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Abstract. ARMS is an agent-based resource management system for grid computing, where agents are organized into a 
hierarchy and cooperate with each other to discover available grid resources using a technique of decentralized resource 
advertisement and discovery. Since a large-scale application of ARMS is not available, the most straightforward way to 
investigate the ARMS performance is through a modeling and simulation approach. In this work, an ARMS performance 
modeling and simulation environment (ARMSim) is presented. The ARMSim kernel is composed of a model composer 
and a simulation engine, while users can input related information and get simulation outputs from corresponding GUIs. 
A case study is included using an example model with over 1000 agents and several experiments are carried out each 
involving nearly 100000 requests. Simulation results are also illustrated and show the impact of the choice of different 
agent configurations on the overall system performance. ARMSim enables the ARMS agent performance to be 
investigated quantitatively and simulation results are potential to be utilized at running time for online ARMS 
performance improvement (e.g. avoiding performance bottleneck and reducing network traffic). 
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1. Introduction 
 
The grid originated from a high performance computing 
power delivery system [14] and is now becoming a global 
infrastructure for large-scale resource sharing and system 
integration [3]. The grid infrastructure should support both 
scalability and adaptability in dynamic grid environments. 
While examples of grid middleware technologies include 
CORBA [16], JINI [2] and Web Services [12], a multi-
agent approach is utilized in our work. 

In my previous work an agent-based methodology [6] is 
developed for building large-scale distributed software 
systems with highly dynamic behaviors. This has been 
used in the implementation of an agent-based resource 
management system for grid computing [7, 8], ARMS, 
where agents are considered to be the main high level 
abstraction of grid resources. Each agent can be registered 
with multiple grid resources and agents are organized into 
a hierarchy. Agents can also cooperate with each other and 
resource information is advertised and discovered along 
the agent hierarchy using different configurations. 

Two applications of ARMS can be found respectively 
in the work described in [9] and [10]. In the first 
application, the ARMS implementation is integrated with 
multiple local grid schedulers. Each scheduler is 
responsible for load balancing of a PC cluster using a 
performance prediction driven method and an iterative 
heuristic algorithm [18]. The ARMS agents perform 
advertisement and discovery across multiple clusters to 

achieve overall load balancing at the grid level. In the 
second implementation, ARMS performs resource 
discovery for a grid workflow management system 
according to user QoS requirements. In both cases, the 
ARMS implementation is limit with up to 30 agents 
involved, which is far from a grid size. The performance of 
ARMS agents themselves can not be investigated in details 
due to the absence of a large-scale implementation. 

In this work, a modeling and simulation environment 
for the ARMS agents (ARMSim) is developed, which can 
be used to evaluate the overall ARMS agent performance 
in a quantitative way according to some pre-defined 
metrics. ARMSim has as input all of performance related 
information of the agent system, it composes them into a 
performance model, simulates the resource advertisement 
and discovery processes step by step, and finally outputs all 
of the statistical data. ARMSim supports multi-view and 
real-time display of simulation results. Simultaneous 
simulation of multiple models and comparison of results 
can also be performed in the ARMSim environment. 

A case study is included in this work with about 1100 
agents involved. 13 experiments are designed, each with a 
different agent configuration. During each simulation 
nearly 100000 requests are sent out and in some situations 
nearly 10000000 communications are involved for 
resource advertisement and discovery. Simulation results 
show that agent configurations can have very different 
impacts on system performance and the simulation 
approach is the most straightforward way to enable the 
system performance to be investigated quantitatively. 
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The rest of the paper is organized as follows: In Section 
2 an overview introduction of the ARMS system is given. 
In Section 3, the ARMSim structure is described in detail. 
A case study with corresponding simulation results is 
illustrated in Section 4. Related work is summarized in 
Section 5 and the paper concludes in Section 6. 
 
2. ARMS 
 
Agents comprise the main components in the ARMS 
system; the agents are organized into a hierarchy and are 
designed to be homogenous. Each agent is viewed as a 
representative of multiple grid resources at a higher level 
of grid management. The information of each grid 
resource can be advertised within the agent hierarchy (in 
any direction) and agents can cooperate with each other to 
discover available grid resources [8]. 

Each agent utilizes Agent Capability Tables (ACTs) to 
record grid resource information. An agent can choose to 
maintain different ACTs corresponding to the different 
sources of resource information: T_ACT is used to record 
information of an agent’s own registered grid resources; 
C_ACT to record resource information cached during 
discovery processes; L_ACT to record information 
received from lower agents in the hierarchy; and G_ACT 
to record information from the upper agent in the 
hierarchy. 

There are basically two ways to maintain the contents of 
L_ACT and G_ACT in an agent: data-pull and data-push, 
each of which has two approaches: periodic and event-
driven. An agent can ask other agents for their resource 
information either periodically or when a request arrives. 
An agent can also submit its resource information to other 
agents periodically or when the resource information is 
updated. The frequency of the periodical resource 
information advertisement is also configurable. 

Another important process among agents is resource 
discovery which is also a cooperative activity. Within each 
agent, its own registered grid resources (recorded in the 
T_ACT) are evaluated first. If the requirement can be met 
locally, the discovery ends successfully. Otherwise resource 
information in C_ACT, L_ACT and G_ACT is evaluated 
in turn and the request dispatched to the agent, which is 
able to provide the best (or the first) requirement/resource 
match. If no resource can meet the requirement, the 
request is submitted to the upper agent. When the head of 
the hierarchy is reached and the available resource is still 
not found, the discovery terminates unsuccessfully. 

The ARMS architecture and mechanisms described 
above allow possible system scalability. Most requests are 
processed in a local domain and need not to be submitted 
to a wider area. Both advertisement and discovery are 
processed between neighboring agents and the system has 

no central structure, which otherwise might act as a 
potential bottleneck. This is further investigated in a 
quantitative way using the ARMSim environment. 

Four metrics are defined to evaluate the performance of 
agent behaviors: discovery speed (v), system efficiency (e), 
load balancing (b) and success rate (f) [7]. The average 
agent resource discovery speed (v) during a certain period 
is calculated via the total number of requests (r) divided by 
the total number of connections made for the discovery (d). 
The average efficiency of the system (e) is considered as 
the ratio of the total number of requests (r) during a certain 
period to the total number of connections made for both 
the discovery (d) and the advertisement (a). The workload 
of each agent (w) is described as the sum of the outgoing (o) 
and incoming (i) connection times and the mean square 
deviation of all agent workloads is used to describe the 
load balancing level of the system (b). The success rate (f) 
is the ratio of successful resource discovery (rf) to the total 
number of requests (r) during a certain period. 

These metrics may conflict at most of the time, that is 
not all metrics can be high at the same time. For example, 
a quick discovery speed does not mean high efficiency, as 
sometimes quick discovery may be achieved through the 
high workload encountered in resource advertisement and 
data maintenance, leading to low system efficiency. It is 
necessary to find the critical factors of a practical system, 
and then to use the different configurations to reach high 
performance. This can be carried out efficiently using a 
modeling and simulation approach. 
 
3. ARMSim structure 
 
Performance evaluation of resource discovery in a large-
scale multi-agent system like ARMS is a difficult task, 
especially when thousands of agents and tens of thousands 
of requests and communications are involved. Different 
configurations of agent behaviors on resource 
advertisement and discovery can make the overall system 
behaviors very complex. In this section, the ARMSim 
modeling and simulation environment is introduced. 
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Figure 1. The ARMSim structure 
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The main ARMSim structure is illustrated in Figure 1, 
which includes a kernel and GUIs. The kernel part 
performs the modeling and simulation functions, while 
users can input related information and get simulation 
outputs from the GUIs. 
 
3.1. Inputs/outputs 
 
There are four kinds of information that affect the system 
performance and must be input into the performance 
model. These include: the agent hierarchy, the resources, 
the requests, and the configurations for resource 
advertisement and discovery. ARMSim supports the 
modeling activity at both the agent level and the system 
level. The only components that exist in the model are 
agents, so agent-level modeling can be used to define all 
the model attributes for the simulation. However, system-
level modeling is also necessary to input information on 
agent mobility, resource and request distribution, and so on. 
These will be discussed in detail below. 

• Agent hierarchy. When a new agent is added into the 
model, its upper agent should be defined. The upper 
agent is also configured to add a new lower agent. The 
information is used to organize agents into a hierarchy 
in the system model. No cycles are permitted in the 
hierarchy, which may cause deadlock during the 
resource discovery process. 

• Requests. Each agent is configured to send different 
requests periodically. A request item may include 
several parts of information: the required resource 
name, the relative required performance value, and the 
sending frequency (see examples in Table 3). 

• Resources. Each agent is also configured to provide 
many grid resources, whose performance may vary over 
time. A resource item may include several parts of 
information: the resource name, the relative 
performance value, and the performance changing 
frequency (see examples in Table 2). The usage of 
these attributes will be introduced in the ARMSim 
kernel section below. 

• Configurations. Different configurations are defined in 
each agent to control its behaviors on resource 
advertisement and discovery. These configurations 
have been introduced in Section 2 and examples can be 
found in Table 4. 

• Agent mobility. The agent mobility can be defined at 
the system level only. An agent mobility item may 
include information on: the agent ID, the new agent ID 
after the movement, the upper agent ID of the new 
agent, and the step number when the movement will 
happen during the simulation. 

• Request distribution. System-level request definitions 
can ease the modeling process. The same request item 
does not need to be defined in different agents one by 
one. ARMSim provides a convenient way to distribute 
a request definition to different agents once it is defined 
at the system level. 

• Resource distribution. The same resource with the 
same attributes can also be provided by different agents. 
System-level resource definitions allow many agents to 
be configured with the same resource at one time. 

• Global configurations. A system-level configuration 
definition can affect all of the agents in the model and 
ease the modeling process. Both global configurations 
and individual configurations can be defined in each 
agent. However, agent-level configuration definitions 
have a priority over the system-level ones. 

The information above is input into the ARMSim. 
Examples of these information can be found in Section 4. 
The ARMSim outputs are all of the simulation results on 
four performance metrics. All of the details on resource 
advertisement and discovery are also recorded in a 
simulation log file for further reference. The use of input 
information to produce outputs during the modeling and 
simulation processes within the ARMSim kernel is 
introduced below. 
 
3.2. ARMSim kernel 
 
The ARMSim kernel is composed of a model composer 
and a simulation engine. The kernel will perform the main 
modeling and simulation functions and transform the raw 
simulation data to statistical results to support the four 
performance metrics. 

The model composer organizes the input information 
into a performance model before the simulation process 
begins. During this phase, the system-level information is 
transferred into an agent-level representation as much as 
possible. For example, system-level requests and resources 
will be used to configure a certain percentage of agents. 
The global configurations are used to define the 
configurations of each agent, except for agents that have 
already been defined with agent-level configurations. After 
these, a performance model is composed ready for 
evaluation. The information on agent movements can only 
be stored at the system level and will not be used to 
configure any agent in the system. 

The simulation engine will start a simulation process 
once a performance model and a total number of 
simulation steps are defined. The whole process is 
illustrated in Figure 2, which is divided into seven phases, 
five of which are within the main simulation loop. 
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Figure 2. The ARMSim simulation process 

 

• Initialize simulation. Once a simulation process is 
started, an environment will be setup for simulating 
resource advertisement and discovery. All of the GUIs 
for performance modeling are locked. The performance 
model cannot be modified during the simulation. The 
simulation results are also initialized for recording the 
outputs. 

• Set resource changes. This is performed at the 
beginning of each simulation step. The performance of 
a grid resource may change at each step. There is also 
the frequency of change in performance of each grid 
resource. The performance of each resource may or 
may not be changed at each step according to this 
frequency. 

• Set agent movements. Each agent mobility item 
contains a step number when a movement will happen 
during the simulation. An agent movement indicates 
not only the change of the agent hierarchy, but also the 
change of related resources. Additional resource 
advertisement occurs when an agent is moved, for 
example, old resource information is announced for 
deletion, and new information should be advertised 
along the new agent hierarchy. 

• Advertise resources. Both event-driven and periodic 
resource advertisement are considered during this 
phase. Each agent acts on its ACTs according to its 
configurations. Each connection between agents for 
resource advertisement will be recorded in the 
simulation log file and will affect corresponding 
simulation results. 

• Send requests and discover resources. A request is 
decided to be sent according to its frequency. Each 
agent that receives the request will look up its ACTs in 
turn according to its configuration for resource 
discovery. Every detail of a resource discovery process 

is recorded in the log file and related simulation results, 
such as agent connection times, are recorded. 

• Calculate and visualize simulation results. At the end 
of each simulation step, the raw simulation data should 
be summarized, and corresponding statistical results on 
the performance metrics calculated. These results are 
shown on ARMSim GUIs dynamically to provide the 
user a view of what is going on during the simulation. 

• Finalize simulation. After all simulation steps are 
completed ARMSim returns to the modeling mode. All 
the modeling GUIs are unlocked. The GUIs for 
visualizing the simulation results will not be refreshed 
until the next simulation begins, and can thus be used 
for further analysis. 

ARMSim also supports the evaluation of multiple 
models simultaneously. The user can use different 
configurations in different models, simulate them, and 
compare the results. 
 
3.3. User interfaces 
 
The ARMSim environment is implemented using Java. It 
provides graphical user interfaces for the modeling and 
simulation respectively. 

 The user can add, edit and delete agents from the 
model via the main GUI window (see an example in Figure 
3). In the left column of the main window, all of the agents 
are listed. A brief description of the selected agent is also 
shown below the agent list. The text field above the agent 
list can be used to search an agent by its name. The model 
can also be saved and reloaded for reuse later. 

Some other ARMSim GUIs are used to visualize 
simulation results to the user. Examples can be found in 
Figures 4 and 5. During each step in the simulation the 
results will be updated in each of the GUIs. The simulator 
can provide multiple views of the simulation data, which 
are all updated in real time. In the step-by-step view of the 
Figure 4, the simulation data, r, a, d, rf, and the statistic 
data, v, e, b, f, in each step are shown. In the accumulative 
view shown in Figure 5, the statistical data on the 
accumulative steps are shown. In the agent view, the user 
can view the ACT contents of a selected agent. The log 
view shows the simulation log file, which records the 
details of all resource advertisement and discovery 
processes during simulation. 
 
3.4. Main features 
 
ARMSim is developed to provide quantitative information 
of the performance of resource advertisement and 
discovery in the ARMS agent system. The main feature of 
the ARMSim environment can be summarized as follows: 
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• Support for all of the performance metrics and 
configurations described in the ARMS system; 

• Support two levels of system modeling for easy and 
convenient performance modeling; 

• Support modeling of agent mobility and simulation of 
additional resource advertisement processes; 

• Support multi-view and real-time display of simulation 
results; 

• Support simultaneous simulation of multiple models 
and comparison of results. 

The use of the ARMSim environment for a performance 
study is introduced in the next section through a case study, 
and simulation results are included to show the impact of 
the choice of different agent configurations on the system 
resource discovery performance. 
 
4. A case study 
 
In this section, an example model is given and experiment 
results are included to show how to steer the ARMS 
performance optimization using the ARMSim environment. 
 
4.1. Example model 
 
A screenshot of the example model built in the ARMSim 
environment is illustrated in Figure 3. 
 

 
Figure 3. The ARMSim modeling 

 
The attributes of the example model are shown in 

several tables. This is composed of about 1100 agents, each 
representing a one or more grid resources that may provide 
computing capabilities with different performances. These 
agents are organized in a hierarchy, which has three layers. 
The identity of the root agent is gem. There are 100 agents 
registered to gem, ten of which each also have 100 lower 
agents. The hierarchy is illustrated in Table1. 

 
Agents Upper agent 

gem - 
coord~0……coord~99 gem 

agent01~0……agent01~99 coord~5 
agent02~0……agent02~99 coord~15 
agent03~0……agent03~99 coord~25 
agent04~0……agent04~99 coord~35 
agent05~0……agent05~99 coord~45 
agent06~0……agent06~99 coord~55 
agent07~0……agent07~99 coord~65 
agent08~0……agent08~99 coord~75 
agent09~0……agent09~99 coord~85 
agent10~0……agent10~99 coord~95 

Table 1. Example model: agent hierarchy 
 

To simplify the modeling processes, we define the 
resources and requests in the agents at the system level, 
which is shown in Table 2 and 3 respectively. The name of 
the resources and requests are all HPC, but with different 
relative performance values. The frequency value of the 
resource, 5, for example, means the resource performance 
will change between 0 and the performance value once 
every 5 steps during the simulation. The frequency value of 
the request, 5, for example, means a request will be sent 
once every 5 steps during the simulation. The distribution 
value is used to define how many agents will be configured 
with the corresponding resource or request. 
 

Name Relative 
performance 

Frequency Distribution (%) 

HPC 1000 5 20 
HPC 800 8 30 
HPC 600 10 40 
HPC 400 15 50 
HPC 200 20 60 

Table 2. Example model: resources 
 

Name Relative 
performance 

Frequency Distribution (%) 

HPC 100 5 80 
HPC 200 8 70 
HPC 300 10 60 
HPC 400 15 50 
HPC 500 20 40 
HPC 650 30 30 
HPC 800 40 20 
HPC 900 50 10 
HPC 1000 60 10 

Table 3. Example model: requests 
 

Finally, the model must define how each agent uses the 
ACTs to optimize the performance. In this case study six 
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experiments have been considered, each of which has the 
same configurations as described in Tables 1, 2 and 3, but 
has different configurations as described in Table 4. 
 

Experiment number Configurations 
1 2 3 4 5 6 

Using T_ACT X X X X X X 
Using C_ACT  X X X X X 

L_ACT: event-driven data-push   X X X X 
G_ACT: periodic data-pull*    X X X 
L_ACT: periodic data-pull*     X X 

G_ACT: event-driven data-push      X 
*Here the frequency was once every 10 steps. 

Table 4. Example model: configurations 
 

To simplify the experiments, we only define the 
configurations at the system level, which means all of the 
agents in the model must use the same configurations. A 
mixture of configurations is possible but is not considered 
in these experiments. In the simulation results included in 
the section below, a comparison of the different 
configurations is given by considering their impact on the 
agent performance. 
 
4.2. Simulation results 
 

 
Figure 4. The ARMSim simulation: a step-by-step view 

 
When the simulation begins, a thread is created to 
calculate the statistical data step by step. The phase for 
request sending and the resource discovery is the key part 

of the whole simulation process. The ARMSim 
environment can show the results in multiple views. The 
step-by-step and accumulative views are especially 
interesting in this case study, which is illustrated in 
Figures 4 and 5 respectively. 
 

 
Figure 5. The ARMSim simulation: an accumulative view 

 
As shown in Figure 5, six experiments are carried out 

simultaneously for 220 steps and results are displayed on 
all of performance metrics. Note that simulation processes 
in the first 20 steps are not stable and not included in 
Figures 4 and 5. We are especially interested in the 
balance of resource discovery speed and system efficiency 
in this case study. It is obvious that different configurations 
designed in these experiments lead to different impact on 
discovery speed and system efficiency. Detailed simulation 
data can be found in Table 5 and each of the six situations 
are also described below. 

1. Only T_ACTs are used in each agent. Each time the 
request arrives, a lot of connections must be made and 
traversed in order to find the satisfied grid resource. In 
this situation, the discovery speed and system 
efficiency are both rather low. 

2. The cache is used in each agent, which needs no extra 
data maintenance and improves the discovery speed 
and system efficiency a little. This is because the 
dynamics of the resources reduce the effects of the 
cached information and so becomes unreliable. 
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3. L_ACT is added in each agent. Each time the resource 
performance changes, the corresponding agent will 
advertise the change upward in the hierarchy. This 
adds additional data maintenance workload to the 
system, which decreases the discovery workload 
extremely. So the discovery speed and the system 
efficiency are all improved. 

4. G_ACT is also added. Each agent will get global 
resource information from its upper agent once every 
10 simulation steps, which will add additional data 
maintenance workload. From the simulation results, 
we can see this improves the discovery speed further. 
But the system efficiency decreases because of the 
additional data maintenance. 

5. Another maintenance of the L_ACT is added. Each 
agent asks for resource information from its lower 
agents once every 10 steps. This improves the 
discovery speed a bit further and adds more data 
maintenance workload, which also decreases the 
system efficiency. 

6. Another maintenance of the G_ACT is added. This 
improves the discovery speed only a little, but adds 
further data maintenance workload, which decreases 
the system efficiency extremely. 

 
Performance metrics* No. 

r a d v=r/d e=r/(a+d) 
1 91848 0 972118 0.09 0.09 
2 92326 0 849540 0.10 0.10 
3 92206 89916 37583 2.45 0.72 
4 92084 110648 34034 2.70 0.63 
5 91264 138965 32415 2.81 0.53 
6 92929 9065245 32837 2.83 0.01 

*Note: All values are accumulative results after 220 steps. 
Table 5. Simulation results I 

 
The impact of the choice of the configurations on the 

discovery speed and the system efficiency is shown clearly 
in Figure 6. 
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Figure 6. Choice of the configurations 

 
It can be seen that both third and fourth experiments 

have a good balance between the discovery speed and the 

system efficiency for this example model. The fourth 
situation has a higher discovery speed in comparison to the 
third, with lower system efficiency. And the third situation 
has higher system efficiency with lower discovery speed. 

The difference between configurations of the third and 
fourth experiments is that G_ACT periodic data pull is 
additionally configured in the fourth experiment, which 
was once 10 simulation steps. Changing the G_ACT data 
pull frequency will also change the performance of the 
model. Some further experiments are designed where the 
configurations that are used are all the same as described 
in the fourth experiment. The only difference is the 
G_ACTs in the agents are updated with different 
frequencies, which may lead to differences in the amount 
of system workload for resource advertisement and 
discovery. Detailed simulation results are given in Table 6. 
 

Performance metrics* Freq. 
r a d v=r/d e=r/(a+d) 

1 91618 330256 32530 2.81 0.25 
2 91537 210336 33346 2.74 0.37 
5 91355 134910 33492 2.72 0.54 
10 92084 110648 34034 2.70 0.63 
20 90713 98893 33734 2.68 0.68 
30 91641 95154 34935 2.62 0.70 
80 92997 91803 35944 2.58 0.72 

120 92540 88539 37016 2.50 0.73 
never 92206 89916 37583 2.45 0.72 

*Note: All values are accumulative results after 220 steps. 
Table 6. Simulation results II 

 
In Table 6, when the frequency value is once 10 

simulation steps, the situation is the same as that in the 
fourth experiment. And when G_ACTs are never 
maintained, the situation is the same as that in the third 
experiment. The impact of the choice of the G_ACT 
periodic data pull frequency on the discovery speed and the 
system efficiency is shown clearly in Figure 7. 
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Figure 7. Choice of the G_ACT periodic data pull frequency 

 
As shown in Figure 7, the best trade-off between 

discovery speed and system efficiency is once every 20 
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simulation steps in this example model. In summary, the 
example model should use all of the ACTs. L_ACT should 
be maintained by the event-driven data push configuration. 
The G_ACT should be maintained by the periodic data 
pull once every 20 simulation steps. In fact, the 
performance of the example model can be improved 
further using agent level modeling. Different agents can 
use a mixture of different strategies to achieve higher 
performance of the whole system. This is not discussed in 
detail here. 

The techniques of modeling and simulation are useful 
especially for the current phase of research into grid 
computing. As mentioned, a practical grid environment 
does not yet exist. In fact, there is not even a grid testbed 
that can be used for research. Current ARMS application 
is far from a grid size, where the performance data cannot 
be produced for analysis. This makes a modeling and 
simulation environment very valuable for this kind of 
research. The ARMSim environment is such an attempt. 
 
5. Related work 
 
Modeling and simulation approaches have been widely 
used in grid computing research. Some existing tools are 
described below though motivations of these work are quite 
different from each other. Features that distinguish 
ARMSim from other work are also discussed in detail. 

• Bricks [19]. The Bricks performance evaluation system 
allows analysis and comparison of various scheduling 
schemes in a grid computing environment. Bricks can 
simulate various grid behaviors, especially the behavior 
of networks and resource scheduling algorithms. 
Network modeling is not considered in current 
ARMSim implementation where reduction of number 
of agent connections is focused at the moment. 
ARMSim simulates the ARMS resource discovery 
process instead of resource allocation and scheduling. 

• GridSim [4]. The toolkit supports modeling and 
simulation of heterogeneous grid resources, users and 
application models. It provides primitives for creation 
of application tasks, mapping of tasks to resources and 
their management. While ARMSim focuses on 
performance simulation of decentralized resource 
advertisement and discovery among ARMS agents, 
GridSim aims at design and evaluation of scheduling 
algorithms or policies of resource brokers. GridSim is 
based on an existing Java discrete event simulation 
infrastructure and the ARMSim simulation engine is 
an iterative sequential process relying on data 
statistical capabilities. 

• MicroGrid [17]. The MicroGrid simulation tools 
enable Globus [13] applications to be run in arbitrary 

virtual grid resource environments. MicroGrid is 
actually an emulator meaning that actual application 
code is executed on the virtual grid. ARMSim takes a 
different approach and focuses on different issues. 
ARMSim characterizes ARMS agent behaviors using 
some statistical data like relative performance and 
frequency value and targets performance of the ARMS 
itself, while MicroGrid targets grid applications instead 
of performance of the Globus infrastructure. 

• Simgrid [11]. Simgrid is a simulation toolkit for the 
study of scheduling algorithms for distributed 
applications. Simgrid targets scheduling algorithms for 
a single structured application. ARMS support resource 
advertisement and discovery for a multi-user system 
where all requests for computations are independent. 
Simgrid focuses more on application makespans as 
oppose to average overall performance. 

Simulation approaches have also been used for 
performance studies of traditional high performance 
computing applications and systems for many years. 
Example simulation environments for parallel and 
distributed computing include POEM [1] and PACE [5, 
15]. While ARMS focuses on grid level resource 
management, these work are not directly related to the 
ARMSim environment and thus not discussed here. 

ARMS is an agent-based grid computing system with a 
generic hierarchical multi-agent model and a specific 
resource advertisement and discovery mechanism. The 
ARMSim environment is specially designed for the ARMS 
system. The benefit of an agent-based approach over other 
infrastructure techniques was discussed in [8]. The 
ARMSim environment is just initially implemented and 
future work is discussed below. 
 
6. Conclusions and Future Work 
 
This work addresses the problem of modeling and 
simulation of agent behaviors in the ARMS system. An 
initial implementation of the ARMSim environment is 
described in detail. A case study is included using an 
example model with over 1000 agents and 13 experiments 
are carried out each involving nearly 100000 requests. 
Simulation results show that agent configurations can have 
very different impacts on system performance and the 
simulation approach is the most straightforward way to 
enable the system performance to be investigated 
quantitatively in a large scale. 

A major future work will be the refinement of input 
character models. Current ARMSim request and resource 
models are quite simple. Some parameters, e.g. 
performance and frequency, are modeled in an average 
way. In a real ARMS system, request distribution could be 
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very different and resource dynamics should also be 
characterized in a more refined way. 

Since current ARMSim simulation can be processed 
quickly (in minutes given the example model described in 
Section 4), another future work would be the exploration of 
ways to integrate the ARMSim simulation engine with the 
ARMS system as an online performance advisor for ARMS. 
In this case, all input information should be monitored 
from the running ARMS agents and the ARMSim 
simulation results should be returned and used to advise 
ARMS agents with configuration suggestions that could 
lead to a higher overall system performance. For example, 
if agents are configured with more efficient resource 
advertisement and discovery, network traffic in the ARMS 
system can be significantly reduced. The ARMS agents can 
be also advised to move to a better location where more 
requests and resources are involved. If more requests are 
satisfied locally, system performance bottlenecks could be 
avoided at heads of the agent hierarchy and sub-
hierarchies. 
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