
1

In Scientific Programming, Special Issue on Grid Computing, IOS Press, Vol. 10, No. 2, pp. 135-148,
2002.

ARMS: an agent-based resource management system for grid computing

Junwei Cao, Stephen A. Jarvis, Subhash Saini*, Darren J. Kerbyson**, and Graham R.

Nudd

Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK

Tel.: 4424 7652 2863; Fax: 4424 7657 3024;

Email: junwei@dcs.warwick.ac.uk

*NASA Ames Research Centre, Moffett Field, California, USA

**Modelling, Algorithms, and Informatics Group, Los Alamos National Laboratory,

USA

Abstract

Resource management is an important component of a grid computing infrastructure.

The scalability and adaptability of such systems are two key challenges that must be

addressed. In this work an agent-based resource management system, ARMS, is

implemented for grid computing. ARMS utilises the performance prediction

techniques of the PACE toolkit to provide quantitative data regarding the performance

of complex applications running on a local grid resource. At the meta-level, a

hierarchy of homogeneous agents are used to provide a scalable and adaptable

abstraction of the system architecture. Each agent is able to cooperate with other

agents and thereby provide service advertisement and discovery for the scheduling of

applications that need to utilise grid resources. A case study with corresponding

experimental results is included to demonstrate the efficiency of the resource

management and scheduling system.

2

1 Introduction

Grid technologies have emerged to enable large-scale flexible resource sharing among

dynamic virtual organisations [13,14]. An essential component of grid infrastructure

software is the service layer, which acts as middleware between grid resources and

grid applications. This work considers the resource management service, the

component that provides efficient scheduling of applications utilising available

resources in the grid environment [18]. Delivering such a service within the high

performance community will rely, in part, on accurate performance prediction

capabilities.

Previous research on the PACE (Performance Analysis and Characterise Environment)

toolkit [20] can be used to provide quantitative data concerning the performance of

sophisticated applications running on local high performance resources. PACE can

supply accurate performance information for both the detailed analysis of an

application and also as input to resource scheduling systems; this performance data

can also be generated in real-time. While extremely well-suited for managing a

locally distributed multi-computer, PACE functions do not map well onto wide-area

environments, where heterogeneity, multiple administrative domains and

communication irregularities increase the complexity of the resource management

process. There are two key challenges that must be addressed:

• Scalability. A grid has the potential to encompass a large number of high

performance computing resources. Each constituent of this grid will have its

3

own function, its own resources and environment. These components are not

necessarily fashioned to work together in the overall grid. They may be

physically located in different organisations and may not be aware of each

others capabilities.

• Adaptability. A grid is a dynamic environment where the location, type and

performance of the components are constantly changing. For example, a

component resource may be added to, or removed from, the grid at any time.

These resources may not be entirely dedicated to the grid and therefore the

computational capabilities of the system will vary over time.

An agent-based resource management system for grid computing, ARMS, is

introduced to address the above challenges. Software agents are recognised as a

powerful high-level abstraction for the modelling of complex software systems [16].

An agent-based methodology described in this work [5,8] can be used to build large-

scale distributed software systems that exhibit highly dynamic behaviour. It is

intended that an entire system be built of a hierarchy of identical agents with the same

functionality. As such, agents are considered both service providers and service

requestors and the implementation of system functions is abstracted to the processes

of service advertisement and service discovery.

ARMS couples the performance prediction techniques of the PACE toolkit with a

scheduling algorithm designed to manage a local grid resource. At the meta-level,

ARMS utilises the agent-based methodology described in [7], where each agent acts

as a representative for a local grid resource and considers this resource to be its high

performance computing capability. Agents cooperate to perform service

4

advertisement and discovery, thus providing the bases services with which to manage

and schedule applications over available grid resources. The performance of these

agents can be improved by using a number different optimisation strategies.

There are several solutions that currently address issues of resource management and

scheduling. These include Globus [11], Legion [12], NetSolve [10], Condor [21], Ninf

[19] and Nimrod/G [2]. While many of these projects utilise query-based mechanisms

for resource discovery and advertisement [18], this work adopts an agent-based

approach. This allows an agent to control the query process and to make resource

discovery decisions based on its own internal logic as opposed to relying on a fixed-

function query engine. Unlike Nimrod/G, in which the grid resource estimation is

performed through heuristics and historical information, the performance prediction

capabilities of grid resources in this research are achieved through the integration of

PACE.

A number of recent grid projects have utilised existing distributed computing

technologies such as CORBA [24] and Jini [1]. For example, the work described in

[23] makes use of CORBA Lightweight Components to provide a new network-

centred reflective component model which allows distributed applications to be

assembled from independent binary components distributed on the network. The work

described in [15] is a computational community that supports the federation of

resources from different organisations; this system is designed and implemented in

Java and Jini. While CORBA and Jini are well suited to their original design goals,

they are not designed for developing high performance computing applications, and as

5

mentioned in [14], such technologies only enable resource sharing within a single

organisation.

An agent-based grid computing project is described in [22]. This work on an “Agent

Grid”, integrates services and resources for establishing multi-disciplinary problem

solving environments. Specialised agents contain behavioural rules which can be

modified based on their interaction with other agents and the environment in which

they operate. In contrast, ARMS uses a hierarchy of homogenous agents for both

service advertisement and discovery, and integrates these with a performance

prediction based scheduler. A detailed introduction to this research can be found in [9].

The paper is organised as follows: the PACE toolkit is summarised in section 2; the

ARMS implementation is presented in section 3; section 4 describe a case study with

corresponding experimental results and the paper concludes in section 5.

2 The PACE toolkit

The main components of the PACE toolkit [4] are shown in Fig. 1. A core component

of PACE is a performance specification language (PSL) which describes the

performance aspects of an application and its parallelisation. A corresponding

Hardware Modelling and Configuration Language (HMCL) is used to capture the

definition of a computing environment in terms of its constituent performance model

components and configuration information. The workload information and the

component resource models are combined using an evaluation engine to produce time

estimates and trace information of the expected application behaviour.

6

The performance prediction capabilities of PACE are demonstrated using the ASCI

kernel application Sweep3D [3]. Table 1 shows the validation of the PACE model of

Sweep3D against the code running on an SGI Origin2000 shared memory system.

The accuracy of the prediction results are evaluated as follows:

Error =
Prediction - Measurement

Measurement
× 100% .

The maximum prediction error for this application is 11.44%, the average error is

approximately 5%.

The key features of the PACE toolkit include: good level of predictive accuracy

(approximately 15% maximum error), rapid evaluation time (typically seconds of

CPU time) and a method for cross-platform comparison. These capabilities provide

the basis for the application of PACE to dynamic grid environments consisting of a

number of heterogeneous systems [17].

3 ARMS implementation

ARMS couples the agent-based methodology with the PACE performance prediction

techniques in the implementation of grid resource management. The detail involved in

this process is described below.

3.1 ARMS architecture

7

An overview of the ARMS architecture is illustrated in Fig. 2. The main components

of this architecture include grid users, grid resources, ARMS agents and a

performance monitor and advisor (PMA).

3.1.1 Grid users

There are a number of different categories of user of a grid computing environment.

The grid users in Fig. 2, and who represent the main focus of this work, are

considered to be scientists, who develop scientific high performance applications and

use them to solve large problems in grid computing environments.

The user-side software primarily includes the PACE Application Tools. When a

parallel application is developed, a corresponding application model is also produced.

PACE performance modelling is an automated process, targeted at the non-

professional performance engineer. When an application is submitted for execution,

an associated performance model should also be attached.

Another component included in a grid request is the cost model, describing the user

requirements concerning the application execution. This would include, for example,

the deadline for the application to complete. Although there are a number of other

metrics appropriate in this context, the current focus of this work is on execution time.

3.1.2 Grid resources

8

A grid resource provides high performance computing capabilities for grid users and

might include supercomputers, or clusters of workstations or PCs.

In this system, PACE is used to create a hardware characterisation template that

provides a model of each hardware resource. This characterisation is derived from

computational and communication benchmarks which can be rapidly evaluated to

provide dynamic performance data. The PACE hardware model is integral to the

service information which is advertised across the agent hierarchy.

3.1.3 ARMS agents

Agents comprise the main components in the system; the agents are organised into a

hierarchy and are designed to be homogenous. Each agent is viewed as a

representative of a grid resource at a meta-level of resource management. This means

that an agent can therefore be considered a service provider of high performance

computing capabilities. The service information of each grid resource can be

advertised within the agent hierarchy (in any direction) and agents can cooperate with

each other to discover available resources.

Each agent utilises Agent Capability Tables (ACTs) to record service information of

other agents. An ACT item is a tuple containing an agent ID and corresponding

service information - all performance related information of a grid resource which can

be used in the estimation of its performance.

9

An agent can choose to maintain different ACTs corresponding to the different

sources of service information: T_ACT is used to record service information of local

resources; L_ACT is used to record service information received from lower agents in

the hierarchy; G_ACT to record information from the upper agent in the hierarchy;

finally, C_ACT is used to store cached service information.

There are two methods of maintaining ACT coherency - data-pull and data-push, each

of which occur periodically or can be driven by system events:

• Data-pull - An agent asks other agents for their service information either

periodically or when a request arrives.

• Data-push - An agent submits its service information to other agents in the

system periodically or when the service information is changed.

An agent uses the ACTs as a knowledge base. This is used to assist in the service

discovery process triggered by the arrival of a request. Service discovery involves

querying the contents of the ACTs in the order: T_ACT, C_ACT, L_ACT and

G_ACT. If an agent exhausts the ACTs, and does not obtain the required service

information, it can submit the request to its upper agent or terminate the discovery

process.

The PACE evaluation engine is integrated into each agent. Its performance prediction

capabilities are used for local resource management in the scheduling of parallel

applications over available local processors. The evaluation engine is also used to

provide support to the service discovery process.

10

The agent system aims to bridge the gap between grid users and resources and in so

doing, allow the efficient scheduling of applications over available grid resources. An

agent can select different strategies of service advertisement and discovery, the choice

of which may lead to different performance outcomes.

3.1.4 ARMS PMA

A special agent, illustrated in Fig. 2, is capable of modelling and simulating the

performance of the agent system while the system is active. This is known as the

performance monitor and advisor (PMA) of the system.

Unlike facilitators or brokers in classical agent-based systems, the PMA is not central

to the rest of the agent system. It neither controls the agent hierarchy nor serves as a

communication centre in the physical and symbolic sense. If the PMA ceases to

function, the agent system has no operational difficulties and continues with ordinary

system behaviour. Efficiency improvements to the agent system are only made

possible through the modelling and simulation mechanism built into the PMA. The

PMA also avoids any one agent in the system becoming a single system bottleneck.

Statistical data is monitored from each of the agents and input to the PMA for

performance modelling. The performance model is processed by the simulation

engine in the PMA so that new optimisation strategies can be chosen and the

performance metrics improved. The process of simulation allows a number of

strategies to be explored until a better solution is selected. The selected optimisation

11

strategies are then returned and used to reconfigure the agents in the system. A

detailed account of the structure and function of the PMA can be found in [6].

3.2 ARMS agent structure

The agent structure in ARMS is shown in Figure 3. Each layer has several modules,

which cooperate with each other to perform service advertisement, service discovery,

and application execution. The three layers are discussed below.

The communication layer of each agent performs communication functions and acts

as an interface to the external environment. From the communication module, an

agent can receive both service advertisement and discovery messages. It interprets the

contents of each message and submits the information to corresponding modules in

the coordination layer of the agent. For example, an advertisement message from

another agent will be directly sent to the ACT manager in the agent coordination layer.

The communication module is also responsible for sending service advertisement and

discovery messages to other agents.

There are four components in the coordination layer of an agent: the ACT manager,

the PACE evaluation engine, a scheduler and a matchmaker. These work together to

make decisions as to how an agent should act on the receipt of messages from the

communication layer. For example, the final response to a service discovery message

would involve application execution on the local resource or the dispatching of the

request to another agent.

12

The main functions of local resource management in an agent include application

management, resource allocation and resource monitoring. Application execution

commands are sent from the coordination layer to the local agent manager, these

commands include the scheduling information for an application (start time, allocated

processor ids etc). The Application Management part of the system is also responsible

for managing the queuing of applications that have been scheduled to be executed on

the locally managed resources. At the start time an application is dispatched to the

Resource Allocation component. Resource allocation includes wrappers for different

application execution environments including MPI and PVM; it is at this stage that

the application is actually executed on the local scheduled processors. Another

important component of local resource management is resource monitoring. This is

responsible for controlling the PACE benchmark programs which are executed on the

local resource and from which corresponding resource models are dynamically

created. The resource monitor is also responsible for communicating other resource

and application information between the application management and resource

allocation modules. It also coordinates all the collected information concerning local

resource into service information which is then reported to the T_ACT in the

coordination layer of the agent.

These agent functions are described in detail below. In particular, the implementation

of the agent coordination layer is emphasised and the four main components of the

scheduling algorithm are documented.

3.2.1 ACT manager

13

The ACT manager controls agent access to the ACT database, where service

information regarding grid resources is located. Fig. 4 illustrates the content of this

service information.

Consider a grid resource with n processors where each processor Pi has its own type

tyi. A PACE hardware model can be used to describe the performance information of

a processor. The processors of a grid resource can be expressed as follows:

{ }P P i ni= =| , ,......,1 2

{ }ty ty i ni= =| , ,......,1 2 .

Let m be the number of applications that are running, or being queued to be executed

on a grid resource. Each application Aj has two attributes - scheduled start time tsj and

end time tej. The applications of a grid resource can then be expressed as follows:

{ }A A j mj= =| , ,......,1 2

{ }ts ts j mj= =| , ,......,1 2

{ }te te j mj= =| , ,......,1 2 .

Let MAj be the set of processors that are allocated to application Aj:

{ }MA MA j mj= =| , ,......,1 2

{ }MA P l kj i jl
= =| , ,......,1 2 ,

14

where kj is the number of processors that are allocated to application Aj. Let M be a

2D array, which describes the mapping relationships between resources and

applications using boolean values.

{ }M M i n j mij= = =| , ,......, ; , ,......,1 2 1 2

M
if

if

P MA

P MAij
i j

i j

=
�� � ∈

∉
1
0

3.2.2 PACE evaluation engine

In ARMS, a request for service discovery involves finding an available grid resource

for an application. The request information is composed of the PACE application

model am, which includes all of the performance related information of an application

Ar. The application model is one of the inputs to the PACE evaluation engine found in

an agent.

The requirements of a application is specified using a cost model. This model includes

metrics such as the deadline for the execution of an application, treq, and is used as one

of the inputs to the matchmaker part of the agent system.

The PACE evaluation engine has two inputs, firstly the application model (am) from

the service discovery request, and secondly the resource information (ty) from the

ACT manager. Using this information, the PACE evaluation engine can produce

performance prediction data including the expected execution time (exet) necessary

for the application to be executed on the given resource.

15

()exet eval ty am= , ()exet eval ty am= ,

Rather than running the application on all the available processors of a grid resource P,

an application can be executed on any subset of processors P (note that P cannot be

the empty set Φ). This is expressed as follows:

()∀ ⊆ ≠ ⊆ ≠ =P P P ty ty ty exet eval ty am, , , , ,Φ Φ .

The output of the PACE evaluation engine (exet) forms one of the inputs to the

scheduler of the agent. Another input to the scheduler is the application information

from an ACT item.

3.2.3. Scheduler

An ACT item acts as a view of a grid resource that is remote to the agent. An agent

can however still schedule the required application execution based on this

information of a resource. The function of the scheduler is to find the earliest time at

which the application will terminate, a function described by the ACT item tsched.

()t tesched P P P r=
∀ ⊆ ≠

min
, Φ

The application has the possibility of being allocated to any selection of processors

comprising a grid resource. The scheduler considers all these possibilities and chooses

16

the earliest end time for the execution. This end time - equal to the earliest possible

start time plus the total execution time - is described as follows:

te ts exetr r= + .

The earliest possible start time for application Ar to be executed on a selection of

processors P, is defined as the time at which all of these processors become free. If all

of these processors are already idle, then the application can be executed immediately.

This figure can be expressed as follows:

()ts t tdr i P P i
i

=
��� ��	�

∀ ∈
max , max

,
,

where tdi is the latest free time of processor Pi. This is equivalent to the maximum end

time of the applications that are allocated to process Pi:

()td tei j M j
ij

=
∀ =
max

, 1
.

In summary, tsched can be calculated as follows:

()t t te exetsched
P P P i P P j M j

i ij

=

��
�	�
��
�	�

+

��
� �

∀ ⊆ ≠ ∀ ∈ ∀ =
min max , max max

, , ,Φ 1
.

It is not necessarily the case that scheduling all processors to an application will

achieve higher performance. For example, the start time of application execution may

17

be earlier if only a number of processors are selected; similarly, the execution of some

applications may take longer if too many processors are allocated to the task.

The scheduling algorithm described above is used in the implementation of ARMS.

The complexity of the algorithm is determined by the number of possible processor

selections:

C C Cn n n
n n1 2 2 1+ + + = −...... .

It is therefore essential that the evaluation engine supplied with PACE is efficient.

During each scheduling process, the evaluation function can be called 2n-1 times.

Even in the situation where all the processors of a grid resource are of the same type,

the evaluation function still needs to be called n times. PACE evaluation can be

performed very quickly to produce prediction results on the fly; this is a key feature of

PACE which enables the toolkit to provide service discovery support for ARMS.

3.2.4. Matchmaker

The matchmaker in an agent is responsible for comparing the scheduling results with

the cost model attached to the request. The comparison results lead to different

decisions on agent behaviours.

In terms of application execution time, if treq ≥ tsched, then the corresponding resource

can meet the users requirement. If the corresponding ACT item is in the T_ACT, a

local resource is available (and capable) of executing the application. In this case the

18

application execution command is sent to the local manager in the agent, or the agent

ID of the corresponding ACT item is returned and the agent dispatches the request to

the agent via the agent ID.

If treq < tsched, the corresponding resource cannot meet the requirement of the user. The

agent continues to look up other items in the ACTs until the available service

information is found. If there is no further service information available in the ACTs,

the agent may submit or dispatch the request to upper or lower agents. This

instantiates further service discovery governed by the service discovery strategy

implemented by the agent.

ARMS demonstrates how an agent-based methodology coupled with the prediction

capabilities of PACE, provides a system of resource management for grid computing.

A case study of this system is given below.

4 A case study

In this section experimental results are documented which show how ARMS

schedules applications onto available resources. There are two main parts in the

design of the experiments. ARMS is configured to include agents, resources and agent

behaviour strategies. The sending of application requests (via ‘virtual users’) is

automated, this is so that execution requests can be sent to ARMS with varying

frequencies, thus simulating different workloads on the system.

4.1 System design

19

There are 8 agents in the experimental system. The agent hierarchy is shown in Fig. 5.

Each agent represents a local grid resource and information describing the capabilities

of the resources is shown in Table 2. The SGI multi-processor is the most powerful

resource, followed by the Sun Ultra 10, 5, 1 and the SparcStation.

In the experimental system, the T_ACT, L_ACT and G_ACT are used in each agent.

T_ACTs are maintained by event-driven data-push service advertisement. L_ACTs

are updated once every 10 seconds using a periodical data-pull. G_ACTs are updated

once every 30 seconds using a periodical data-pull. All agents use the same strategy

except gem, which found at the head of the agent hierarchy, does not maintain a

G_ACT.

4.2 Virtual users

The applications used in the experiments are typical scientific computing programs;

these include sweep3d, fft, improc, closure, jacobi, memsort and cpi. Each application

is modelled and evaluated using the PACE toolkit. The performance evaluation results

against the SGI Origin2000 can be found in Fig. 6. The run time of the applications on

other platforms is greater than that of the SGI Origin2000, the general trend however

is similar and therefore these figures are not documented.

An application execution request for one of the seven test applications is sent at

random to an agent. Additionally, the required execution time for the application is

also selected randomly from a given domain, this can be found in Table 3.

20

The automatic users are configured to send requests at different frequencies. Table 4

documents four ARMS experiments whose design is based on the varying workloads

of the system. The interval at which requests are sent is chosen randomly from a given

domain, this results in a different average frequency of requests for each experiment.

The experimental results are discussed in the following section.

4.3 Experimental results

Experiment No. 2 lasts approximately 7 minutes. During this period 149 requests are

sent to ARMS and scheduled on the eight available resources. An example agent view

is given in Fig. 7. The detailed results for the other agent views and experiments are

not given but are summarised as statistical data included in Tables 5 and 6, and

illustrated in Fig. 8 and 9 respectively. The curves in the figures show the trend of

application distribution when the system workload increases; this detail is discussed:

• Experiment No. 1

In experiment No. 1, one request is sent every 4 seconds on average. Application

execution requests are sent out to the agents randomly, ensuring that each agent

should receive approximately the same number of requests from the users. In this

experiment the system workload is light relative to the capabilities of the resources

(even for the resources associated with agent S7 and S8). The results show that 97

percent of applications require 0-step resource discovery, i.e. the majority of the

requests are met by the agents to which the requests first arrive. Almost no service

21

discovery is required between agents. This results in an average distribution of

applications to agents and the number of requests that end unsuccessfully is very

small.

• Experiment No. 2

When the system workload becomes heavier, many requests that S7 and S8 cannot

meet are submitted to their upper agent S4. This leads to a heavy workload on S4 (19%

of total application executions). The resources provided by agents S5 and S6 are more

powerful. However, they still cannot meet all the requests from users. Some of the

requests are submitted to their upper agent S3, this also leads to a heavy workload on

S3, though less so than on S4. Consequently there is a dramatic increase in the number

of 1-step service discovery processes.

The system is configured so that the agent at the head of the agent hierarchy, S1,

represents the most powerful computing platform (a multi-processor SGI Origin2000).

There are some application requests that have time-critical requirements and which

are only met using the SGI Origin2000. These requests are also submitted from S4 or

S3 to S1. This leads to a heavy workload on S1 and also increases the process of 2-step

service discovery. The agent S2 also represents a powerful resource (as that of S1) and

also meets the requirements of the requests it receives from the users. However, S2 is

topologically distant from the other agents and as a result S2 remains under utilised.

• Experiment No. 3

22

The system workload is increased further. The dramatic decrease in the percentage of

application executions on S4 indicates that this local resource has reached capacity.

Many of the requests submitted from S7 and S8 have to be passed to S1, this leads to a

dramatic increase of the number of 2-step discovery processes. The number of 1-step

discovery processes also increases and 3-step discovery processes begin to emerge.

More application executions are scheduled onto the agent S2. All of these indicate that

service discovery among the agents becomes more active when the system workload

increases.

• Experiment No. 4

This experiment represents a heavy workload. The decrease in the percentage of

application execution on S1 indicates that the local resource S1 also reaches capacity;

this also signals an increase in the number of failed requests. The number of 1-step

discovery processes decreases, while 2-step and 3-step service discovery processes

increase. All of these indicate that the whole system has reached its capacity and so

more complex service discovery processes are common. In this situation, the

distribution of applications over the agents appears well balanced. The workload of

the agents also mirrors the computing capabilities of their resources. The agents S1

and S2, which represent the most powerful resources in the experiment system, are

assigned more applications, this is followed by S3, S4, S6 and S5. Only a small number

of requests are met at the agent S7 and S8.

23

The results show that the coupling of performance prediction and agent-based service

advertisement and discovery is effective for the management and scheduling of grid

resources.

Scalability and adaptability are two key challenges in grid resource management. The

case study described in this paper is far from grid-sized. However, the experimental

results demonstrate that the agents in ARMS only need communicate with their

neighbouring agents. The process of service discovery is achieved through the

transitive closure of these step-wise requests, a feature which makes it possible for the

system to scale when the grid environment becomes large.

Another important factor which allows ARMS to achieve high performance, is the

capability of agents to adjust their service advertisement and discovery strategies in

order to adapt to the highly dynamic grid environment. The choice of different

strategies impacts on the service discovery performance of the overall system; results

of which are discussed in [6].

5 Conclusions

In this paper an agent-based grid resource management system, ARMS, is

implemented using a hierarchy of homogenous agents coupled with a performance

prediction toolkit. Experimental results are included, demonstrating the efficiency of

ARMS in the scheduling of grid applications over available grid resources.

24

Future work is underway on a practical implementation of this grid resource

management system. A transaction-based performance modelling technique [25,26] is

under development which can be used to achieve remote performance prediction more

efficiently. A prediction-driven distributed grid resource scheduler is also being

developed based on an iterative heuristic algorithm. The supporting agent system is

now Java based and agent cooperation is implemented via an XML agent

communication language.

Acknowledgements

This work is sponsored in part by grants from the NASA AMES Research Centre

(administered by USARDSG, contract no. N68171-01-C-9012) and the EPSRC

(contract no. GR/R47424/01).

References

[1] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo and A. Woolrath, The Jini

specification, Addison Wesley, 1999.

[2] R. Buyya, D. Abramson and J. Giddy, Nimrod/G: an architecture for a resource

management and scheduling system in a global computational grid, in:

25

Proceedings 4th International Conference on High Performance Computing in

Asia-Pacific Region, Beijing, China, 2000.

[3] J. Cao, D.J. Kerbyson, E. Papaefstathiou and G.R. Nudd, Modelling of ASCI

high performance applications using PACE, in: Proceedings 15th Annual UK

Performance Engineering Workshop, Bristol, UK, 1999, 413-424.

[4] J. Cao, D.J. Kerbyson, E. Papaefstathiou and G.R. Nudd, Performance modeling

of parallel and distributed computing using PACE, in: Proceedings 19th IEEE

International Performance, Computing and Communication Conference,

Phoenix, USA, 2000, 485-492.

[5] J. Cao, D.J. Kerbyson and G.R. Nudd, Dynamic application integration using

agent-based operational administration, in: Proceedings 5th International

Conference on Practical Application of Intelligent Agents and Multi-Agent

Technology, Manchester, UK, 2000, 393-396.

[6] J. Cao, D.J. Kerbyson and G.R. Nudd, Performance evaluation of an agent-

based resource management infrastructure for grid computing, in: Proceedings

1st IEEE/ACM International Symposium on Cluster Computing and the Grid,

Brisbane, Australia, 2001, 311-318.

[7] J. Cao, D.J. Kerbyson and G.R. Nudd, Use of agent-based service discovery for

resource management in metacomputing environment, in: Proceedings of 7th

International Euro-Par Conference, LNCS 2150, Manchester, UK, 2001, 882-

886.

[8] J. Cao, D.J. Kerbyson and G.R. Nudd, High performance service discovery in

large-scale multi-agent and mobile-agent systems, Intl. J. Software Engineering

and Knowledge Engineering, Special Issue on Multi-Agent Systems and Mobile

Agents, 11(5), 2001, 621-641.

26

[9] J. Cao, Agent-based resource management for grid computing, Ph.D.

Dissertation, University of Warwick, 2001.

[10] H. Casanova and J. Dongarra, Applying NetSolve’s network-enabled server,

IEEE Computational Science & Engineering, 5(3), 1998, 57-67.

[11] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and S.

Tuecke, A resource management architecture for metacomputing systems, in:

Proceedings IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel

Processing, 1998.

[12] S. J. Chapin, D. Katramatos, J. Karpovich and A. Grimshaw, Resource

management in Legion, Future Generation Computer Systems, 15(5), 1999,

583-594.

[13] I. Foster and C. Kesselman, The GRID: blueprint for a new computing

infrastructure, Morgan-Kaufmann, 1998.

[14] I. Foster, C. Kesselman and S. Tuecke, The anatomy of the grid: enabling

scalable virtual organizations, to appear in: Int. J. Supercomputer Applications,

2001.

[15] N. Furmento, S. Newhouse and J. Darlington, Building computational

communities from federated resources, in: Proceedings of 7th International

Euro-Par Conference, LNCS 2150, Manchester, UK, 2001, 855-863.

[16] N.R. Jennings and M.J. Wooldridge eds., Agent technology: foundations,

applications, and markets, Springer-Verlag, 1998.

[17] D.J. Kerbyson, J.S. Harper, E. Papaefstathiou, D.V. Wilcox and G.R. Nudd, Use

of performance technology for the management of distributed systems, in:

Proceedings 6th International Euro-Par Conference, LNCS 1900, Germany,

2000, 149-159.

27

[18] K. Krauter, R. Buyya and M. Maheswaran, A taxonomy and survey of grid

resource management systems, to appear in: Software: Practice and Experience,

2001.

[19] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M. Sato and S. Sekiguchi,

Utilizing the metaserver architecture in the Ninf global computing system, in:

Proceedings High-Performance Computing and Networking Europe, LNCS

1401, Amsterdam, 1998, 607-616.

[20] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper and D.V.

Wilcox, PACE – a toolset for the performance prediction of parallel and

distributed systems, Intl. J. High Performance Computing Applications, Special

Issues on Performance Modelling – Part I, 14(3), 2000, 228-251.

[21] R. Raman, M. Livny and M. Solomon, Matchmaking: distributed resource

management for high throughput computing, in: Proceedings 7th IEEE

International Symposium on High Performance Distributed Computing,

Chicago, Illinois, July 1998.

[22] O.F. Rana and D.W. Walker, The Agent Grid: agent-based resource integration

in PSEs, in Proceedings 16th IMACS World Congress on Scientific Computation,

Applied Mathematics and Simulation, Lausanne, Switzerland, 2000.

[23] D. Sevilla, J.M. García and A. Gómez, CORBA lightweight components: a

model for distributed component-based heterogeneous computation, in:

Proceedings of 7th International Euro-Par Conference, LNCS 2150, Manchester,

UK, 2001, 845-854.

[24] D. Slama, J. Garbis and P. Russell, Enterprise CORBA, Prentice Hall, 1999.

28

[25] D.P. Spooner, J.D. Turner, J. Cao, S.A. Jarvis and G.R. Nudd, Application

characterisation using a lightweight transaction model, in: Proceedings 17th

Annual UK Performance Engineering Workshop, Leeds, UK, 2001, 215-225.

[26] J.D. Turner, D.P. Spooner, J. Cao, S.A. Jarvis, D.N. Dillenberger and G.R.

Nudd, A transaction definition language for Java application response

measurement, J. Computer Resource Management, 105, 2002, 55-65.

29

Table 1. PACE model validation on an SGI Origin 2000. If the application has a data

set of 15x15x15 and is allocated to 9 processors (organised into a 3x3 processor array),

each processor holds a total of 5x5x15 data elements. Note that the results for single

processor input are not included because there are many special configurations which

are not included in the current performance model for the sequential code.

Data Size 2D Proc.
Array

Prediction (s) Measurement
(s)

Err (%)

1x2 4.73037 4.440255 6.53
2x2 2.59659 2.584936 0.45
2x3 1.8373 1.812252 1.38
2x4 1.51869 1.609818 -5.66
3x3 1.3399 1.343736 -0.29
3x4 1.10918 1.164072 -4.72

15x15x15

4x4 0.907100 1.002728 -9.54
1x2 22.9501 20.780170 10.44
2x2 12.1537 11.619632 4.60
2x3 7.83574 7.893481 -0.73
2x4 6.02865 5.979522 0.82
3x3 5.52498 5.532116 -0.13
3x4 4.24959 4.469564 -4.92

25x25x25

4x4 3.36453 3.537966 -4.90
1x2 69.3858 64.832165 7.02
2x2 36.1978 33.097098 9.37
2x3 22.1074 21.160975 4.47
2x4 16.3181 16.137180 1.12
3x3 15.3466 15.272606 0.48
3x4 11.3211 11.451001 -1.13

35x35x35

4x4 8.84226 9.984213 -11.44
1x2 217.398 228.893311 -5.02
2x2 112.307 102.285787 9.80
2x3 65.6201 67.278086 -2.46
2x4 46.7591 49.534483 -5.60
3x3 45.1373 47.289627 -4.55
3x4 32.1438 34.796392 -7.62

50x50x50

4x4 24.8468 24.800020 0.20

30

Table 2. Case study: resources. Each resource is composed of 16 processors (for SGI)

or hosts (for Sun), and each host is of the same type.

Agent Resource Type #Processors/Hosts
S1 SGI Origin 2000 16
S2 SGI Origin 2000 16
S3 Sun Ultra 10 16
S4 Sun Ultra 10 16
S5 Sun Ultra 1 16
S6 Sun Ultra 5 16
S7 Sun SPARCstation 2 16
S8 Sun SPARCstation 2 16

31

Table 3. Case study: requirements. For example, a required execution time for the

application sweep3d will be chosen at random between 4s and 200s, when a request is

sent to ARMS.

Application Minimum
Requirement (s)

Maximum
Requirement (s)

sweep3d 4 200
fft 10 100

improc 20 192
closure 2 36
jacobi 6 160

memsort 10 68
cpi 2 128

32

Table 4. Case study: workloads. For example, experiment No. 2 lasts approximately 7

minutes. During this period, a total of 149 requests are sent to ARMS; one request is

sent every 3 seconds on average.

Experiment No. 1 2 3 4
Minimum Request Interval (s) 1 1 1 1
Maximum Request Interval (s) 7 5 3 1
Average Frequency (s/app) 4 3 2 1
Experiment Last Time (min) 7 7 7 5
Total Application Number 109 149 215 293

33

Table 5. Experimental results: the distribution of applications on agents. In

experiment No. 2, 27 application execution requests are scheduled onto the resources

of agent S4 (this conforms to the results shown in Fig. 7) corresponding to 19 percent

of the total 149 requests. 5 requests (3 percent of the total) are not scheduled onto any

resource and end unsuccessfully.

Experiment Number

1 2 3 4
Agent

No. % No. % No. % No. %
S1 13 12 27 19 45 21 45 15
S2 13 12 15 10 27 13 42 14
S3 15 14 20 13 27 13 38 13
S4 14 13 27 19 31 14 39 13
S5 10 9 15 10 20 9 28 10
S6 13 12 17 11 23 11 31 11
S7 14 13 12 8 16 7 26 9
S8 14 13 11 7 17 8 24 8

failed 3 2 5 3 9 4 20 7
Total 109 100 149 100 215 100 293 100

34

Table 6. Experimental results: service discovery. In experiment No. 2, the resources

for 114 application execution requests are satisfied by the agent they are submitted to

first; representing 77 percent of the total 149 requests. Three agents are involved in 2-

step service discovery. The first agent receives the request from the user, a second

acts as a go-between to a third agent at which the corresponding resource is found.

Experiment Number

1 2 3 4
Step

No. % No. % No. % No. %
0-step 106 97 114 77 143 66 199 68
1-step 3 3 24 16 38 18 29 10
2-step 0 0 11 7 31 15 53 18
3-step 0 0 0 0 3 1 12 4
Total 109 100 149 100 215 100 293 100

35

Evaluation Engine (EE)

Application Tools (AT)

Source
Code

Analysis

Object
Editor

Object
Library

PSL Scripts

Compiler

Application Model

Resource Tools (RT)

CPU Network
(MPI,
PVM)

Cache
(L1, L2)

HMCL Scripts

Compiler

Resource Model

Performance
Prediction

On-the-fly
analysis

Multi-processor
scheduling

Fig. 1. The main components of the PACE toolkit include application tools, resource

tools, and an evaluation engine. The rapid execution of PACE models lends itself to

on-the-fly dynamic steering as well as traditional off-line performance prediction.

36

Agent

Agent

Agent

Agent

Agent

User

Application models
Cost models

PMA

Resources

Resource models

Fig. 2. ARMS architecture. The main components include users, resources, agents and

an agent performance monitor and advisor (PMA).

37

To another agent Discovery Advertisement

Communication Module

ACT
Manager

PACE
Evaluation

Engine

Scheduler

Match
Maker

ACTs

Application Model

Eval. Results

R
es

ou
rc

e
In

fo
.

A
pp

lic
at

io
n

In
fo

.

Se
rv

ic
e

In
fo

.

C
os

t M
od

el

Sc
he

d.
 C

os
t

Resource
Monitoring

Resource
Allocation

Application
Management

Application Execution

Agent ID

C
oo

rd
in

at
io

n
L

ay
er

C

om
m

un
ic

at
io

n
La

ye
r

Lo
ca

l
M

an
ag

em
en

t
La

ye
r

Fig. 3. ARMS agent structure. The colours of the arrows indicate three main processes:

service advertisement, service discovery and application execution.

38

 Service Info. Resource Info.

Application Info.

Processor 1 ID

Processor 2 ID

Type
PACE resource model

Type
PACE resource model

Processor n ID

…

Application 1 ID

Application 2 ID

Start time
End time

Start time
End time

Application m ID

…

Application-Resource Mapping

…

…

Fig. 4. Service information in ARMS. Each processor is described using the

corresponding PACE resource model. The scheduled start and end time for the

application executions are also included. The mapping between applications and

resources is represented using a 2D array.

39

S5 S7 S6

S3 S2 S4

S8

S1

Fig. 5. Case study: agent hierarchy. The agent at the head of the hierarchy is S1, which

has three lower agents, S2, S3 and S4. Agent S2 has no lower agents, while S3 and S4

have two lower agents each.

40

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Number of Processors

R
un

ni
ng

 T
im

e
on

 S
G

IO
ri

gi
n2

00
0

(s
ec

)

sweep3d
fft
improc
closure
jacobi
memsort
cpi

Fig. 6. Case study: applications. The timings shown in the figure are PACE

performance prediction results for the execution of these applications on an SGI

Origin2000.

41

Fig. 7. Experimental results: No. 2 @ S4. In the experiment No. 2, 27 of the 149

requests are scheduled to be executed using the resource of S4. The latest 16

applications are also illustrated using the Gantt chart according to the scheduling

information in the list above.

42

0

5

10

15

20

25

1 2 3 4

Experiment Number

A
pp

lic
at

io
n

D
is

tr
ib

ut
io

n
ag

ai
ns

t A
ge

nt
s

(%
)

S1
S2
S3
S4
S5
S6
S7
S8
failed

Fig. 8. Experimental results: application execution distribution on agents when system

workloads increase. The percent of failed requests for each experiment are also shown;

note that these increase with the system workload.

43

0

20

40

60

80

100

1 2 3 4

Experiment Number

A
pp

lic
at

io
n

D
is

tr
ib

ut
io

n
ag

ai
ns

t S
er

vi
ce

 D
is

co
ve

ry
 (%

)

0-step
1-step
2-step
3-step

Fig. 9. Experimental results: service discovery. When the system workload increases,

the number of 0-step service discovery decreases and those corresponding to more

complex service discovery processes increase.

