do not participate in IBDR, i.e., 

𝑅𝑖,𝑡
∗ = 0. 

Next, we analyze the decision-making behavior of LSE in (b). 

Let 𝜒𝑡  denote the incremental incentives, and the first derivative 

of (14) with respect to 𝜒𝑡  is: 

𝜕𝑈𝐿𝑆𝐸
𝜕𝜒𝑡

=∑((𝜆𝑡
𝑊 − 𝜆𝑡

𝑇𝑂𝑈 − 𝑓(𝑅i,t
∗ ))

𝜕𝑅i,t
∗

𝜕𝜒𝑡
)

𝑛

𝑖=1

.     (32) 

The consumer’s response 𝑅𝑖,𝑡
∗  increases with the unit incentive 

price obtained, i.e., 𝜕𝑅𝑖,𝑡
∗ 𝜕𝜒𝑡⁄ ≥ 0. 

If 𝜆𝑡
𝑊 ≤ 𝜆𝑡

𝑇𝑂𝑈 , 𝑈𝐿𝑆𝐸,𝑡  decreases monotonically with 𝜒𝑡 , so 

LSE does not perform IBDR. 

If 𝜆𝑡
𝑊 > 𝜆𝑡

𝑇𝑂𝑈 , we have 

{
 

 
𝜕𝑈𝐿𝑆𝐸
𝜕𝜒𝑡

> 0, 𝜆𝑡
𝑊 > 𝜆𝑡

𝑇𝑂𝑈 + 𝑓(𝑅i,t
∗ ),

𝜕𝑈𝐿𝑆𝐸
𝜕𝜒𝑡

≤ 0, 𝜆𝑡
𝑊 ≤ 𝜆𝑡

𝑇𝑂𝑈 + 𝑓(𝑅i,t
∗ ),

             (33) 

𝑈𝐿𝑆𝐸,𝑡 achieves the maximum value at 𝜆𝑡
𝑊 = 𝜆𝑡

𝑇𝑂𝑈 + 𝑓(𝑅𝑖,𝑡
∗ ). 

In summary, there exists a unique equilibrium in the proposed 

mechanism, which achieves Pareto optimization. 

(iii) Strategy-Proofness: In a strategy-proof mechanism, 

consumers cannot obtain additional benefits from reporting 
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false information. Since the only information that consumers 

need to report is their response, any false response will deviate 

from its Pareto optimal value, i.e.,  

(𝐶𝑖,𝑡
𝑝
+ 𝐶𝑖,𝑡

𝑐 − 𝑈𝑖,𝑡)|𝑅𝑖,𝑡=𝑅i,t
∗ < (𝐶𝑖,𝑡

𝑝
+ 𝐶𝑖,𝑡

𝑐 − 𝑈𝑖,𝑡)|𝑅𝑖,𝑡=𝑅i,t
− , (34) 

where 𝑅i,t
−  refers to any possible value except 𝑅i,t

∗ . Hence, the 

mechanism is strategy-proofness. 

(iv) Envy-Freeness: In an envy-free mechanism, no 

consumer envies another consumer’s allocation. Specifically, 

consumers get the same revenue under the same response. From 

(11), the following equation always holds: 

∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑖,𝑡

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑅𝑗,𝑡

0

, ∀𝑅𝑖,𝑡 = 𝑅𝑗,𝑡 ,         (35) 

hence, the designed mechanism is envy-free. 

4 Problem Formulation and Solution 

In this section, the decision sequence of bidding and IBDR is 

first clarified. Then, the coupled problem in WEM and REM is 

formulated into an MDP. Finally, an asynchronous double-

interaction DRL algorithm is proposed to solve the optimization 

problem. 

4.1 Decision Timeline and Methodology 

Although bidding and IBDR decisions are coupled with each 

other, in practice, they are executed in different time slots. The 

bidding decision is made in the day-ahead market, while the 

IBDR is executed intraday, as shown in Fig. 3. 

day-ahead intraday

  t-1 t

Clearing 

WEM

Announce 

incentive

ISO

LSE

consumer

Submit 

bidding

  

Execute 

response

Bid stage

IBDR stage

 
Fig. 3.  Timelines of actions  

In a day-ahead market, LSE submits bid for each time slot of 

the next day to ISO, and then ISO clears the WEM based on the 

bids/offers of the buyer and the seller to yield the wholesale 

electricity price, as well as the electricity transacted by each 

participant. Prior to time slot 𝑡  intraday, LSE announces the 

IBDR incentive to the consumers for the next time slot, and 

consumers execute the response accordingly.  

Theoretically, this couped problem can be transformed into a 

two-layer optimization problem, where the upper layer is a 

bidding problem, and the cleared price and electricity are used 

as input to the IBDR problem in the lower layer. Besides, the 

optimization result of the lower layer also affects the decision-

making of the upper layer. However, the parameters of the 

comfort loss function of each consumer are difficult to be 

obtained, so the optimization decision cannot be directly 

calculated. 

DRL and heuristic algorithms, such as genetic algorithm, 

particle swarm algorithm, etc., can find the optimal solution in 

a model-free environment. As shown in Fig. 3, bidding and 

IBDR are asynchronous decision-making processes. For online 

algorithms, solving problems requires complete information. 

However, the actions and optimization results of IBDR are 

unknown when solving the bidding problem. Therefore, online 

heuristic algorithms are difficult to solve the coupling problem 

in this paper. 

The training process of the DRL algorithm is offline, and the 

network can be trained with complete historical information, 

after the bidding and IBDR are both completed. Besides, 

benefiting from the learning and memory ability of the neural 

network, DRL can infer the possible optimization results of 

IBDR with incomplete information and make the optimal 

bidding decision, accordingly. Considering that the action space 

of bidding and IBDR is continuous, it is necessary to apply a 

model-free policy-based DRL algorithm to solve the coupled 

problem. It has been reported that deep deterministic policy 

gradient (DDPG) algorithm has relatively good performance on 

the prediction accuracy and convergence speed among the 

model-free policy-based DRL algorithm, but it requires more 

state transition samples [30], [31]. Since electricity 

consumption data can be easily collected by smart meters, in the 

paper, we propose the asynchronous double-interaction DRL 

algorithm based on the DDPG to solve the coupled problem. 

4.2 Markov Decision Process Formulation 

The coupled problem can be formulated as a MDP which is 

formally defined as a five-tuple 𝑀 = (𝒮,𝒜, 𝒯, ℛ, 𝛾), where 𝒮 

is the state space, 𝒜  is the action space, 𝒯  is the transition 

probability between states, ℛ is the reward function, and 𝛾 is 

the discount factor.  

Since WEM is the day-ahead market, the information related 

to the WEM available to the LSE includes predicted price 𝜆̂𝑡
𝑊 in 

WEM, TOU price 𝜆𝑇𝑂𝑈 , and predicted load demand without 

IBDR 𝐿̂𝜏
𝑜 for the next day. Let 𝑠𝑊,𝑡  denote the set of information 

available to the LSE before executing biding action 𝑎𝑊,𝑡  in 

WEM, which can be expressed as: 

𝑠𝑊,𝑡 = (𝜆̂𝜏
𝑊
, 𝜆𝜏
𝑇𝑂𝑈, 𝐿̂𝜏

𝑜
) ,    𝜏 = 1,2,… , 𝑇.                  (36) 

IBDR is implemented intraday, and the information related to 

the REM available to the LSE includes the actual load and price 

in WEM before the current time slot, the predicted load demand 

𝐿̂𝑡, the clearing price λ𝜏
𝑊 in WEM, and the TOU price 𝜆𝑡

𝑇𝑂𝑈. Let 

𝑠𝑅,𝑡  denote the set of information available to the LSE before 

executing IBDR action 𝑎𝑅,𝑡 in REM, which can be expressed as: 

𝑠𝑅,𝑡 = (𝜆𝜏
𝑊, 𝜆𝜏

𝑇𝑂𝑈, 𝐿𝜅
𝑎, 𝐿̂𝜏

𝑜
) , 𝜏 = 1,… , 𝑇, 𝜅 = 1,… , 𝑡 − 1. (37) 

In the considered scenario, LSE needs to decide the bidding 
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strategy in WEM, that is, to decide the values of 𝛼𝑡  and 𝛽𝑡 . 
Meanwhile, the IIF 𝑓(𝑅) also needs to be determined. Due to 

the different forms of IIFs, the number of parameters that need 

to be decided is different. Let 𝜒𝑡  represent all the parameters of 

the IIF, and the action 𝑎𝑡 is defined as 

𝑎𝑡 = (𝛼𝑡, 𝛽𝑡, 𝜒𝑡).                              (38) 
Since our goal is to increase the profit of LSE, let us define 

the reward 𝑟𝑡 in time slot 𝑡 as the profit obtained by the LSE: 

𝑟𝑡 =∑𝐶𝑖,𝑡
𝑝

𝑛

𝑖=1

−∑𝑈𝑖,𝑡

𝑛

𝑖=1

− 𝐶𝑤,𝑡 − 𝐶𝑆,𝑡.                (39) 

Inspired by the credit allocation mechanism [32], let us 

redistribute the reward of bids and IBDR, instead of directly 

using the overall reward 𝑟𝑡 . Since the cost of IBDR does not 

affect bidding, the reward for bidding 𝑟𝑊,𝑡 is defined as: 

𝑟𝑊,𝑡 =∑𝐶𝑖,𝑡
𝑝

𝑛

𝑖=1

− 𝐶𝑤,𝑡 − 𝐶𝑆,𝑡.                   (40) 

Similarly, since the penalty caused by load imbalance has 

nothing to do with IBDR, the reward of IBDR 𝑟𝑅,𝑡 is defined as: 

𝑟𝑅,𝑡 =∑𝐶𝑖,𝑡
𝑝

𝑛

𝑖=1

−∑𝑈𝑖,𝑡

𝑛

𝑖=1

− 𝐶𝑤,𝑡.                   (41) 

The cumulative discounted reward from time slot 𝑡 and onwards 

is donated by 𝐷𝑡  and can be express as  

𝐷𝑡 =∑ 𝛾𝑘−𝑡𝑟𝑡

𝑇−1

𝑘=𝑡

,                             (42) 

where 𝛾 ∈ (0,1] is the discount factor.  

4.3 Asynchronous Double-Interaction DRL Algorithm 

LSE needs to sequentially make the optimal decision in 

WEM and REM, i.e., the bidding strategy 𝜋𝑊(𝑠𝑊,𝑡) = (𝛼𝑡 , 𝛽𝑡) 

with the observation 𝑠𝑡
𝐵𝐼𝐷, and the IBDR strategy 𝜋𝑅(𝑠𝑅,𝑡) = 𝜒𝑡  

with the observation 𝑠𝑅,𝑡 . Although bidding and IBDR are 

executed sequentially, the two issues are coupled. The 

formulation of bidding strategies requires the optimization 

results of IBDR, which cannot be known in advance. Besides, 

the reward is calculated jointly by the bidding and IBDR, i.e., 

the reward cannot be immediately obtained when the bidding 

action is completed. In order to solve the above problems, we 

propose an asynchronous double interaction DRL algorithm, in 

which the network is trained offline after the bidding and IBDR 

actions are both completed. The interaction between each 

component in the algorithm is illustrated in Fig. 4. 

Let 𝐺𝑊  and 𝐺𝑅 represent sub agents in WEM and REM, 

respectively. On the previous day, 𝐺𝑊 first performs action 𝑎𝑊,𝑡 

in WEM according to 𝜋𝑊(𝑠𝑤,𝑡). Then, in the time slot 𝑡 − 1, 𝐺𝑅 

performs action 𝑎𝑅,𝑡  in REM according to 𝜋𝑅(𝑠𝑅,𝑡) , and the 

reward value 𝑟𝑡 can be calculated accordingly. 

 
Fig. 4.  Asynchronous double-interaction DRL algorithm 

After the bidding and IBDR are completed, the two sets of 

state transitions in WEM and REM, (𝑠𝑊,𝑡 , 𝑎𝑊,𝑡 , 𝑟𝑊,𝑡 , 𝑠𝑊,𝑡+1) 

and (𝑠𝑅,𝑡 , 𝑎𝑅,𝑡 , 𝑟𝑅,𝑡 , 𝑠𝑅,𝑡+1), are stored in the replay buffer 𝐵𝑊 

and 𝐵𝑅 , respectively. Each replay buffer can store a population 

of 𝐾 samples, and when it is full, the oldest sample would be 

eliminated. Since the data used to train the network needs to be 

independent and identically distributed, the data is randomly 

sampled from the replay buffer to train the network. In the 

proposed DRL algorithm, the interaction between the two sub-

agents and the environment is coupled, but the network training 

is independent. Since the real load is affected by IBDR, it is 

necessary to train the IBDR agent first, and then use the IBDR 

agent as the environment to participate in the training of the 

bidding agent. According to the optimization strategy 𝜋𝑅  in 

REM, the real load demand after IBDR can be predicted: 

𝐿̂𝑡
𝑜
𝜋𝑅
→ 𝐿̂𝑡

𝑎 ,                                  (43) 
i.e., with the IBDR action strategy 𝜋𝑅 , the real load of 

consumers after participating in IBDR can be predicted. 

LSE desires to maximize the total profit for the entire period, 

and the goal of the proposed DRL algorithm is to learn a policy 

𝜋 to maximize the expected return of actions in the initial slot, 

i.e., 𝐽[𝜋] = 𝔼𝑎𝑡~𝜋[𝐷0], where 𝐽[𝜋] is the objective function and 

𝔼  is mathematical expectation, 𝐷0  is cumulative return from 

time slot 0.  

In policy-based DRL algorithm, the action value function is 

used to measure the performance of policy 𝜋, 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑎𝑖>𝑡~𝜋[𝐷𝑡|𝑠𝑡, 𝑎𝑡],                (44) 
where 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) represents the total expected return of each 

action after time slot 𝑡 . Calculate the return of each step is 

obviously time consuming. To improve the training efficiency 

of the algorithm, (44) can be replaced by a recursive form 

according to the Bellman equation 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝔼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1))],               (45) 
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where 𝜇(𝑠𝑡+1) is the actor function which specifies the current 

policy by mapping states to a specific action. 

Let 𝜃𝑄 and 𝜃𝜇 denote the parameter vectors of critic network 

and action network, respectively. Besides, let 𝜃𝑄′  and 𝜃𝜇′ 
denote the parameter vectors of target critic network and target 

action network, respectively. The parameter vectors of critic 

network 𝜃𝑄  is updated by minimizing the following loss 

function: 

𝐿(𝜃𝑄) =
1

𝑍
∑ (𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑖
,             (46) 

where 𝑍 is the number of samples taken from the replay buffer, 

and 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑡+1|𝜃
𝜇′)|𝜃𝑄′) . The parameter 

vectors of actor network 𝜃𝑄  is updated using sampled policy 

gradient: 

𝛻𝜃𝜇𝐽 ≈
1

𝑍
∑ 𝛻𝑎𝑄(𝑠, 𝑎; 𝜃

𝑄
|
𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)

𝛻𝜃𝜇𝜇 (𝑠; 𝜃
𝜇
|
𝑠𝑖
))

𝑖
,   (47) 

where 𝛻𝜃𝜇 is the gradient of 𝜃𝜇, and 𝛻𝑎 is the gradient of 𝑎. 

In order to improve the exploration efficiency of action space, 

the exploration policy 𝜇′ is constructed by adding noise sampled 

from a noise process 𝒩 to the actor policy 

𝜇′(𝑠𝑡) = 𝜇(𝑠𝑡|𝜃𝑡
𝜇
)+𝒩𝑡,                        (48) 

where Ornstein-Uhlenbeck process 𝒩t  is employed for the 

noise process [33]:  
𝒩𝑡+1 = (1 − 𝜃)𝒩𝑡 + 𝜎𝑑𝑊𝑡𝒩𝑡,                 (49) 

where 𝜃 > 0 and 𝜎 > 0 are parameters in drift and diffusion 

terms, respectively, and 𝑊𝑡 denotes the Wiener process. 

The detailed asynchronous double-interaction DRL 

algorithm is presented in Algorithm 1. 
Algorithm 1 Asynchronous double-interaction DRL algorithm 

Randomly initialize parameter vectors 𝜃𝑊
𝑄

, 𝜃𝑊
𝜇

, 𝜃𝑅
𝑄

, 𝜃𝑅
𝜇
. 

Initialize target network 𝜃𝑊
𝑄′
← 𝜃𝑊

𝑄
, 𝜃𝑊

𝜇′
← 𝜃𝑊

𝜇
, 𝜃𝑊

𝑄′ ← 𝜃𝑊
𝑄

, 𝜃𝑅
𝜇′
← 𝜃𝑅

𝜇
. 

Initialize replay buffer 𝐵𝑊 and 𝐵𝑅. 

For episode=1, . . , 𝑀  do 

Initialize random process 𝒩𝑊 for action 𝑎𝑊 exploration and 𝒩𝑅 for 𝑎𝑅 

Receive initial observation state 𝑠𝑊,𝑡 and 𝑠𝑅,𝑡 
For 𝑡 = 0,… , 𝑇 − 1 do 

Select 𝑎𝑊,𝑡 = 𝜇(𝑠𝑊,𝑡|𝜃𝑊
𝜇
) +𝒩𝑊,𝑡  

Execute 𝑎𝑊,𝑡 in WEM and receive 𝐿𝑖,𝑡
𝑏

 

Execute 𝑎𝑅,𝑡 in REM and receive reward 𝑟𝑡  and 𝑠𝑡+1 

Store transition (𝑠𝑊,𝑡, 𝑎𝑊,𝑡, 𝑟𝑡 , 𝑠𝑊,𝑡+1)  in replay buffer 𝐵𝑊  and 

(𝑠𝑅,𝑡, 𝑎𝑅,𝑡, 𝑟𝑡 , 𝑠𝑅,𝑡+1) in 𝐵𝑅 

If the IBDR training is not completed 

Sample a random minibatch of 𝑍𝑅 transitions from replay buffer 𝐵𝑅 

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑅𝑄𝑅
′ (𝑠𝑅,𝑖+1, 𝜇𝑅

′ (𝑠𝑅,𝑖+1; 𝜃𝑅
𝜇′
) ; 𝜃𝑅

𝑄′
) 

Update the critic network of 𝐺𝑊 and 𝐺𝑅 respectively by minimizing 

𝐿 in (46): 

𝜃𝑅
𝑄 = 𝜃𝑅

𝑄 − ∇
𝜃𝑅
𝑄𝐿(𝜃𝑅

𝑄
) 

Update actor network of 𝐺𝑊  and 𝐺𝑅  respectively using sampled 

gradients in (47): 

𝜃𝑅
𝜇
= 𝜃𝑅

𝜇
+ ∇

𝜃𝑅
𝑄𝐽(𝜃𝑅

𝑄
) 

Update the target networks of 𝐺𝑊 and 𝐺𝑅 respectively: 

𝜃𝑅
𝑄′

← 𝜏𝑅𝜃𝑅
𝑄 + (1 − 𝜏𝑅)𝜃𝑅

𝑄′

, 𝜃𝑅
𝜇′
← 𝜏𝑅𝜃𝑅

𝜇
+ (1 − 𝜏𝑅)𝜃𝑅

𝜇′
 

Else 

Sample a random minibatch of 𝑍𝑊 transitions from replay buffer 

𝐵𝑊 

Obtain the IBDR result according to 𝜋𝑅 and add it to observation 

𝑠𝑊,𝑡: 𝐿̂𝑡
𝑜 → 𝐿̂𝑡

𝑎 

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑊𝑄𝑊
′ (𝑠𝑊,𝑖+1, 𝜇𝑊

′ (𝑠𝑊,𝑖+1; 𝜃𝑊
𝜇′
) ; 𝜃𝑊

𝑄′
) 

Update the critic network of 𝐺𝑊 and 𝐺𝑅 respectively by minimizing 

𝐿 in (46): 

𝜃𝑊
𝑄 = 𝜃𝑊

𝑄 − ∇
𝜃𝑊
𝑄 𝐿(𝜃𝑊

𝑄
) 

Update actor network of 𝐺𝑊  and 𝐺𝑅  respectively using sampled 

gradients in (47): 

𝜃𝑊
𝜇
= 𝜃𝑊

𝜇
+ ∇

𝜃𝑊
𝑄 𝐽(𝜃𝑊

𝑄
) 

Update the target networks of 𝐺𝑊 and 𝐺𝑅 respectively: 

𝜃𝑊
𝑄′
← 𝜏𝑊𝜃𝑊

𝑄 + (1 − 𝜏𝑊)𝜃𝑊
𝑄′

, 𝜃𝑊
𝜇′
← 𝜏𝑊𝜃𝑊

𝜇
+ (1 − 𝜏𝑊)𝜃𝑊

𝜇′
 

End for 

End for 

5 Numerical Simulation 

5.1 Simulation Setup 

The RTP 𝜆𝑡 in WEM is taken from PJM electricity market. 

The number of consumers is set to be 25, and the real load data 

in Pecan Street [34] is used as the baseline load of consumers, 

where 92 days are selected as the training set, 10 days as the 

validation set, and 3 days as the test set. The consumer response 

function is set as 𝑧𝑖(𝑅) = 𝑎𝑖𝑅
2 + 𝑏𝑖𝑅 + 𝑐𝑖 , where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 

are randomly generated with uniform distribution within the 

range  [0,0.3], [0,0.1] and [0,0.02], respectively. We set up the 

IIF 𝑓(𝑅) = 𝛼1 + 𝛽𝑅  and the unified price 𝑓(𝑅) = 𝛼2 . The 

rebound coefficient 𝜉𝑖,𝑡  is randomly generated with uniform 

distribution within the range [0,1], and the penalty function is 

set to be two times of clearing price in WEM, i.e., 𝜙 = 2𝜆𝑡
𝐷𝐴𝐿𝑡,𝑠, 

where 𝐿𝑡,𝑠 is the electricity shortage in time slot 𝑡. In order to 

simulate the uncertainty caused by the prediction error, a 

disturbance is added to the real value to simulate the predicted 

value, i.e., 𝜆̂𝑡
𝐷𝐴 = (1 + 𝜀)𝜆𝑡

𝐷𝐴, and 𝐿̂𝑡
𝑎 = (1 + 𝜀)𝐿𝑡

𝑎 , where 𝜀 is 

the error generated by the normal distribution with mean and 

variance in TABLE I. The TOU tariff for each slot of the day is 

shown in Table II. 

TABLE I MEAN AND VARIANCE 

Low Uncertainty Scenario High Uncertainty Scenario 

Mean Variance Mean Variance 

0 0.05 0 0.25 

TABLE II TOU TARIFF FOR EACH TIME SLOT  

0.03$/kWh (Peak) 0.025$/kWh (Flat) 0.02$/kWh (Valley) 

11:00-19:00 6:00-10:00 20:00-22:00 0:00-5:00 23:00 

All networks in the DRL adopt the fully connected network 

with 3 hidden layers, of which the first two have 256 neurons, 

and the third has 128 neurons. The learning rate of actor network 

and critic network for both sub-agents are set to be 0.000001 

and 0.00001. The algorithm is implemented using PyTorch in 
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Python. The case studies have been performed on a laptop with 

Intel(R) Core(TM) i7-9750H processor and one single NVIDIA 

GeForce GTX 1660 Ti GPU. 

5.2 Performance Analysis of the Proposed Mechanism 

In this part, we test the performance of the proposed 

incremental incentive mechanism. Since the RTP of the 

electricity market has large fluctuations and is quite different 

among days, we chose three consecutive days for simulation.  

In REM, LSE provides energy supply services to consumers 

with fixed TOU tariff. In most time slots, the TOU price in REM 

is higher than the RTP in WEM, so LSE can obtain profit 

through power trading. Therefore, in order to improve the total 

profit, LSE implements IBDR according to the price fluctuation 

in WEM. The response under different mechanisms during each 

slot is shown in Fig. 5. 

 
Fig. 5.  Response under different mechanisms in each time slot 

It can be seen from Fig. 5 that the algorithm proposed in this 

paper can trace the fluctuation of RTP in WEM. In most time 

slots, TOU price is higher than RTP, and IBDR is not 

implemented. In some time slots with high RTP, e.g., time slot 

41, 55, 65, 66, etc., IBDR is implemented to reduce the deficits. 

Since the incentive cost of IBDR is increasing, the depth of 

IBDR in different time slots also changes with RTP. For 

example, the RTP in time slot 66 is as high as 0.29$/kW, while 

the TOU price is only 0.03$/kW, which means that LSE losses 

0.26$/kW of electricity providing to consumers. LSE needs to 

reduce consumers’ power consumption as much as possible 

through IBDR, and the consumers’ response exceeds 8kW. In 

comparison, the RTP in time slot 41 is 0.08$/kW, 0.05$/kW 

higher than TOU price, with the response less than 4kW. 

Further analysis of the unit cost and response of IBDR with 

different mechanisms are shown in Fig. 6. 

 

Fig. 6.  Unit cost and response with different mechanisms 

It can be seen from Fig. 6 that in the four typical time slots, 

the consumer response with IIF is always higher than that with 

the unified incentive price. Meanwhile, in time slots 41, 55, and 

66, the unit incentive cost with IIF is also lower than the cost 

with the unified incentive price, indicating that IIF can 

effectively reduce the incentive cost of LSE and fully release 

the potential of load reduction of consumers at the same time. 

In time slot 65, the cost with IIF is slightly higher than that with 

the unified incentive price, which is caused by the large gap in 

consumer response. The difference of consumer response in 

time slot 65 and time slot 66 is almost the same, but there is a 

significant difference in unit cost, indicating that the difference 

between unit cost with IIF and unified incentive price increases 

with the raise of consumer response. This phenomenon is 

caused by the consumer’s response characteristics.  

       
                   (a) IIF                  (b) Unified incentive price 

Fig. 7.  Incentive and consumer response curve 

In Fig.7, each blue dotted line represents a consumer’s load 

reduction function 𝑧(𝑅) , which represents the relationship 

between the unit incentive and the desired load reduction. The 

solid lines represent the incentive functions in time slots 41, 55, 

65, and 66, respectively. The difference between the incentive 

function and the consumer response function is consumer 

surplus.  

It can be seen from Fig. 7 (b) that the unified incentive price 

causes a large consumer surplus at the initial stage of load 

reduction, and it decreases rapidly with the increase of response. 

When LSE hopes to obtain higher load reduction, it can only 

shift the horizontal incentive price curve upward, which 

exacerbates the problem of uneven distribution of consumer 

surplus. For example, the consumer surplus in time slot 65 is 

about 0.04$/kW at the initial stage of load reduction, while it is 

as high as 0.1$/kW in time slot 66.  

The IIF proposed in this paper can effectively alleviate the 

above problem. With IIF, the largest consumer surplus in time 

slot 65 is only 0.01$/kW, and in time slot 66 is only about 

0.02$/kW. The redistribution of consumer surplus improves the 

incentive efficiency of LSE, enabling it to obtain more load 

reduction with lower unit incentive costs, as shown in Fig. 7. 

5.3 Performance Analysis of the Proposed Algorithm 

Since LSE needs to pay penalty for load imbalance, the 

bidding in WEM largely affects the profit of LSE. The power 

obtained from WEM by LSE and the actual electricity 
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consumption demand of consumers in each time slot are shown 

in Fig. 8. 

 
Fig. 8.  Traded electricity in WEM and power consumption of consumers 

As can be seen from Fig. 8, the proposed asynchronous 

double-interaction DRL algorithm can ensure that the traded 

electricity is close to the actual power demand of consumers, 

even in the time slot with the influence of IBDR and load 

rebound. For example, in time slot 55, the traded electricity 

decreases with the actual load demand of consumers after IBDR, 

while in the subsequent time slot 56, the traded electricity 

increases with the load rebound. In the optimization of the 

bidding strategy, only the information before the time slot 𝑡 and 

the predicted value of the time slot 𝑡 can be observed. The load 

rebound of the subsequent time slot cannot be observed. From 

the simulation results, it can be seen that the algorithm can infer 

the load rebound through limited observation information, while 

tracking the load change well. The power deviation in all time 

slots can be maintained in a small range, thereby minimizing the 

loss of profit caused by power imbalance. 

The observed price and consumer load of LSE in decision-

making are predicted values, and the prediction error affects the 

decision-making effect. Therefore, we verify the performance 

of the algorithm in high uncertainty scenarios, as shown in Fig. 

9. 

 
Fig. 9.  Traded electricity in WEM and power consumption of consumers with 

high uncertainty 

In the high uncertainty scenario, the maximum prediction 

error exceeds 20%. As can be seen from Fig. 9, the bidding 

strategy can still track the change of power curve well with high 

uncertainty. Although the power imbalance increases, it is 

maintained within an acceptable range. 

Besides, since LSE often requires to interact with a large 

number of consumers in IBDR, the scalability of the algorithm 

also needs to be verified. We set up 500 consumers to verify the 

performance of the algorithm in the same scenario, as shown in 

Fig. 10. 

 
Fig. 10.  Traded electricity in WEM and power consumption (500 consumers) 

In the proposed algorithm, all the observations are the total 

value of consumers, e.g., total power, total response, etc. 

Therefore, the increase in the number of consumers does not 

cause additional burden on the algorithm. It can be seen from 

Fig. 10 that the algorithm can still maintain a relatively stable 

and good performance, indicating that the proposed algorithm 

can be adapted to the scene of a large number of consumers. 

6 Conclusions and Further Works 

In this paper, we propose an increment incentive mechanism 

for IBDR, in which consumers obtain incentive according to 

their incremental response. Through mathematical analysis, we 

find that the existing unified incentive mechanism is a special 

form of the increment incentive mechanism. By extending the 

unified incentive price to the IIF, consumer surplus can be 

distributed more reasonably. The excessive consumer surplus in 

the cumulative response is alleviated, and high-flexible 

consumer can obtain more profit by improving the response. 

The unit incentive cost of LSE is also reduced while increasing 

the response of consumers. Besides, the asynchronous double-

interaction DRL algorithm has relatively stable and satisfactory 

performance in different scenarios in the simulation, which 

verifies that the proposed algorithm has satisfactory stability 

and adaptability, and it can deal with decision-making problems 

in a coupled environment well. 

In future works, the performance of IIF with different forms 

for diversified consumer groups can be further studied, so as to 

achieve adaptive optimization of the IIF form according to the 

characteristics of consumer groups. In addition, in order to 

further improve system efficiency, the application of 

incremental incentive mechanisms can be expanded, e.g., price-

based DR, peer-to-peer transactions, etc.  
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