

- 1 -

In SIMULATION: Transactions of The Society for Modeling and Simulation International, Special Issue on Modeling
and Simulation Applications in Cluster and Grid Computing, SAGE Publications, Vol. 80, No. 4-5, pp. 221-229, 2004.

ARMSim: a Modeling and Simulation
Environment for Agent-based Grid Computing

JUNWEI CAO

C&C Research Laboratories, NEC Europe Ltd., Germany
cao@ccrl-nece.de

Abstract. ARMS is an agent-based resource management system for grid computing, where agents are organized into a
hierarchy and cooperate with each other to discover available grid resources using a technique of decentralized resource
advertisement and discovery. Since a large-scale application of ARMS is not available, the most straightforward way to
investigate the ARMS performance is through a modeling and simulation approach. In this work, an ARMS performance
modeling and simulation environment (ARMSim) is presented. The ARMSim kernel is composed of a model composer
and a simulation engine, while users can input related information and get simulation outputs from corresponding GUIs.
A case study is included using an example model with over 1000 agents and several experiments are carried out each
involving nearly 100000 requests. Simulation results are also illustrated and show the impact of the choice of different
agent configurations on the overall system performance. ARMSim enables the ARMS agent performance to be
investigated quantitatively and simulation results are potential to be utilized at running time for online ARMS
performance improvement (e.g. avoiding performance bottleneck and reducing network traffic).
Keywords: modeling and simulation, multi-agent systems, grid computing, ARMS, ARMSim

1. Introduction

The grid originated from a high performance computing
power delivery system [14] and is now becoming a global
infrastructure for large-scale resource sharing and system
integration [3]. The grid infrastructure should support both
scalability and adaptability in dynamic grid environments.
While examples of grid middleware technologies include
CORBA [16], JINI [2] and Web Services [12], a multi-
agent approach is utilized in our work.

In my previous work an agent-based methodology [6] is
developed for building large-scale distributed software
systems with highly dynamic behaviors. This has been
used in the implementation of an agent-based resource
management system for grid computing [7, 8], ARMS,
where agents are considered to be the main high level
abstraction of grid resources. Each agent can be registered
with multiple grid resources and agents are organized into
a hierarchy. Agents can also cooperate with each other and
resource information is advertised and discovered along
the agent hierarchy using different configurations.

Two applications of ARMS can be found respectively
in the work described in [9] and [10]. In the first
application, the ARMS implementation is integrated with
multiple local grid schedulers. Each scheduler is
responsible for load balancing of a PC cluster using a
performance prediction driven method and an iterative
heuristic algorithm [18]. The ARMS agents perform
advertisement and discovery across multiple clusters to

achieve overall load balancing at the grid level. In the
second implementation, ARMS performs resource
discovery for a grid workflow management system
according to user QoS requirements. In both cases, the
ARMS implementation is limit with up to 30 agents
involved, which is far from a grid size. The performance of
ARMS agents themselves can not be investigated in details
due to the absence of a large-scale implementation.

In this work, a modeling and simulation environment
for the ARMS agents (ARMSim) is developed, which can
be used to evaluate the overall ARMS agent performance
in a quantitative way according to some pre-defined
metrics. ARMSim has as input all of performance related
information of the agent system, it composes them into a
performance model, simulates the resource advertisement
and discovery processes step by step, and finally outputs all
of the statistical data. ARMSim supports multi-view and
real-time display of simulation results. Simultaneous
simulation of multiple models and comparison of results
can also be performed in the ARMSim environment.

A case study is included in this work with about 1100
agents involved. 13 experiments are designed, each with a
different agent configuration. During each simulation
nearly 100000 requests are sent out and in some situations
nearly 10000000 communications are involved for
resource advertisement and discovery. Simulation results
show that agent configurations can have very different
impacts on system performance and the simulation
approach is the most straightforward way to enable the
system performance to be investigated quantitatively.

- 2 -

The rest of the paper is organized as follows: In Section
2 an overview introduction of the ARMS system is given.
In Section 3, the ARMSim structure is described in detail.
A case study with corresponding simulation results is
illustrated in Section 4. Related work is summarized in
Section 5 and the paper concludes in Section 6.

2. ARMS

Agents comprise the main components in the ARMS
system; the agents are organized into a hierarchy and are
designed to be homogenous. Each agent is viewed as a
representative of multiple grid resources at a higher level
of grid management. The information of each grid
resource can be advertised within the agent hierarchy (in
any direction) and agents can cooperate with each other to
discover available grid resources [8].

Each agent utilizes Agent Capability Tables (ACTs) to
record grid resource information. An agent can choose to
maintain different ACTs corresponding to the different
sources of resource information: T_ACT is used to record
information of an agent’s own registered grid resources;
C_ACT to record resource information cached during
discovery processes; L_ACT to record information
received from lower agents in the hierarchy; and G_ACT
to record information from the upper agent in the
hierarchy.

There are basically two ways to maintain the contents of
L_ACT and G_ACT in an agent: data-pull and data-push,
each of which has two approaches: periodic and event-
driven. An agent can ask other agents for their resource
information either periodically or when a request arrives.
An agent can also submit its resource information to other
agents periodically or when the resource information is
updated. The frequency of the periodical resource
information advertisement is also configurable.

Another important process among agents is resource
discovery which is also a cooperative activity. Within each
agent, its own registered grid resources (recorded in the
T_ACT) are evaluated first. If the requirement can be met
locally, the discovery ends successfully. Otherwise resource
information in C_ACT, L_ACT and G_ACT is evaluated
in turn and the request dispatched to the agent, which is
able to provide the best (or the first) requirement/resource
match. If no resource can meet the requirement, the
request is submitted to the upper agent. When the head of
the hierarchy is reached and the available resource is still
not found, the discovery terminates unsuccessfully.

The ARMS architecture and mechanisms described
above allow possible system scalability. Most requests are
processed in a local domain and need not to be submitted
to a wider area. Both advertisement and discovery are
processed between neighboring agents and the system has

no central structure, which otherwise might act as a
potential bottleneck. This is further investigated in a
quantitative way using the ARMSim environment.

Four metrics are defined to evaluate the performance of
agent behaviors: discovery speed (v), system efficiency (e),
load balancing (b) and success rate (f) [7]. The average
agent resource discovery speed (v) during a certain period
is calculated via the total number of requests (r) divided by
the total number of connections made for the discovery (d).
The average efficiency of the system (e) is considered as
the ratio of the total number of requests (r) during a certain
period to the total number of connections made for both
the discovery (d) and the advertisement (a). The workload
of each agent (w) is described as the sum of the outgoing (o)
and incoming (i) connection times and the mean square
deviation of all agent workloads is used to describe the
load balancing level of the system (b). The success rate (f)
is the ratio of successful resource discovery (rf) to the total
number of requests (r) during a certain period.

These metrics may conflict at most of the time, that is
not all metrics can be high at the same time. For example,
a quick discovery speed does not mean high efficiency, as
sometimes quick discovery may be achieved through the
high workload encountered in resource advertisement and
data maintenance, leading to low system efficiency. It is
necessary to find the critical factors of a practical system,
and then to use the different configurations to reach high
performance. This can be carried out efficiently using a
modeling and simulation approach.

3. ARMSim structure

Performance evaluation of resource discovery in a large-
scale multi-agent system like ARMS is a difficult task,
especially when thousands of agents and tens of thousands
of requests and communications are involved. Different
configurations of agent behaviors on resource
advertisement and discovery can make the overall system
behaviors very complex. In this section, the ARMSim
modeling and simulation environment is introduced.

Step-by-step
View

Accumulative
View

Agent
View

Log
View

Si
m

ul
at

io
n

E
ng

in
e

Agent-level
Modeling

System-level
Modeling M

od
el

 C
om

po
se

r

Inputs GUIs GUIs Kernel Outputs

r

a

d
rf

v
e

b

f

Pe
rf

or
m

an
ce

M

od
el

 Hierarchy
Requests
Resources

Configurations
Mobility

Req. Dist.
Res. Dist.

Global
Configurations

Figure 1. The ARMSim structure

- 3 -

The main ARMSim structure is illustrated in Figure 1,
which includes a kernel and GUIs. The kernel part
performs the modeling and simulation functions, while
users can input related information and get simulation
outputs from the GUIs.

3.1. Inputs/outputs

There are four kinds of information that affect the system
performance and must be input into the performance
model. These include: the agent hierarchy, the resources,
the requests, and the configurations for resource
advertisement and discovery. ARMSim supports the
modeling activity at both the agent level and the system
level. The only components that exist in the model are
agents, so agent-level modeling can be used to define all
the model attributes for the simulation. However, system-
level modeling is also necessary to input information on
agent mobility, resource and request distribution, and so on.
These will be discussed in detail below.

• Agent hierarchy. When a new agent is added into the
model, its upper agent should be defined. The upper
agent is also configured to add a new lower agent. The
information is used to organize agents into a hierarchy
in the system model. No cycles are permitted in the
hierarchy, which may cause deadlock during the
resource discovery process.

• Requests. Each agent is configured to send different
requests periodically. A request item may include
several parts of information: the required resource
name, the relative required performance value, and the
sending frequency (see examples in Table 3).

• Resources. Each agent is also configured to provide
many grid resources, whose performance may vary over
time. A resource item may include several parts of
information: the resource name, the relative
performance value, and the performance changing
frequency (see examples in Table 2). The usage of
these attributes will be introduced in the ARMSim
kernel section below.

• Configurations. Different configurations are defined in
each agent to control its behaviors on resource
advertisement and discovery. These configurations
have been introduced in Section 2 and examples can be
found in Table 4.

• Agent mobility. The agent mobility can be defined at
the system level only. An agent mobility item may
include information on: the agent ID, the new agent ID
after the movement, the upper agent ID of the new
agent, and the step number when the movement will
happen during the simulation.

• Request distribution. System-level request definitions
can ease the modeling process. The same request item
does not need to be defined in different agents one by
one. ARMSim provides a convenient way to distribute
a request definition to different agents once it is defined
at the system level.

• Resource distribution. The same resource with the
same attributes can also be provided by different agents.
System-level resource definitions allow many agents to
be configured with the same resource at one time.

• Global configurations. A system-level configuration
definition can affect all of the agents in the model and
ease the modeling process. Both global configurations
and individual configurations can be defined in each
agent. However, agent-level configuration definitions
have a priority over the system-level ones.

The information above is input into the ARMSim.
Examples of these information can be found in Section 4.
The ARMSim outputs are all of the simulation results on
four performance metrics. All of the details on resource
advertisement and discovery are also recorded in a
simulation log file for further reference. The use of input
information to produce outputs during the modeling and
simulation processes within the ARMSim kernel is
introduced below.

3.2. ARMSim kernel

The ARMSim kernel is composed of a model composer
and a simulation engine. The kernel will perform the main
modeling and simulation functions and transform the raw
simulation data to statistical results to support the four
performance metrics.

The model composer organizes the input information
into a performance model before the simulation process
begins. During this phase, the system-level information is
transferred into an agent-level representation as much as
possible. For example, system-level requests and resources
will be used to configure a certain percentage of agents.
The global configurations are used to define the
configurations of each agent, except for agents that have
already been defined with agent-level configurations. After
these, a performance model is composed ready for
evaluation. The information on agent movements can only
be stored at the system level and will not be used to
configure any agent in the system.

The simulation engine will start a simulation process
once a performance model and a total number of
simulation steps are defined. The whole process is
illustrated in Figure 2, which is divided into seven phases,
five of which are within the main simulation loop.

- 4 -

 Initialize simulation

Set resource changes

Set agent movements

Advertise resources

Send requests and discover resources

Calculate and visualize simulation results

Finalize simulation

N
ex

t s
te

p

Figure 2. The ARMSim simulation process

• Initialize simulation. Once a simulation process is
started, an environment will be setup for simulating
resource advertisement and discovery. All of the GUIs
for performance modeling are locked. The performance
model cannot be modified during the simulation. The
simulation results are also initialized for recording the
outputs.

• Set resource changes. This is performed at the
beginning of each simulation step. The performance of
a grid resource may change at each step. There is also
the frequency of change in performance of each grid
resource. The performance of each resource may or
may not be changed at each step according to this
frequency.

• Set agent movements. Each agent mobility item
contains a step number when a movement will happen
during the simulation. An agent movement indicates
not only the change of the agent hierarchy, but also the
change of related resources. Additional resource
advertisement occurs when an agent is moved, for
example, old resource information is announced for
deletion, and new information should be advertised
along the new agent hierarchy.

• Advertise resources. Both event-driven and periodic
resource advertisement are considered during this
phase. Each agent acts on its ACTs according to its
configurations. Each connection between agents for
resource advertisement will be recorded in the
simulation log file and will affect corresponding
simulation results.

• Send requests and discover resources. A request is
decided to be sent according to its frequency. Each
agent that receives the request will look up its ACTs in
turn according to its configuration for resource
discovery. Every detail of a resource discovery process

is recorded in the log file and related simulation results,
such as agent connection times, are recorded.

• Calculate and visualize simulation results. At the end
of each simulation step, the raw simulation data should
be summarized, and corresponding statistical results on
the performance metrics calculated. These results are
shown on ARMSim GUIs dynamically to provide the
user a view of what is going on during the simulation.

• Finalize simulation. After all simulation steps are
completed ARMSim returns to the modeling mode. All
the modeling GUIs are unlocked. The GUIs for
visualizing the simulation results will not be refreshed
until the next simulation begins, and can thus be used
for further analysis.

ARMSim also supports the evaluation of multiple
models simultaneously. The user can use different
configurations in different models, simulate them, and
compare the results.

3.3. User interfaces

The ARMSim environment is implemented using Java. It
provides graphical user interfaces for the modeling and
simulation respectively.

 The user can add, edit and delete agents from the
model via the main GUI window (see an example in Figure
3). In the left column of the main window, all of the agents
are listed. A brief description of the selected agent is also
shown below the agent list. The text field above the agent
list can be used to search an agent by its name. The model
can also be saved and reloaded for reuse later.

Some other ARMSim GUIs are used to visualize
simulation results to the user. Examples can be found in
Figures 4 and 5. During each step in the simulation the
results will be updated in each of the GUIs. The simulator
can provide multiple views of the simulation data, which
are all updated in real time. In the step-by-step view of the
Figure 4, the simulation data, r, a, d, rf, and the statistic
data, v, e, b, f, in each step are shown. In the accumulative
view shown in Figure 5, the statistical data on the
accumulative steps are shown. In the agent view, the user
can view the ACT contents of a selected agent. The log
view shows the simulation log file, which records the
details of all resource advertisement and discovery
processes during simulation.

3.4. Main features

ARMSim is developed to provide quantitative information
of the performance of resource advertisement and
discovery in the ARMS agent system. The main feature of
the ARMSim environment can be summarized as follows:

- 5 -

• Support for all of the performance metrics and
configurations described in the ARMS system;

• Support two levels of system modeling for easy and
convenient performance modeling;

• Support modeling of agent mobility and simulation of
additional resource advertisement processes;

• Support multi-view and real-time display of simulation
results;

• Support simultaneous simulation of multiple models
and comparison of results.

The use of the ARMSim environment for a performance
study is introduced in the next section through a case study,
and simulation results are included to show the impact of
the choice of different agent configurations on the system
resource discovery performance.

4. A case study

In this section, an example model is given and experiment
results are included to show how to steer the ARMS
performance optimization using the ARMSim environment.

4.1. Example model

A screenshot of the example model built in the ARMSim
environment is illustrated in Figure 3.

Figure 3. The ARMSim modeling

The attributes of the example model are shown in

several tables. This is composed of about 1100 agents, each
representing a one or more grid resources that may provide
computing capabilities with different performances. These
agents are organized in a hierarchy, which has three layers.
The identity of the root agent is gem. There are 100 agents
registered to gem, ten of which each also have 100 lower
agents. The hierarchy is illustrated in Table1.

Agents Upper agent

gem -
coord~0……coord~99 gem

agent01~0……agent01~99 coord~5
agent02~0……agent02~99 coord~15
agent03~0……agent03~99 coord~25
agent04~0……agent04~99 coord~35
agent05~0……agent05~99 coord~45
agent06~0……agent06~99 coord~55
agent07~0……agent07~99 coord~65
agent08~0……agent08~99 coord~75
agent09~0……agent09~99 coord~85
agent10~0……agent10~99 coord~95

Table 1. Example model: agent hierarchy

To simplify the modeling processes, we define the
resources and requests in the agents at the system level,
which is shown in Table 2 and 3 respectively. The name of
the resources and requests are all HPC, but with different
relative performance values. The frequency value of the
resource, 5, for example, means the resource performance
will change between 0 and the performance value once
every 5 steps during the simulation. The frequency value of
the request, 5, for example, means a request will be sent
once every 5 steps during the simulation. The distribution
value is used to define how many agents will be configured
with the corresponding resource or request.

Name Relative
performance

Frequency Distribution (%)

HPC 1000 5 20
HPC 800 8 30
HPC 600 10 40
HPC 400 15 50
HPC 200 20 60

Table 2. Example model: resources

Name Relative
performance

Frequency Distribution (%)

HPC 100 5 80
HPC 200 8 70
HPC 300 10 60
HPC 400 15 50
HPC 500 20 40
HPC 650 30 30
HPC 800 40 20
HPC 900 50 10
HPC 1000 60 10

Table 3. Example model: requests

Finally, the model must define how each agent uses the
ACTs to optimize the performance. In this case study six

- 6 -

experiments have been considered, each of which has the
same configurations as described in Tables 1, 2 and 3, but
has different configurations as described in Table 4.

Experiment number Configurations
1 2 3 4 5 6

Using T_ACT X X X X X X
Using C_ACT X X X X X

L_ACT: event-driven data-push X X X X
G_ACT: periodic data-pull* X X X
L_ACT: periodic data-pull* X X

G_ACT: event-driven data-push X
*Here the frequency was once every 10 steps.

Table 4. Example model: configurations

To simplify the experiments, we only define the
configurations at the system level, which means all of the
agents in the model must use the same configurations. A
mixture of configurations is possible but is not considered
in these experiments. In the simulation results included in
the section below, a comparison of the different
configurations is given by considering their impact on the
agent performance.

4.2. Simulation results

Figure 4. The ARMSim simulation: a step-by-step view

When the simulation begins, a thread is created to
calculate the statistical data step by step. The phase for
request sending and the resource discovery is the key part

of the whole simulation process. The ARMSim
environment can show the results in multiple views. The
step-by-step and accumulative views are especially
interesting in this case study, which is illustrated in
Figures 4 and 5 respectively.

Figure 5. The ARMSim simulation: an accumulative view

As shown in Figure 5, six experiments are carried out

simultaneously for 220 steps and results are displayed on
all of performance metrics. Note that simulation processes
in the first 20 steps are not stable and not included in
Figures 4 and 5. We are especially interested in the
balance of resource discovery speed and system efficiency
in this case study. It is obvious that different configurations
designed in these experiments lead to different impact on
discovery speed and system efficiency. Detailed simulation
data can be found in Table 5 and each of the six situations
are also described below.

1. Only T_ACTs are used in each agent. Each time the
request arrives, a lot of connections must be made and
traversed in order to find the satisfied grid resource. In
this situation, the discovery speed and system
efficiency are both rather low.

2. The cache is used in each agent, which needs no extra
data maintenance and improves the discovery speed
and system efficiency a little. This is because the
dynamics of the resources reduce the effects of the
cached information and so becomes unreliable.

- 7 -

3. L_ACT is added in each agent. Each time the resource
performance changes, the corresponding agent will
advertise the change upward in the hierarchy. This
adds additional data maintenance workload to the
system, which decreases the discovery workload
extremely. So the discovery speed and the system
efficiency are all improved.

4. G_ACT is also added. Each agent will get global
resource information from its upper agent once every
10 simulation steps, which will add additional data
maintenance workload. From the simulation results,
we can see this improves the discovery speed further.
But the system efficiency decreases because of the
additional data maintenance.

5. Another maintenance of the L_ACT is added. Each
agent asks for resource information from its lower
agents once every 10 steps. This improves the
discovery speed a bit further and adds more data
maintenance workload, which also decreases the
system efficiency.

6. Another maintenance of the G_ACT is added. This
improves the discovery speed only a little, but adds
further data maintenance workload, which decreases
the system efficiency extremely.

Performance metrics* No.

r a d v=r/d e=r/(a+d)
1 91848 0 972118 0.09 0.09
2 92326 0 849540 0.10 0.10
3 92206 89916 37583 2.45 0.72
4 92084 110648 34034 2.70 0.63
5 91264 138965 32415 2.81 0.53
6 92929 9065245 32837 2.83 0.01

*Note: All values are accumulative results after 220 steps.
Table 5. Simulation results I

The impact of the choice of the configurations on the

discovery speed and the system efficiency is shown clearly
in Figure 6.

�
���
�����
�����
�����
�����
�����

� � � � � 	
����

��
�� �
��
��
� �

�

Figure 6. Choice of the configurations

It can be seen that both third and fourth experiments

have a good balance between the discovery speed and the

system efficiency for this example model. The fourth
situation has a higher discovery speed in comparison to the
third, with lower system efficiency. And the third situation
has higher system efficiency with lower discovery speed.

The difference between configurations of the third and
fourth experiments is that G_ACT periodic data pull is
additionally configured in the fourth experiment, which
was once 10 simulation steps. Changing the G_ACT data
pull frequency will also change the performance of the
model. Some further experiments are designed where the
configurations that are used are all the same as described
in the fourth experiment. The only difference is the
G_ACTs in the agents are updated with different
frequencies, which may lead to differences in the amount
of system workload for resource advertisement and
discovery. Detailed simulation results are given in Table 6.

Performance metrics* Freq.
r a d v=r/d e=r/(a+d)

1 91618 330256 32530 2.81 0.25
2 91537 210336 33346 2.74 0.37
5 91355 134910 33492 2.72 0.54
10 92084 110648 34034 2.70 0.63
20 90713 98893 33734 2.68 0.68
30 91641 95154 34935 2.62 0.70
80 92997 91803 35944 2.58 0.72

120 92540 88539 37016 2.50 0.73
never 92206 89916 37583 2.45 0.72

*Note: All values are accumulative results after 220 steps.
Table 6. Simulation results II

In Table 6, when the frequency value is once 10

simulation steps, the situation is the same as that in the
fourth experiment. And when G_ACTs are never
maintained, the situation is the same as that in the third
experiment. The impact of the choice of the G_ACT
periodic data pull frequency on the discovery speed and the
system efficiency is shown clearly in Figure 7.

�
�����
�
�����
�
�����

�!���#"$�&%��('��)�����*�����+��"��
,�-$.�/��

0 1
23 4
56
78
9

:
.

Figure 7. Choice of the G_ACT periodic data pull frequency

As shown in Figure 7, the best trade-off between

discovery speed and system efficiency is once every 20

- 8 -

simulation steps in this example model. In summary, the
example model should use all of the ACTs. L_ACT should
be maintained by the event-driven data push configuration.
The G_ACT should be maintained by the periodic data
pull once every 20 simulation steps. In fact, the
performance of the example model can be improved
further using agent level modeling. Different agents can
use a mixture of different strategies to achieve higher
performance of the whole system. This is not discussed in
detail here.

The techniques of modeling and simulation are useful
especially for the current phase of research into grid
computing. As mentioned, a practical grid environment
does not yet exist. In fact, there is not even a grid testbed
that can be used for research. Current ARMS application
is far from a grid size, where the performance data cannot
be produced for analysis. This makes a modeling and
simulation environment very valuable for this kind of
research. The ARMSim environment is such an attempt.

5. Related work

Modeling and simulation approaches have been widely
used in grid computing research. Some existing tools are
described below though motivations of these work are quite
different from each other. Features that distinguish
ARMSim from other work are also discussed in detail.

• Bricks [19]. The Bricks performance evaluation system
allows analysis and comparison of various scheduling
schemes in a grid computing environment. Bricks can
simulate various grid behaviors, especially the behavior
of networks and resource scheduling algorithms.
Network modeling is not considered in current
ARMSim implementation where reduction of number
of agent connections is focused at the moment.
ARMSim simulates the ARMS resource discovery
process instead of resource allocation and scheduling.

• GridSim [4]. The toolkit supports modeling and
simulation of heterogeneous grid resources, users and
application models. It provides primitives for creation
of application tasks, mapping of tasks to resources and
their management. While ARMSim focuses on
performance simulation of decentralized resource
advertisement and discovery among ARMS agents,
GridSim aims at design and evaluation of scheduling
algorithms or policies of resource brokers. GridSim is
based on an existing Java discrete event simulation
infrastructure and the ARMSim simulation engine is
an iterative sequential process relying on data
statistical capabilities.

• MicroGrid [17]. The MicroGrid simulation tools
enable Globus [13] applications to be run in arbitrary

virtual grid resource environments. MicroGrid is
actually an emulator meaning that actual application
code is executed on the virtual grid. ARMSim takes a
different approach and focuses on different issues.
ARMSim characterizes ARMS agent behaviors using
some statistical data like relative performance and
frequency value and targets performance of the ARMS
itself, while MicroGrid targets grid applications instead
of performance of the Globus infrastructure.

• Simgrid [11]. Simgrid is a simulation toolkit for the
study of scheduling algorithms for distributed
applications. Simgrid targets scheduling algorithms for
a single structured application. ARMS support resource
advertisement and discovery for a multi-user system
where all requests for computations are independent.
Simgrid focuses more on application makespans as
oppose to average overall performance.

Simulation approaches have also been used for
performance studies of traditional high performance
computing applications and systems for many years.
Example simulation environments for parallel and
distributed computing include POEM [1] and PACE [5,
15]. While ARMS focuses on grid level resource
management, these work are not directly related to the
ARMSim environment and thus not discussed here.

ARMS is an agent-based grid computing system with a
generic hierarchical multi-agent model and a specific
resource advertisement and discovery mechanism. The
ARMSim environment is specially designed for the ARMS
system. The benefit of an agent-based approach over other
infrastructure techniques was discussed in [8]. The
ARMSim environment is just initially implemented and
future work is discussed below.

6. Conclusions and Future Work

This work addresses the problem of modeling and
simulation of agent behaviors in the ARMS system. An
initial implementation of the ARMSim environment is
described in detail. A case study is included using an
example model with over 1000 agents and 13 experiments
are carried out each involving nearly 100000 requests.
Simulation results show that agent configurations can have
very different impacts on system performance and the
simulation approach is the most straightforward way to
enable the system performance to be investigated
quantitatively in a large scale.

A major future work will be the refinement of input
character models. Current ARMSim request and resource
models are quite simple. Some parameters, e.g.
performance and frequency, are modeled in an average
way. In a real ARMS system, request distribution could be

- 9 -

very different and resource dynamics should also be
characterized in a more refined way.

Since current ARMSim simulation can be processed
quickly (in minutes given the example model described in
Section 4), another future work would be the exploration of
ways to integrate the ARMSim simulation engine with the
ARMS system as an online performance advisor for ARMS.
In this case, all input information should be monitored
from the running ARMS agents and the ARMSim
simulation results should be returned and used to advise
ARMS agents with configuration suggestions that could
lead to a higher overall system performance. For example,
if agents are configured with more efficient resource
advertisement and discovery, network traffic in the ARMS
system can be significantly reduced. The ARMS agents can
be also advised to move to a better location where more
requests and resources are involved. If more requests are
satisfied locally, system performance bottlenecks could be
avoided at heads of the agent hierarchy and sub-
hierarchies.

Acknowledgements

The author would like to express his gratitude to members
of the High Performance Systems Group at the University
of Warwick, including Prof. Graham R. Nudd, Dr. Darren
J. Kerbyson, Dr. Stephen A. Jarvis, Mr. Daniel P. Spooner
and Mr. James D. Turner, for their previous contribution
to the ARMS and ARMSim development.

References

[1] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, et. al.,

POEMS: end-to-end performance design of large parallel
adaptive computational systems, IEEE Transactions on
Software Engineering 26(11) (2000) 1027-1048.

[2] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo, and A.
Woolrath, The Jini Specification (Addison Wesley, 1999).

[3] F. Berman, A. J. G. Hey, and G. Fox, Grid Computing:
Making The Global Infrastructure a Reality (John Wiley &
Sons, 2003).

[4] R. Buyya, and M. Murshed, GridSim: a toolkit for the
modeling and simulation of distributed resource
management and scheduling for grid computing,
Concurrency and Computation: Practice and Experience,
14(13-15) (2002) 1175-1220.

[5] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
Performance modelling of parallel and distributed
computing using PACE, in: Proceedings of 19th IEEE
International Performance, Computing and Communication
Conference (IPCCC ’00) (Phoenix, AZ, USA, 2000) pp.
485-492.

[6] J. Cao, D. J. Kerbyson, and G. R. Nudd, High performance
service discovery in large-scale multi-agent and mobile-
agent systems, International Journal of Software

Engineering and Knowledge Engineering (Special Issue on
Multi-Agent Systems and Mobile Agents) 11(5) (2001) 621-
641.

[7] J. Cao, D. J. Kerbyson, and G. R. Nudd, Performance
evaluation of an agent-based resource management
infrastructure for grid computing, in: Proceedings of 1st
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid ’01) (Brisbane, Australia, 2001) pp.
311-318.

[8] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R.
Nudd, ARMS: an agent-based resource management system
for grid computing, Scientific Programming (Special Issue
on Grid Computing) 10(2) (2002) 135-148.

[9] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd,
Agent-based grid load balancing using performance-driven
task scheduling, in: Proceedings of 17th IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’03)
(Nice, France, 2003) pp. 49-58.

[10] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, GridFlow:
workflow management for grid computing, in: Proceedings
of 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid ’03) (Tokyo, Japan, 2003)
pp. 198-205.

[11] H. Casanova, Simgrid: a toolkit for the simulation of
application scheduling, in: Proceedings of 1st IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGrid ’01) (Brisbane, Australia, 2001) pp. 430-437.

[12] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, Web services description language (WSDL)
1.1 (W3C Note, 2001). http://www.w3c.org/TR/wsdl.

[13] I. Foster and C. Kesselman, Globus: a metacomputing
infrastructure toolkit, International Journal of High
Performance Computing Applications 2 (1997) 115-128.

[14] I. Foster and C. Kesselman, The GRID: Blueprint for a New
Computing Infrastructure (Morgan-Kaufmann, 1998).

[15] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry,
J. S. Harper, and D. V. Wilcox, PACE – a toolset for the
performance prediction of parallel and distributed systems,
International Journal of High Performance Computing
Applications (Special Issue on Performance Modelling –
Part I) 14(3) (2000) 228-251.

[16] D. Slama, J. Garbis, and P. Russell, Enterprise Corba
(Prentice Hall, 1999).

[17] H. J. Song X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.
Taura, and A. Chien, The MicroGrid: a scientific tool for
modeling computational grids, in: Proceedings of
Supercomputing 2000 (SC ’00).

[18] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and G. R. Nudd,
Local grid scheduling techniques using performance
prediction, IEE Proceedings - Computers and Digital
Techniques 150(2) (2003) 87-96.

[19] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U.
Nagashima, Overview of a performance evaluation system
for global computing scheduling algorithms, in: Proceedings
of 8th IEEE International Symposium on High Performance
Distributed Computing (HPDC-8) (1999) pp. 97-104.

