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Abstract 

Resource management is an important component of a grid computing infrastructure. 

The scalability and adaptability of such systems are two key challenges that must be 

addressed. In this work an agent-based resource management system, ARMS, is 

implemented for grid computing. ARMS utilises the performance prediction 

techniques of the PACE toolkit to provide quantitative data regarding the performance 

of complex applications running on a local grid resource. At the meta-level, a 

hierarchy of homogeneous agents are used to provide a scalable and adaptable 

abstraction of the system architecture. Each agent is able to cooperate with other 

agents and thereby provide service advertisement and discovery for the scheduling of 

applications that need to utilise grid resources. A case study with corresponding 

experimental results is included to demonstrate the efficiency of the resource 

management and scheduling system. 
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1 Introduction 

 

Grid technologies have emerged to enable large-scale flexible resource sharing among 

dynamic virtual organisations [13,14]. An essential component of grid infrastructure 

software is the service layer, which acts as middleware between grid resources and 

grid applications. This work considers the resource management service, the 

component that provides efficient scheduling of applications utilising available 

resources in the grid environment [18]. Delivering such a service within the high 

performance community will rely, in part, on accurate performance prediction 

capabilities. 

 

Previous research on the PACE (Performance Analysis and Characterise Environment) 

toolkit [20] can be used to provide quantitative data concerning the performance of 

sophisticated applications running on local high performance resources. PACE can 

supply accurate performance information for both the detailed analysis of an 

application and also as input to resource scheduling systems; this performance data 

can also be generated in real-time. While extremely well-suited for managing a 

locally distributed multi-computer, PACE functions do not map well onto wide-area 

environments, where heterogeneity, multiple administrative domains and 

communication irregularities increase the complexity of the resource management 

process. There are two key challenges that must be addressed: 

 

• Scalability. A grid has the potential to encompass a large number of high 

performance computing resources. Each constituent of this grid will have its 
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own function, its own resources and environment. These components are not 

necessarily fashioned to work together in the overall grid. They may be 

physically located in different organisations and may not be aware of each 

others capabilities. 

• Adaptability. A grid is a dynamic environment where the location, type and 

performance of the components are constantly changing. For example, a 

component resource may be added to, or removed from, the grid at any time. 

These resources may not be entirely dedicated to the grid and therefore the 

computational capabilities of the system will vary over time. 

 

An agent-based resource management system for grid computing, ARMS, is 

introduced to address the above challenges. Software agents are recognised as a 

powerful high-level abstraction for the modelling of complex software systems [16]. 

An agent-based methodology described in this work [5,8] can be used to build large-

scale distributed software systems that exhibit highly dynamic behaviour. It is 

intended that an entire system be built of a hierarchy of identical agents with the same 

functionality. As such, agents are considered both service providers and service 

requestors and the implementation of system functions is abstracted to the processes 

of service advertisement and service discovery. 

 

ARMS couples the performance prediction techniques of the PACE toolkit with a 

scheduling algorithm designed to manage a local grid resource. At the meta-level, 

ARMS utilises the agent-based methodology described in [7], where each agent acts 

as a representative for a local grid resource and considers this resource to be its high 

performance computing capability. Agents cooperate to perform service 
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advertisement and discovery, thus providing the bases services with which to manage 

and schedule applications over available grid resources. The performance of these 

agents can be improved by using a number different optimisation strategies. 

 

There are several solutions that currently address issues of resource management and 

scheduling. These include Globus [11], Legion [12], NetSolve [10], Condor [21], Ninf 

[19] and Nimrod/G [2]. While many of these projects utilise query-based mechanisms 

for resource discovery and advertisement [18], this work adopts an agent-based 

approach. This allows an agent to control the query process and to make resource 

discovery decisions based on its own internal logic as opposed to relying on a fixed-

function query engine. Unlike Nimrod/G, in which the grid resource estimation is 

performed through heuristics and historical information, the performance prediction 

capabilities of grid resources in this research are achieved through the integration of 

PACE. 

 

A number of recent grid projects have utilised existing distributed computing 

technologies such as CORBA [24] and Jini [1]. For example, the work described in 

[23] makes use of CORBA Lightweight Components to provide a new network-

centred reflective component model which allows distributed applications to be 

assembled from independent binary components distributed on the network. The work 

described in [15] is a computational community that supports the federation of 

resources from different organisations; this system is designed and implemented in 

Java and Jini. While CORBA and Jini are well suited to their original design goals, 

they are not designed for developing high performance computing applications, and as 
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mentioned in [14], such technologies only enable resource sharing within a single 

organisation. 

 

An agent-based grid computing project is described in [22]. This work on an “Agent 

Grid”, integrates services and resources for establishing multi-disciplinary problem 

solving environments. Specialised agents contain behavioural rules which can be 

modified based on their interaction with other agents and the environment in which 

they operate. In contrast, ARMS uses a hierarchy of homogenous agents for both 

service advertisement and discovery, and integrates these with a performance 

prediction based scheduler. A detailed introduction to this research can be found in [9]. 

 

The paper is organised as follows: the PACE toolkit is summarised in section 2; the 

ARMS implementation is presented in section 3; section 4 describe a case study with 

corresponding experimental results and the paper concludes in section 5. 

 

2 The PACE toolkit 

 

The main components of the PACE toolkit [4] are shown in Fig. 1. A core component 

of PACE is a performance specification language (PSL) which describes the 

performance aspects of an application and its parallelisation. A corresponding 

Hardware Modelling and Configuration Language (HMCL) is used to capture the 

definition of a computing environment in terms of its constituent performance model 

components and configuration information. The workload information and the 

component resource models are combined using an evaluation engine to produce time 

estimates and trace information of the expected application behaviour. 
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The performance prediction capabilities of PACE are demonstrated using the ASCI 

kernel application Sweep3D [3]. Table 1 shows the validation of the PACE model of 

Sweep3D against the code running on an SGI Origin2000 shared memory system. 

The accuracy of the prediction results are evaluated as follows: 

 

Error =
Prediction - Measurement

Measurement
× 100% . 

 

The maximum prediction error for this application is 11.44%, the average error is 

approximately 5%. 

 

The key features of the PACE toolkit include: good level of predictive accuracy 

(approximately 15% maximum error), rapid evaluation time (typically seconds of 

CPU time) and a method for cross-platform comparison. These capabilities provide 

the basis for the application of PACE to dynamic grid environments consisting of a 

number of heterogeneous systems [17]. 

 

3 ARMS implementation 

 

ARMS couples the agent-based methodology with the PACE performance prediction 

techniques in the implementation of grid resource management. The detail involved in 

this process is described below.  

 

3.1 ARMS architecture 
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An overview of the ARMS architecture is illustrated in Fig. 2. The main components 

of this architecture include grid users, grid resources, ARMS agents and a 

performance monitor and advisor (PMA). 

 

3.1.1 Grid users 

 

There are a number of different categories of user of a grid computing environment. 

The grid users in Fig. 2, and who represent the main focus of this work, are 

considered to be scientists, who develop scientific high performance applications and 

use them to solve large problems in grid computing environments. 

 

The user-side software primarily includes the PACE Application Tools. When a 

parallel application is developed, a corresponding application model is also produced. 

PACE performance modelling is an automated process, targeted at the non-

professional performance engineer. When an application is submitted for execution, 

an associated performance model should also be attached. 

 

Another component included in a grid request is the cost model, describing the user 

requirements concerning the application execution. This would include, for example, 

the deadline for the application to complete. Although there are a number of other 

metrics appropriate in this context, the current focus of this work is on execution time. 

 

3.1.2 Grid resources 

 



8 

  

A grid resource provides high performance computing capabilities for grid users and 

might include supercomputers, or clusters of workstations or PCs. 

 

In this system, PACE is used to create a hardware characterisation template that 

provides a model of each hardware resource. This characterisation is derived from 

computational and communication benchmarks which can be rapidly evaluated to 

provide dynamic performance data. The PACE hardware model is integral to the 

service information which is advertised across the agent hierarchy. 

 

3.1.3 ARMS agents 

 

Agents comprise the main components in the system; the agents are organised into a 

hierarchy and are designed to be homogenous. Each agent is viewed as a 

representative of a grid resource at a meta-level of resource management. This means 

that an agent can therefore be considered a service provider of high performance 

computing capabilities. The service information of each grid resource can be 

advertised within the agent hierarchy (in any direction) and agents can cooperate with 

each other to discover available resources. 

 

Each agent utilises Agent Capability Tables (ACTs) to record service information of 

other agents. An ACT item is a tuple containing an agent ID and corresponding 

service information - all performance related information of a grid resource which can 

be used in the estimation of its performance. 
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An agent can choose to maintain different ACTs corresponding to the different 

sources of service information: T_ACT is used to record service information of local 

resources; L_ACT is used to record service information received from lower agents in 

the hierarchy; G_ACT to record information from the upper agent in the hierarchy; 

finally, C_ACT is used to store cached service information. 

 

There are two methods of maintaining ACT coherency - data-pull and data-push, each 

of which occur periodically or can be driven by system events: 

 

• Data-pull - An agent asks other agents for their service information either 

periodically or when a request arrives. 

• Data-push - An agent submits its service information to other agents in the 

system periodically or when the service information is changed. 

 

An agent uses the ACTs as a knowledge base. This is used to assist in the service 

discovery process triggered by the arrival of a request. Service discovery involves 

querying the contents of the ACTs in the order: T_ACT, C_ACT, L_ACT and 

G_ACT. If an agent exhausts the ACTs, and does not obtain the required service 

information, it can submit the request to its upper agent or terminate the discovery 

process. 

 

The PACE evaluation engine is integrated into each agent. Its performance prediction 

capabilities are used for local resource management in the scheduling of parallel 

applications over available local processors. The evaluation engine is also used to 

provide support to the service discovery process. 
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The agent system aims to bridge the gap between grid users and resources and in so 

doing, allow the efficient scheduling of applications over available grid resources. An 

agent can select different strategies of service advertisement and discovery, the choice 

of which may lead to different performance outcomes. 

 

3.1.4 ARMS PMA 

 

A special agent, illustrated in Fig. 2, is capable of modelling and simulating the 

performance of the agent system while the system is active. This is known as the 

performance monitor and advisor (PMA) of the system. 

 

Unlike facilitators or brokers in classical agent-based systems, the PMA is not central 

to the rest of the agent system. It neither controls the agent hierarchy nor serves as a 

communication centre in the physical and symbolic sense. If the PMA ceases to 

function, the agent system has no operational difficulties and continues with ordinary 

system behaviour. Efficiency improvements to the agent system are only made 

possible through the modelling and simulation mechanism built into the PMA. The 

PMA also avoids any one agent in the system becoming a single system bottleneck. 

 

Statistical data is monitored from each of the agents and input to the PMA for 

performance modelling. The performance model is processed by the simulation 

engine in the PMA so that new optimisation strategies can be chosen and the 

performance metrics improved. The process of simulation allows a number of 

strategies to be explored until a better solution is selected. The selected optimisation 
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strategies are then returned and used to reconfigure the agents in the system. A 

detailed account of the structure and function of the PMA can be found in [6]. 

 

3.2 ARMS agent structure 

 

The agent structure in ARMS is shown in Figure 3. Each layer has several modules, 

which cooperate with each other to perform service advertisement, service discovery, 

and application execution. The three layers are discussed below. 

 

The communication layer of each agent performs communication functions and acts 

as an interface to the external environment. From the communication module, an 

agent can receive both service advertisement and discovery messages. It interprets the 

contents of each message and submits the information to corresponding modules in 

the coordination layer of the agent. For example, an advertisement message from 

another agent will be directly sent to the ACT manager in the agent coordination layer. 

The communication module is also responsible for sending service advertisement and 

discovery messages to other agents. 

 

There are four components in the coordination layer of an agent: the ACT manager, 

the PACE evaluation engine, a scheduler and a matchmaker. These work together to 

make decisions as to how an agent should act on the receipt of messages from the 

communication layer. For example, the final response to a service discovery message 

would involve application execution on the local resource or the dispatching of the 

request to another agent. 
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The main functions of local resource management in an agent include application 

management, resource allocation and resource monitoring. Application execution 

commands are sent from the coordination layer to the local agent manager, these 

commands include the scheduling information for an application (start time, allocated 

processor ids etc). The Application Management part of the system is also responsible 

for managing the queuing of applications that have been scheduled to be executed on 

the locally managed resources. At the start time an application is dispatched to the 

Resource Allocation component. Resource allocation includes wrappers for different 

application execution environments including MPI and PVM; it is at this stage that 

the application is actually executed on the local scheduled processors. Another 

important component of local resource management is resource monitoring. This is 

responsible for controlling the PACE benchmark programs which are executed on the 

local resource and from which corresponding resource models are dynamically 

created. The resource monitor is also responsible for communicating other resource 

and application information between the application management and resource 

allocation modules. It also coordinates all the collected information concerning local 

resource into service information which is then reported to the T_ACT in the 

coordination layer of the agent. 

 

These agent functions are described in detail below.  In particular, the implementation 

of the agent coordination layer is emphasised and the four main components of the 

scheduling algorithm are documented. 

 

3.2.1 ACT manager 
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The ACT manager controls agent access to the ACT database, where service 

information regarding grid resources is located. Fig. 4 illustrates the content of this 

service information. 

 

Consider a grid resource with n processors where each processor Pi has its own type 

tyi. A PACE hardware model can be used to describe the performance information of 

a processor. The processors of a grid resource can be expressed as follows: 

 

{ }P P i ni= =| , ,......,1 2  

{ }ty ty i ni= =| , ,......,1 2 . 

 

Let m be the number of applications that are running, or being queued to be executed 

on a grid resource. Each application Aj has two attributes - scheduled start time tsj and 

end time tej. The applications of a grid resource can then be expressed as follows: 

 

{ }A A j mj= =| , ,......,1 2  

{ }ts ts j mj= =| , ,......,1 2  

{ }te te j mj= =| , ,......,1 2 . 

 

Let MAj be the set of processors that are allocated to application Aj: 

 

{ }MA MA j mj= =| , ,......,1 2  

{ }MA P l kj i jl
= =| , ,......,1 2 , 
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where kj is the number of processors that are allocated to application Aj. Let M be a 

2D array, which describes the mapping relationships between resources and 

applications using boolean values. 

 

{ }M M i n j mij= = =| , ,......, ; , ,......,1 2 1 2  

M
if

if

P MA

P MAij
i j

i j

=
�� � ∈

∉
1
0

 

 

3.2.2 PACE evaluation engine 

 

In ARMS, a request for service discovery involves finding an available grid resource 

for an application. The request information is composed of the PACE application 

model am, which includes all of the performance related information of an application 

Ar. The application model is one of the inputs to the PACE evaluation engine found in 

an agent. 

 

The requirements of a application is specified using a cost model. This model includes 

metrics such as the deadline for the execution of an application, treq, and is used as one 

of the inputs to the matchmaker part of the agent system. 

 

The PACE evaluation engine has two inputs, firstly the application model (am) from 

the service discovery request, and secondly the resource information (ty) from the 

ACT manager. Using this information, the PACE evaluation engine can produce 

performance prediction data including the expected execution time (exet) necessary 

for the application to be executed on the given resource. 
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( )exet eval ty am= , ( )exet eval ty am= ,  

 

Rather than running the application on all the available processors of a grid resource P, 

an application can be executed on any subset of processors P  (note that P  cannot be 

the empty set Φ). This is expressed as follows: 

 

( )∀ ⊆ ≠ ⊆ ≠ =P P P ty ty ty exet eval ty am, , , , ,Φ Φ . 

 

The output of the PACE evaluation engine (exet) forms one of the inputs to the 

scheduler of the agent. Another input to the scheduler is the application information 

from an ACT item. 

 
3.2.3. Scheduler 

 

An ACT item acts as a view of a grid resource that is remote to the agent. An agent 

can however still schedule the required application execution based on this 

information of a resource. The function of the scheduler is to find the earliest time at 

which the application will terminate, a function described by the ACT item tsched. 

 

( )t tesched P P P r=
∀ ⊆ ≠

min
, Φ

 

 

The application has the possibility of being allocated to any selection of processors 

comprising a grid resource. The scheduler considers all these possibilities and chooses 
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the earliest end time for the execution. This end time - equal to the earliest possible 

start time plus the total execution time - is described as follows: 

 

te ts exetr r= + . 

 

The earliest possible start time for application Ar to be executed on a selection of 

processors P, is defined as the time at which all of these processors become free. If all 

of these processors are already idle, then the application can be executed immediately. 

This figure can be expressed as follows: 

 

( )ts t tdr i P P i
i

=
��� ��	�

∀ ∈
max , max

,
, 

 

where tdi is the latest free time of processor Pi. This is equivalent to the maximum end 

time of the applications that are allocated to process Pi: 

 

( )td tei j M j
ij

=
∀ =
max

, 1
. 

 

In summary, tsched can be calculated as follows: 

 

( )t t te exetsched
P P P i P P j M j

i ij

=

�� 
�	�
�� 
�	�

+

�� 
� �

∀ ⊆ ≠ ∀ ∈ ∀ =
min max , max max

, , ,Φ 1
. 

 

It is not necessarily the case that scheduling all processors to an application will 

achieve higher performance. For example, the start time of application execution may 
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be earlier if only a number of processors are selected; similarly, the execution of some 

applications may take longer if too many processors are allocated to the task. 

 

The scheduling algorithm described above is used in the implementation of ARMS. 

The complexity of the algorithm is determined by the number of possible processor 

selections: 

 

C C Cn n n
n n1 2 2 1+ + + = −...... . 

 

It is therefore essential that the evaluation engine supplied with PACE is efficient. 

During each scheduling process, the evaluation function can be called 2n-1 times. 

Even in the situation where all the processors of a grid resource are of the same type, 

the evaluation function still needs to be called n times. PACE evaluation can be 

performed very quickly to produce prediction results on the fly; this is a key feature of 

PACE which enables the toolkit to provide service discovery support for ARMS. 

 

3.2.4. Matchmaker 

 

The matchmaker in an agent is responsible for comparing the scheduling results with 

the cost model attached to the request. The comparison results lead to different 

decisions on agent behaviours. 

 

In terms of application execution time, if treq ≥ tsched, then the corresponding resource 

can meet the users requirement. If the corresponding ACT item is in the T_ACT, a 

local resource is available (and capable) of executing the application. In this case the 
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application execution command is sent to the local manager in the agent, or the agent 

ID of the corresponding ACT item is returned and the agent dispatches the request to 

the agent via the agent ID. 

 

If treq < tsched, the corresponding resource cannot meet the requirement of the user. The 

agent continues to look up other items in the ACTs until the available service 

information is found. If there is no further service information available in the ACTs, 

the agent may submit or dispatch the request to upper or lower agents. This 

instantiates further service discovery governed by the service discovery strategy 

implemented by the agent. 

 

ARMS demonstrates how an agent-based methodology coupled with the prediction 

capabilities of PACE, provides a system of resource management for grid computing. 

A case study of this system is given below. 

 

4 A case study 

 

In this section experimental results are documented which show how ARMS 

schedules applications onto available resources. There are two main parts in the 

design of the experiments. ARMS is configured to include agents, resources and agent 

behaviour strategies. The sending of application requests (via ‘virtual users’) is 

automated, this is so that execution requests can be sent to ARMS with varying 

frequencies, thus simulating different workloads on the system. 

 

4.1 System design 
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There are 8 agents in the experimental system. The agent hierarchy is shown in Fig. 5. 

Each agent represents a local grid resource and information describing the capabilities 

of the resources is shown in Table 2. The SGI multi-processor is the most powerful 

resource, followed by the Sun Ultra 10, 5, 1 and the SparcStation. 

 

In the experimental system, the T_ACT, L_ACT and G_ACT are used in each agent. 

T_ACTs are maintained by event-driven data-push service advertisement. L_ACTs 

are updated once every 10 seconds using a periodical data-pull. G_ACTs are updated 

once every 30 seconds using a periodical data-pull. All agents use the same strategy 

except gem, which found at the head of the agent hierarchy, does not maintain a 

G_ACT. 

 

4.2 Virtual users 

 

The applications used in the experiments are typical scientific computing programs; 

these include sweep3d, fft, improc, closure, jacobi, memsort and cpi. Each application 

is modelled and evaluated using the PACE toolkit. The performance evaluation results 

against the SGI Origin2000 can be found in Fig. 6. The run time of the applications on 

other platforms is greater than that of the SGI Origin2000, the general trend however 

is similar and therefore these figures are not documented. 

 

An application execution request for one of the seven test applications is sent at 

random to an agent. Additionally, the required execution time for the application is 

also selected randomly from a given domain, this can be found in Table 3. 
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The automatic users are configured to send requests at different frequencies. Table 4 

documents four ARMS experiments whose design is based on the varying workloads 

of the system. The interval at which requests are sent is chosen randomly from a given 

domain, this results in a different average frequency of requests for each experiment. 

The experimental results are discussed in the following section. 

 

4.3 Experimental results 

 

Experiment No. 2 lasts approximately 7 minutes. During this period 149 requests are 

sent to ARMS and scheduled on the eight available resources. An example agent view 

is given in Fig. 7. The detailed results for the other agent views and experiments are 

not given but are summarised as statistical data included in Tables 5 and 6, and 

illustrated in Fig. 8 and 9 respectively. The curves in the figures show the trend of 

application distribution when the system workload increases; this detail is discussed: 

 

• Experiment No. 1 

 

In experiment No. 1, one request is sent every 4 seconds on average. Application 

execution requests are sent out to the agents randomly, ensuring that each agent 

should receive approximately the same number of requests from the users. In this 

experiment the system workload is light relative to the capabilities of the resources 

(even for the resources associated with agent S7 and S8). The results show that 97 

percent of applications require 0-step resource discovery,  i.e. the majority of the 

requests are met by the agents to which the requests first arrive. Almost no service 
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discovery is required between agents. This results in an average distribution of 

applications to agents and the number of requests that end unsuccessfully is very 

small. 

 

• Experiment No. 2 

 

When the system workload becomes heavier, many requests that S7 and S8 cannot 

meet are submitted to their upper agent S4. This leads to a heavy workload on S4 (19% 

of total application executions). The resources provided by agents S5 and S6 are more 

powerful. However, they still cannot meet all the requests from users. Some of the 

requests are submitted to their upper agent S3, this also leads to a heavy workload on 

S3, though less so than on S4. Consequently there is a dramatic increase in the number 

of 1-step service discovery processes.  

 

The system is configured so that the agent at the head of the agent hierarchy, S1, 

represents the most powerful computing platform (a multi-processor SGI Origin2000). 

There are some application requests that have time-critical requirements and which 

are only met using the SGI Origin2000. These requests are also submitted from S4 or 

S3 to S1. This leads to a heavy workload on S1 and also increases the process of 2-step 

service discovery. The agent S2 also represents a powerful resource (as that of S1) and 

also meets the requirements of the requests it receives from the users. However, S2 is 

topologically distant from the other agents and as a result S2 remains under utilised. 

 

• Experiment No. 3 
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The system workload is increased further. The dramatic decrease in the percentage of 

application executions on S4 indicates that this local resource has reached capacity. 

Many of the requests submitted from S7 and S8 have to be passed to S1, this leads to a 

dramatic increase of the number of 2-step discovery processes. The number of 1-step 

discovery processes also increases and 3-step discovery processes begin to emerge. 

More application executions are scheduled onto the agent S2. All of these indicate that 

service discovery among the agents becomes more active when the system workload 

increases. 

 

• Experiment No. 4 

 

This experiment represents a heavy workload. The decrease in the percentage of 

application execution on S1 indicates that the local resource S1 also reaches capacity; 

this also signals an increase in the number of failed requests. The number of 1-step 

discovery processes decreases, while 2-step and 3-step service discovery processes 

increase. All of these indicate that the whole system has reached its capacity and so 

more complex service discovery processes are common. In this situation, the 

distribution of applications over the agents appears well balanced. The workload of 

the agents also mirrors the computing capabilities of their resources. The agents S1 

and S2, which represent the most powerful resources in the experiment system, are 

assigned more applications, this is followed by S3, S4, S6 and S5. Only a small number 

of requests are met at the agent S7 and S8. 
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The results show that the coupling of performance prediction and agent-based service 

advertisement and discovery is effective for the management and scheduling of grid 

resources.  

 

Scalability and adaptability are two key challenges in grid resource management. The 

case study described in this paper is far from grid-sized. However, the experimental 

results demonstrate that the agents in ARMS only need communicate with their 

neighbouring agents. The process of service discovery is achieved through the 

transitive closure of these step-wise requests, a feature which makes it possible for the 

system to scale when the grid environment becomes large. 

 

Another important factor which allows ARMS to achieve high performance, is the 

capability of agents to adjust their service advertisement and discovery strategies in 

order to adapt to the highly dynamic grid environment. The choice of different 

strategies impacts on the service discovery performance of the overall system; results 

of which are discussed in [6]. 

 

5 Conclusions 

 

In this paper an agent-based grid resource management system, ARMS, is 

implemented using a hierarchy of homogenous agents coupled with a performance 

prediction toolkit. Experimental results are included, demonstrating the efficiency of 

ARMS in the scheduling of grid applications over available grid resources. 
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Future work is underway on a practical implementation of this grid resource 

management system. A transaction-based performance modelling technique [25,26] is 

under development which can be used to achieve remote performance prediction more 

efficiently. A prediction-driven distributed grid resource scheduler is also being 

developed based on an iterative heuristic algorithm. The supporting agent system is 

now Java based and agent cooperation is implemented via an XML agent 

communication language. 
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Table 1. PACE model validation on an SGI Origin 2000. If the application has a data 

set of 15x15x15 and is allocated to 9 processors (organised into a 3x3 processor array), 

each processor holds a total of 5x5x15 data elements. Note that the results for single 

processor input are not included because there are many special configurations which 

are not included in the current performance model for the sequential code. 

 

Data Size 2D Proc. 
Array 

Prediction (s) Measurement 
(s) 

Err (%) 

1x2 4.73037 4.440255 6.53 
2x2 2.59659 2.584936 0.45 
2x3 1.8373 1.812252 1.38 
2x4 1.51869 1.609818 -5.66 
3x3 1.3399 1.343736 -0.29 
3x4 1.10918 1.164072 -4.72 

15x15x15 

4x4 0.907100 1.002728 -9.54 
1x2 22.9501 20.780170 10.44 
2x2 12.1537 11.619632 4.60 
2x3 7.83574 7.893481 -0.73 
2x4 6.02865 5.979522 0.82 
3x3 5.52498 5.532116 -0.13 
3x4 4.24959 4.469564 -4.92 

25x25x25 

4x4 3.36453 3.537966 -4.90 
1x2 69.3858 64.832165 7.02 
2x2 36.1978 33.097098 9.37 
2x3 22.1074 21.160975 4.47 
2x4 16.3181 16.137180 1.12 
3x3 15.3466 15.272606 0.48 
3x4 11.3211 11.451001 -1.13 

35x35x35 

4x4 8.84226 9.984213 -11.44 
1x2 217.398 228.893311 -5.02 
2x2 112.307 102.285787 9.80 
2x3 65.6201 67.278086 -2.46 
2x4 46.7591 49.534483 -5.60 
3x3 45.1373 47.289627 -4.55 
3x4 32.1438 34.796392 -7.62 

50x50x50 

4x4 24.8468 24.800020 0.20 
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Table 2. Case study: resources. Each resource is composed of 16 processors (for SGI) 

or hosts (for Sun), and each host is of the same type. 

 

Agent Resource Type #Processors/Hosts 
S1 SGI Origin 2000 16 
S2 SGI Origin 2000 16 
S3 Sun Ultra 10 16 
S4 Sun Ultra 10 16 
S5 Sun Ultra 1 16 
S6 Sun Ultra 5 16 
S7 Sun SPARCstation 2 16 
S8 Sun SPARCstation 2 16 
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Table 3. Case study: requirements. For example, a required execution time for the 

application sweep3d will be chosen at random between 4s and 200s, when a request is 

sent to ARMS. 

 

Application Minimum 
Requirement (s) 

Maximum 
Requirement (s) 

sweep3d 4 200 
fft 10 100 

improc 20 192 
closure 2 36 
jacobi 6 160 

memsort 10 68 
cpi 2 128 
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Table 4. Case study: workloads. For example, experiment No. 2 lasts approximately 7 

minutes. During this period, a total of 149 requests are sent to ARMS; one request is 

sent every 3 seconds on average. 

 

Experiment No. 1 2 3 4 
Minimum Request Interval (s) 1 1 1 1 
Maximum Request Interval (s) 7 5 3 1 
Average Frequency (s/app) 4 3 2 1 
Experiment Last Time (min) 7 7 7 5 
Total Application Number 109 149 215 293 
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Table 5.  Experimental results: the distribution of applications on agents. In 

experiment No. 2, 27 application execution requests are scheduled onto the resources 

of agent S4 (this conforms to the results shown in Fig. 7) corresponding to 19 percent 

of the total 149 requests. 5 requests (3 percent of the total) are not scheduled onto any 

resource and end unsuccessfully. 

 
Experiment Number 

1 2 3 4 
Agent 

No. % No. % No. % No. % 
S1 13 12 27 19 45 21 45 15 
S2 13 12 15 10 27 13 42 14 
S3 15 14 20 13 27 13 38 13 
S4 14 13 27 19 31 14 39 13 
S5 10 9 15 10 20 9 28 10 
S6 13 12 17 11 23 11 31 11 
S7 14 13 12 8 16 7 26 9 
S8 14 13 11 7 17 8 24 8 

failed 3 2 5 3 9 4 20 7 
Total 109 100 149 100 215 100 293 100 
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Table 6. Experimental results: service discovery. In experiment No. 2, the resources 

for 114 application execution requests are satisfied by the agent they are submitted to 

first; representing 77 percent of the total 149 requests. Three agents are involved in 2-

step service discovery. The first agent receives the request from the user, a second 

acts as a go-between to a third agent at which the corresponding resource is found. 

 
Experiment Number 

1 2 3 4 
Step 

No. % No. % No. % No. % 
0-step 106 97 114 77 143 66 199 68 
1-step 3 3 24 16 38 18 29 10 
2-step 0 0 11 7 31 15 53 18 
3-step 0 0 0 0 3 1 12 4 
Total 109 100 149 100 215 100 293 100 
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Fig. 1. The main components of the PACE toolkit include application tools, resource 

tools, and an evaluation engine. The rapid execution of PACE models lends itself to 

on-the-fly dynamic steering as well as traditional off-line performance prediction. 
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Fig. 2. ARMS architecture. The main components include users, resources, agents and 

an agent performance monitor and advisor (PMA). 



37 

  

 

To another agent Discovery Advertisement 

Communication Module 

ACT 
Manager 

PACE 
Evaluation 

Engine 

 
Scheduler 

 
 
 

Match 
Maker 

ACTs 

Application Model 

Eval. Results 

R
es

ou
rc

e 
In

fo
. 

A
pp

lic
at

io
n 

In
fo

. 

Se
rv

ic
e 

In
fo

. 

C
os

t M
od

el
 

Sc
he

d.
 C

os
t 

Resource 
Monitoring 

Resource 
Allocation 

Application 
Management 

Application Execution 

Agent ID 

C
oo

rd
in

at
io

n 
L

ay
er

 
C

om
m

un
ic

at
io

n 
La

ye
r 

Lo
ca

l 
M

an
ag

em
en

t  
La

ye
r 

 

 

Fig. 3. ARMS agent structure. The colours of the arrows indicate three main processes: 

service advertisement, service discovery and application execution. 



38 

  

 Service Info. Resource Info. 

Application Info. 

Processor 1 ID 

Processor 2 ID 

Type 
PACE resource model 

Type 
PACE resource model 

Processor n ID 

…
 

Application 1 ID 

Application 2 ID 

Start time 
End time 

Start time 
End time 

Application m ID 

…
 

Application-Resource Mapping 

…
 

…
 

 

 

Fig. 4. Service information in ARMS. Each processor is described using the 

corresponding PACE resource model. The scheduled start and end time for the 

application executions are also included. The mapping between applications and 

resources is represented using a 2D array. 
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Fig. 5. Case study: agent hierarchy. The agent at the head of the hierarchy is S1, which 

has three lower agents, S2, S3 and S4. Agent S2 has no lower agents, while S3 and S4 

have two lower agents each. 
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Fig. 6. Case study: applications. The timings shown in the figure are PACE 

performance prediction results for the execution of these applications on an SGI 

Origin2000. 
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Fig. 7. Experimental results: No. 2 @ S4. In the experiment No. 2, 27 of the 149 

requests are scheduled to be executed using the resource of S4. The latest 16 

applications are also illustrated using the Gantt chart according to the scheduling 

information in the list above. 
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Fig. 8. Experimental results: application execution distribution on agents when system 

workloads increase. The percent of failed requests for each experiment are also shown; 

note that these increase with the system workload. 
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Fig. 9. Experimental results: service discovery. When the system workload increases, 

the number of 0-step service discovery decreases and those corresponding to more 

complex service discovery processes increase. 


