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Abstract—This paper focuses on solving the modelling issues of 

the monitoring system service performance based on network 
calculus theory. Firstly, we formulate the service model of the 
smart grid monitoring system. Then, we derive the flow arrival 
curve based on the incremental process related functions. Next, 
flow arrival curves for the case of the incremental process being 
fractional Gaussian process and that of generalized Cauchy 
process are obtained, respectively. Three technical theorems 
related to network calculus are presented as our main results. 
Mathematically, the variance of arrival flow for the continuous 
time case is derived. Assuming that the incremental process of 
network flow is a Gaussian stationary process, and given the 
auto-correlation function of incremental process with violation 
probability, the formula of the arrival curve is derived. Besides, 
the overall flow variance under the discrete time case is derived 
explicitly. The theoretical results are evaluated in smart grid 
applications. Simulations indicate that generalized Cauchy 
process performs better than fractional Gaussian process for our 
considered problem. 
 

Index Terms—fractional Gaussian process, generalized Cauchy 
process, monitoring systems, network calculus, service 
performance. 
 

I. INTRODUCTION 

A. Motivation 
HE monitoring system is one of the core elements within 
the field of smart grid [1]. Allowing for the monitoring of 

voltage, current, power at transformers, smart meters and 
distribution switching devices, the smart grid monitoring 
system has attracted much attention and significant advances 
on this topic have been made; see, e.g., [2], [3]. There are two 
main differences between the smart grid monitoring system and 
the traditional network service system. The analysis and 
management part of the smart grid monitoring system cannot be 
merely regarded as simple data transmission. In addition, the 
monitoring system is often required to analyze the 
synchronization of different monitoring node data. In the case 
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of the power quality analysis, e.g., in [4], one needs to deal with 
the monitoring data acquired by power quality monitor 
simultaneously. 

Currently, there have been two sets of the wide area data 
measurement systems, one of which is supervisory control and 
data acquisition (SCADA) system based on the remote terminal 
unit (RTU) [5], [6], and the other is the wide area measurement 
system (WAMS) based on the phasor measurement unit (PMU) 
[7], [8]. Based on RTU [9], the SCADA system is most widely 
used in power systems. The RTU has functions including 
measurement, communication, control, etc., and it is widely 
used in the energy management system. The main disadvantage 
of the RTU is that the data sampling frequency is relatively low, 
thus the dynamic information of the power communication 
network cannot be achieved in time. Moreover, the RTU has no 
synchronization clock, and the obtained data is not 
synchronized. If we compare PMU with RTU, PMU has several 
advantages as follows. It is equipped with global positioning 
system (GPS) based clock synchronizer and has higher 
measurement accuracy. Additionally, its measurement 
frequency is in the magnitude of tens of milliseconds. 
Therefore, compared with SCADA system, WAMS based on 
PMU can achieve more accurate measurement information and 
is the main component of the wide area monitoring system of 
smart grid [8]. The WAMS of smart grid is composed of three 
parts: PMU, communication network and controller. PMU 
measures the operation parameters of the grid from different 
regions and sends them to the control center where data is 
analyzed and processed. To illustrate, Fig. 1 is a schematic 
diagram for the case of wide area closed loop damping control 
in the South China Power Grid. 

Under the mode of the shared network, the smart grid 
network monitoring system is required to analyze the service 
performance of the system, so as to determine the network 
configuration of the monitoring system. On the other hand, the 
performance analysis is based on the modelling of the network 
transmission and calculation performance of the monitoring 
system. Within the monitoring system of smart grid, both 
power measurement and controller signals are transmitted 
through the communication network, while the data of each 
node of the power system enters into the control center through 
different communication channels. In addition, the arrival time 
of data from different communication channels entering into 
the control center is different. Thus, it results that the input 
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control data is not synchronized. The data which is not 
synchronized with the communication channel brings 
additional delay into the system. 

The above analysis indicates that the transmission model of 
the smart grid monitoring system cannot be simply equated 
with the ordinary network transmission model. The additional 
time delay caused by the synchronization is required to be 
considered. Besides, it costs time for the smart grid monitoring 
system to process the data. Thus, the time delay caused by the 
processing is also required to be considered in the service 
model; see, e.g., [10]. 

Region 1

Region 2

Control Center

 
Fig. 1.  Schematic diagram for the wide area monitoring system of smart grid. 
 

B. Literature Review 
The most commonly used methodology for the network 

performance analysis is based on the time delay generated by 
Ping and other network commands. Then, the network 
performance analysis can be expressed by the mean and 
variance of the time delay [11], [12]. Theoretically, the 
measurement is under the sampling of a continuous time model. 
If the sampled object is a group of independent and identically 
distributed random variables, and only if the random variables 
have the same and finite mathematical expectation (mean) 𝜇𝜇 
and variance σ2, the measured data shall be restricted by the 
central limit theorem, which makes the sampled data follow a 
normal distribution with mean 𝜇𝜇 and variance σ2 [13], [14].  

Paradoxically, the data of the Internet has been proved to be 
neither independent, nor does it follow the same distribution, 
with its variance unfixed [15]. For example, the variance of the 
fractional Brownian process is related to the size of the time 
interval. Even if the size of the sampling time interval is 
reduced, according to the fractional theory and the 
self-similarity theory, the random process that has fractional 
characteristics still has a burst phenomenon in a short period, 
even when the time interval is approaching zero. Therefore, in 
order to describe the performance of the network correctly, the 
method based on the mean and variance of the measured data is 
inaccurate. 

The network calculus theory has been developed rapidly; see, 
e.g., [13]-[16], and it has been utilized to describe the 
performance of the service system [17], [18]. On the other hand, 
the future smart grid is expected to be an interconnected 

network of small-scale and self-contained microgrids, where 
renewable energy sources play a significant role [19], [20]. The 
stochastic network calculus theory has been applied to analyze 
the power supply reliability with various renewable energy 
configurations [21], [22]. In [23], network calculous theory has 
been applied in real-time routing in wireless sensor networks 
with the methodology of potential field in physics. For the 
survey of deterministic and stochastic service curve models in 
network calculus, readers can refer to [24]. It is notable that due 
to the synchronous property of the smart grid applications [25], 
the original network calculus theory cannot be directly applied 
in the delay analysis discussed in this paper. 

C. Contribution 
In this paper, network calculus theory has been applied to 

model the smart grid monitoring system. Firstly, the service 
model of the smart grid monitoring system is formulated. Then, 
the flow arrival curve based on the incremental process related 
functions is derived. Next, flow arrival curve for the case of the 
incremental process being fractional Gaussian process and 
generalized Cauchy process are obtained, respectively. Then, 
simulations are illustrated to show the feasibility of the 
proposed methods. 

The main contributions of this work can be summarized as 
follows:  

1, For the smart grid monitoring system, the network 
calculus theory has been applied, such that the engineering 
practical problems are transformed into mathematical issues. It 
is highlighted that we are focusing on developing fundamental 
as well as theoretical results, and the analysis methods 
introduced in this paper can be applied under most scenarios of 
monitoring systems in the field of smart grid. 

2, Based on the network calculus theory, in this paper, a 
service modelling for the smart grid monitoring system is 
formulated. The flow arrival curve based on the incremental 
process related functions is derived. Flow arrival curves for the 
case of the incremental process being fractional Gaussian 
process and that of generalized Cauchy process are obtained, 
respectively. With the performance modelling method 
proposed in this paper, the smart grid network monitoring 
system shall be able to analyze the service performance of the 
system, so as to determine the network configuration of the 
monitoring system. 

3, In this paper, three theorems are proposed as our main 
results. In Theorem I, the variance of arrival flow for the 
continuous time case is derived. In Theorem II, assuming that 
the incremental process of network flow is a Gaussian 
stationary process, and given the auto-correlation function of 
incremental process with violation probability, the formula of 
the arrival curve is derived. In Theorem III, the overall flow 
variance under the discrete time case is expressed explicitly. 
Besides, several technical lemmas and corollaries are obtained. 

4, Based on the actual network flow dataset, numerical 
simulations are performed, verifying the feasibility of the 
obtained arrival flow curves. In addition, we compare the 
calculation results obtained under the assumption of fractional 
Gaussian process and generalized Cauchy process. The 
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experimental results show that performance under generalized 
Cauchy process is closer to statistical results from real data. 

The rest of this paper is organized as follows. In Section II, 
system modelling is introduced. In Section III, main results of 
this paper are provided. Experimental results are illustrated in 
Section IV. Finally, Section V gives some concluding remarks. 

II. SERVICE MODELLING OF THE SMART GRID MONITORING 
SYSTEM 

We regard the transmission network of the smart grid 
monitoring system as a transport service node. The processing 
and queuing of the equivalent transmission service node causes 
the delay of network transmission. Similarly, we treat the 
calculation and procession of the control center as a calculation 
service node. Since the equivalent transmission model of 
network services has been analyzed in detail in the network 
calculus theory, the model of the equivalent calculation service 
node of the monitoring system is given as follows. Data 
processing can be considered as a data stream going into a 
service link, with the output flow through a scaling function. 
Equivalently, the data is processed through a scaling function 
first, and then through a computing service. The latter case is 
consistent with the model described in [26], and we analyze the 
latter case here.  

First, let us introduce some notations. Denote ∆  as the 
processing time of one unit of data in one node. 𝐹𝐹(·) stands for 
the function to measure the time complexity. For 𝑛𝑛 units of 
input data, their processing time is the value of 𝐹𝐹(𝑛𝑛)∆. Let us 

define 𝐶𝐶(𝑡𝑡) ≜ 𝐹𝐹−1𝑡𝑡
∆

, where 𝐶𝐶(𝑡𝑡) is considered as a strict service 
curve, whose definition can be found in network calculus 
theory [13]-[16]. Furthermore, when the processing result of 
the calculation processing node is expressed as the scaling 
function 𝑆𝑆(𝑛𝑛)  of the input data with volume 𝑛𝑛 , then the 
monitoring system can be regarded as a series of service models 
shown in Fig. 2. Thereby, the overall service performance of 
the monitoring system can be expressed as 𝐶𝐶⨂𝑆𝑆−1(𝛽𝛽), where 
S(𝑛𝑛) stands for the infimum of scaling function, 𝛽𝛽(𝑡𝑡) stands 
for the equivalent transmission service performance of the 
monitoring system, and operator ⨂ stands for convolution. 

Fig. 2.  Regarding the monitoring system as a series of service models. 
 

When the same input data flow corresponds to a variety of 
processing results, we define the scaling function 𝑆𝑆  as the 
maximum processing result of the same input flow. The 
equivalent service curve obtained by this approach is smaller 
than the real service curve, and the performance boundary of 
the system obtained in this way can guarantee the real service 
performance. Furthermore, when the monitoring system has 
massive simultaneous computation and transmission, any part 
of the section containing the calculation and the transmission 
can be equivalent to a computing service node with a 
transmission service node. If we connect the equivalent service 
nodes described above in series, according to [26], the 

equivalent service model can be obtained. Such syncretized 
equivalent model can be transformed into the traditional 
transmission service model. The scenario of multi-channel data 
can be obtained similarly. 

In the mode of a sharing network, power system data is 
required to go through the public network first before going 
through a private network. We assume that the private network 
has QoS guarantee for monitoring system. Hence, our focus is 
put on the analysis of the equivalent transport service model 
through the public network transmission. Power monitoring 
data transmission in public networks can be equivalent to 
competition with the other application data. According to [26], 
if a service system works on two aggregate flow 𝑅𝑅1  and 𝑅𝑅2 
simultaneously, the overall service curve is 𝛽𝛽 (𝑡𝑡) , and the 
arrival curves of 𝑅𝑅1 , 𝑅𝑅2  are 𝛼𝛼1 , 𝛼𝛼2 , respectively, then, for 
arbitrary time 𝑡𝑡  the output of 𝑅𝑅1  satisfies the following 
inequality, 

𝑅𝑅1∗(𝑡𝑡) ≥ 𝑅𝑅1⨂(𝛽𝛽 − 𝛼𝛼2)+(𝑡𝑡). 
If (𝛽𝛽 − 𝛼𝛼2)+  is a generalized increasing function, then 

(𝛽𝛽 − 𝛼𝛼2)+ is the service curve of 𝑅𝑅1. The key to achieve the 
equivalent transfer service curve is to obtain the arrival curve of 
the rest of the data in the public network, which is analyzed in 
the next section. 

III. EQUIVALENT TRANSMISSION SERVICE CURVE IN THE 
SHARED NETWORK 

A. Deriving Flow Arrival Curve Based on the Incremental 
Process Related Functions 

According to the properties of fraction, self-similarity and 
long-range dependence processes, both the fractional 
dimension describing the fractional characteristics and the 
Hurst exponent describing the long-range dependence belong 
to the properties of the process auto-correlation function in a 
specific range.  

Before we provide the models based on the auto-correlation 
function, a mathematical lemma is presented first. 

Lemma I [27] The variance formula for the sum of arbitrary 
random variables, 

𝑣𝑣𝑣𝑣𝑣𝑣 ��𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = �𝑣𝑣𝑣𝑣𝑣𝑣(𝑋𝑋𝑖𝑖) + 2 � 𝑐𝑐𝑐𝑐𝑣𝑣�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�
𝑖𝑖≤𝑛𝑛,𝑗𝑗≤𝑛𝑛

𝑖𝑖≠𝑗𝑗

𝑛𝑛

𝑖𝑖=1

. 

Based on Lemma I, we denote the network arrival flow as a 
random stochastic process 𝐴𝐴(𝑡𝑡) which has a finite mean value. 
We assume that the incremental process is a smooth process, 
denoted by 𝐹𝐹(𝑡𝑡), and the auto-correlation function is 𝑣𝑣(𝜏𝜏). The 
network flow model is usually assumed to have incremental 
stability [28]. Otherwise, the network arrival model cannot be 
defined. Referring to the fractional Gaussian process [29], we 
define the incremental process similarly, 

𝐹𝐹(𝑡𝑡) ≜
𝐴𝐴(𝑡𝑡 + 𝜀𝜀) − 𝐴𝐴(𝑡𝑡)

𝜀𝜀
. 

Since the incremental process is stationary, its mean is 
constant. Thus, we assume 𝐸𝐸�𝐹𝐹(𝑡𝑡)� = 𝑐𝑐. Furthermore, let us 
define 𝐺𝐺(𝑡𝑡) ≜ 𝐹𝐹(𝑡𝑡) − 𝑐𝑐. 

We assume that the variance of incremental procedure 𝐺𝐺(𝑡𝑡) 
is 𝜎𝜎2 . Since 𝐺𝐺(𝑡𝑡)  is a stationary process, 𝜎𝜎2  exists and is 

R(t) S1F − β R*(t)
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constant. Then, we present the main results as follows. 
Theorem I: The variance of arrival flow within any 

continuous time period [0, 𝑡𝑡]  satisfies the following 
relationship 

𝑉𝑉𝑣𝑣𝑣𝑣�𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠)� = 2𝜎𝜎2 � (𝑡𝑡 − 𝜏𝜏)𝑣𝑣(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
. 

Proof. 
Due to 𝐸𝐸�𝐺𝐺(𝑡𝑡)� = 0, we have  

𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺(𝑡𝑡),𝐺𝐺(𝑠𝑠)) = 𝑣𝑣(𝑡𝑡 − 𝑠𝑠). 
Let us denote 𝑡𝑡 = 𝑛𝑛𝜀𝜀. Then, we have 

𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑡𝑡 + 𝑠𝑠 − 𝜀𝜀) = 𝜀𝜀𝐺𝐺[(𝑛𝑛 − 1)𝜀𝜀 + 𝑠𝑠] + 𝑐𝑐𝜀𝜀, 
𝐴𝐴(𝑡𝑡 − 𝜀𝜀 + 𝑠𝑠) − 𝐴𝐴(𝑡𝑡 − 2𝜀𝜀 + 𝑠𝑠) = 𝜀𝜀𝐺𝐺[(𝑛𝑛 − 2)𝜀𝜀 + 𝑠𝑠] + 𝑐𝑐𝜀𝜀, 

⋯, 
𝐴𝐴(2𝜀𝜀 + 𝛿𝛿 + 𝑠𝑠) − 𝐴𝐴(𝜀𝜀 + 𝛿𝛿 + 𝑠𝑠) = 𝜀𝜀𝐺𝐺(𝜀𝜀 + 𝑠𝑠) + 𝑐𝑐𝜀𝜀, 

𝐴𝐴(𝜀𝜀 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) = 𝜀𝜀𝐺𝐺(0 + 𝑠𝑠) + 𝑐𝑐𝜀𝜀. 
Let us take the summation of the above 𝑛𝑛 equations, which 
leads to 
 𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) = ∑ 𝜀𝜀𝐺𝐺(𝑖𝑖𝜀𝜀 + 𝑠𝑠) + 𝑛𝑛𝑐𝑐𝜀𝜀𝑛𝑛−1

𝑖𝑖=0 . (1) 
By Lemma I, the variance of 𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) can be expressed 
as  
𝑉𝑉𝑣𝑣𝑣𝑣�𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠)�

= 𝜀𝜀2 ��𝑉𝑉𝑣𝑣𝑣𝑣(𝐺𝐺(𝑖𝑖𝜀𝜀 + 𝑠𝑠)
𝑛𝑛−1

𝑖𝑖=0

+ 2 � 𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺(𝑖𝑖𝜀𝜀 + 𝑠𝑠),𝐺𝐺(𝑗𝑗𝜀𝜀 + 𝑠𝑠))
𝑖𝑖≤𝑛𝑛,𝑗𝑗≤𝑛𝑛

0<𝑖𝑖<𝑗𝑗

�  

= 𝑡𝑡𝜎𝜎2𝜀𝜀 + 2𝜀𝜀2𝜎𝜎2�(𝑛𝑛 − 𝑖𝑖)𝑣𝑣(𝑖𝑖𝜀𝜀, 𝜀𝜀)
𝑛𝑛−1

𝑖𝑖=1

. 

For 𝜀𝜀 → 0, we set 𝜏𝜏 = 𝑖𝑖ε. Then,  
(𝑛𝑛 − 𝑖𝑖)𝜀𝜀 = 𝑡𝑡 − 𝜏𝜏, 

which leads to 𝑑𝑑𝜏𝜏 = 𝜀𝜀. Then, we have 

𝑉𝑉𝑣𝑣𝑣𝑣�𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠)�＝ 𝑙𝑙𝑖𝑖𝑙𝑙
𝜀𝜀→0

�𝑡𝑡𝜎𝜎2𝜀𝜀 + 2𝜀𝜀2𝜎𝜎2

× �(𝑛𝑛 − 𝑖𝑖)𝑣𝑣(𝑖𝑖 × 𝜀𝜀, 𝜀𝜀)
𝑛𝑛−1

𝑖𝑖=1

� 

＝ 𝑙𝑙𝑖𝑖𝑙𝑙
𝜀𝜀→0

�2𝜀𝜀�(𝑛𝑛𝜀𝜀 − 𝑖𝑖𝜀𝜀)𝑣𝑣(𝑖𝑖𝜀𝜀, 𝜀𝜀)
𝑛𝑛−1

𝑖𝑖=1

�＝2𝜎𝜎2 � (𝑡𝑡 − 𝜏𝜏)𝑣𝑣(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
, 

which finishes the proof.  
□ 

At initial time 0, we define the input network flow to be 0. 
Therefore, we can calculate the variance of the flow in any time 
period according to Theorem I. If the incremental process 𝐺𝐺(𝑡𝑡) 
satisfies the Gaussian property, then we have one more result as 
follows. 

 
Theorem II: Let us define the violation probability  

𝛿𝛿 = 𝑃𝑃 𝑣𝑣�𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) > �̂�𝐴(𝑡𝑡)�, 
where �̂�𝐴(𝑡𝑡) stands for the arrival curve. Given 𝑘𝑘 = √−2𝑙𝑙𝑛𝑛𝛿𝛿, 
we assume that the incremental process 𝐺𝐺(𝑡𝑡) of network flow 
𝐴𝐴(𝑡𝑡) is a Gaussian stationary process, and the auto-correlation 
function of 𝐺𝐺(𝑡𝑡) is 𝑣𝑣(𝜏𝜏) with its mean 𝑐𝑐 and variance 𝜎𝜎2, then 

the arrival curve �̂�𝐴(𝑡𝑡) can be expressed as: 

�̂�𝐴(𝑡𝑡) = 𝑐𝑐𝑡𝑡 + 𝑘𝑘𝜎𝜎�2� (𝑡𝑡 − 𝜏𝜏)𝑣𝑣(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
. 

Proof.  
We recall (1) and define 

𝑍𝑍(𝑡𝑡) ≜�𝜀𝜀𝐺𝐺(𝑖𝑖𝜀𝜀 + 𝑠𝑠)
𝑛𝑛−1

𝑖𝑖=0

. 

Then, we have 
𝐸𝐸[𝑍𝑍(𝑡𝑡)] = 0, 

 𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)] = 2𝜎𝜎2 ∫ (𝑡𝑡 − 𝜏𝜏)𝑣𝑣(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 . (2) 

Due to 𝑛𝑛𝑐𝑐𝜀𝜀 = 𝑐𝑐𝑡𝑡, thus, 
𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) = 𝑍𝑍(𝑡𝑡) + 𝑐𝑐𝑡𝑡. 

Since 𝐺𝐺(𝑡𝑡)  is Gaussian stationary process, a linear 
combination of stationary Gaussian process remains stationary 
Gaussian process. 𝑍𝑍(𝑡𝑡) is a Gaussian process with mean 0 and 
variance satisfying (2). Then, we have 

𝑃𝑃𝑣𝑣 �
𝑍𝑍(𝑡𝑡)

�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)]
> 𝑘𝑘� = �

1
√2𝜋𝜋

𝑒𝑒−
𝑠𝑠2
2 𝑑𝑑𝑠𝑠

∞

𝑘𝑘
. 

For 𝑘𝑘→∞, we have 

lim
k→∞

�
1

√2𝜋𝜋
𝑒𝑒−

𝑠𝑠2
2 𝑑𝑑𝑠𝑠

∞

𝑘𝑘
= 𝑒𝑒−

𝑘𝑘2
2 . 

Hence,  

𝑃𝑃𝑣𝑣 �
𝑍𝑍(𝑡𝑡)

�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)]
> 𝑘𝑘� = 𝑒𝑒−

𝑘𝑘2
2 . 

Due to 𝑘𝑘 = √−2𝑙𝑙𝑛𝑛𝛿𝛿, the above equation can be rewritten as  

𝑃𝑃𝑣𝑣 �𝑍𝑍(𝑡𝑡) > 𝑘𝑘�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)]� = 𝑃𝑃𝑣𝑣 �
𝑍𝑍(𝑡𝑡)

�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)]
> 𝑘𝑘� = 𝛿𝛿. 

Thus,  
𝑃𝑃𝑣𝑣 �𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) > 𝑘𝑘�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)] + 𝑐𝑐𝑡𝑡�

= 𝑃𝑃𝑣𝑣 �𝑍𝑍(𝑡𝑡) + 𝑐𝑐𝑡𝑡 > 𝑘𝑘�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)] + 𝑐𝑐𝑡𝑡�

=𝑃𝑃𝑣𝑣 �𝑍𝑍(𝑡𝑡) > 𝑘𝑘�𝑣𝑣𝑣𝑣𝑣𝑣[𝑍𝑍(𝑡𝑡)]� = 𝛿𝛿. 
As we are given  

𝑃𝑃𝑣𝑣�𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) > �̂�𝐴(𝑡𝑡)� = 𝛿𝛿, 
then, 

�̂�𝐴(𝑡𝑡) = 𝑐𝑐𝑡𝑡 + 𝑘𝑘𝜎𝜎�2� (𝑡𝑡 − 𝜏𝜏)𝑣𝑣(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
 

is achieved, which finishes the proof.  
□ 

Based on the idea of solving the above problem in the 
continuous time case, we present a similar result considered in 
the discrete time case. 

Corollary I: The overall variance for the discrete time case 
is expressed by the following equation 

𝑣𝑣𝑣𝑣𝑣𝑣�𝐴𝐴(𝑛𝑛 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠)� = 𝑛𝑛𝜎𝜎2 + 2𝜎𝜎2�(𝑛𝑛 − 𝑖𝑖)𝑣𝑣(𝑖𝑖)
𝑛𝑛−1

𝑖𝑖=1

. 

Proof. 
If we choose 𝜀𝜀 = 1 , then we have the corresponding 

definition of incremental process in the discrete time case, with 
𝐺𝐺(𝑛𝑛) = 𝐴𝐴(𝑛𝑛 + 1) − 𝐴𝐴(𝑛𝑛). 
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We omit the detailed proof here, which is similar to that of 
Theorem II.  

□ 

B. Flow Arrival Curve for the case of the Incremental Process 
being Fractional Gaussian Process 

Treating incremental process as fractional Gaussian process 
is regarded as one of the most commonly used methods to 
describe the public network flow. Assuming the network flow 
is fractional Brownian process, in this subsection the flow 
arrival curve model for the discrete time case is obtained as a 
theorem. With the auto-correlation function of the discrete time 
fractional Gaussian process being 

𝑣𝑣(𝑘𝑘) =
1
2

[(𝑘𝑘 + 1)2𝐻𝐻 + |𝑘𝑘 − 1|2𝐻𝐻 − 2(𝑘𝑘)2𝐻𝐻]; 
see, e.g., [30], two technical lemmas are provided before 
presenting the theorem.  

 
Lemma II The following equation holds. 

�[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑚𝑚

𝑖𝑖=1
= (𝑙𝑙 + 1)2𝐻𝐻 − (𝑙𝑙)2𝐻𝐻 − 1. 

Proof. 
For 𝑙𝑙 =  1, we have 

(2)2𝐻𝐻 + 0 − 2 = (2)2𝐻𝐻 − 1 − 1. 
For 𝑙𝑙 =  𝑣𝑣, we have 

�[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑟𝑟

𝑖𝑖=1
= (𝑣𝑣 + 1)2𝐻𝐻 − (𝑣𝑣)2𝐻𝐻 − 1. 

Furthermore, for 𝑙𝑙 = 𝑣𝑣 + 1, we have 

�[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑟𝑟+1

𝑖𝑖=1

= �[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑟𝑟

𝑖𝑖=1
+ (𝑣𝑣 + 2)2𝐻𝐻 + (𝑣𝑣)2𝐻𝐻 − 2(𝑣𝑣 + 1)2𝐻𝐻
= (𝑣𝑣 + 2)2𝐻𝐻 − (𝑣𝑣 + 1)2𝐻𝐻 − 1. 

Consequently, we have 

�[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑚𝑚

𝑖𝑖=1
= (𝑙𝑙 + 1)2𝐻𝐻 − (𝑙𝑙)2𝐻𝐻 − 1, 

which finishes the proof.  
□ 

 
Lemma III: The following equation holds. 

�(𝑘𝑘 + 1 − 𝑖𝑖)[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻] =
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘 + 1)2𝐻𝐻

− (𝑘𝑘 + 1). 
Proof. 

When 𝑘𝑘 = 1 , the above equation holds obviously. For 
𝑘𝑘 = 𝑙𝑙, we have 

�(𝑙𝑙 + 1 − 𝑖𝑖)[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑚𝑚

𝑖𝑖=1
= (𝑙𝑙 + 1)2𝐻𝐻 − (𝑙𝑙 + 1). 

For 𝑘𝑘 = 𝑙𝑙 + 1, we have 

�(𝑙𝑙 + 2 − 𝑖𝑖)[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑚𝑚+1

𝑖𝑖=1

=�(𝑙𝑙 + 1 − 𝑖𝑖)[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻
𝑚𝑚

𝑖𝑖=1
− 2(𝑖𝑖)2𝐻𝐻]

+ �[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑚𝑚

𝑖𝑖=1
+ (𝑙𝑙 + 2)2𝐻𝐻 + (𝑙𝑙)2𝐻𝐻 − 2(𝑙𝑙 + 1)2𝐻𝐻 = (𝑙𝑙
+ 2)2𝐻𝐻 + (𝑙𝑙)2𝐻𝐻 − (𝑙𝑙 + 1)2𝐻𝐻 − (𝑙𝑙 + 1)

+ �[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑚𝑚

𝑖𝑖=1
= (𝑙𝑙 + 2)2𝐻𝐻 + (𝑙𝑙)2𝐻𝐻 − (𝑙𝑙 + 1)2𝐻𝐻
− (𝑙𝑙 + 1) + (𝑙𝑙 + 1)2𝐻𝐻 − (𝑙𝑙)2𝐻𝐻 − 1
= (𝑙𝑙 + 2)2𝐻𝐻 − (𝑙𝑙 + 2), 

which finishes the proof.  
□ 

 
Theorem III The overall flow variance under the discrete 

time case is expressed by the following equation 
𝑣𝑣𝑣𝑣𝑣𝑣�𝐵𝐵𝐻𝐻(𝑡𝑡 + 𝑠𝑠) − 𝐵𝐵𝐻𝐻(𝑠𝑠)� = 𝜎𝜎2(𝑛𝑛)2𝐻𝐻 . 

In addition, the following holds, 

 𝑃𝑃𝑣𝑣{𝑅𝑅(𝑡𝑡 + 𝑠𝑠) − 𝑅𝑅(𝑠𝑠) > 𝜌𝜌𝑡𝑡 + 𝑘𝑘𝜎𝜎𝑡𝑡𝐻𝐻} = 𝑒𝑒−
𝑘𝑘2
2 . (3) 

Proof. 
According to Lemma II and Lemma III, and assuming that 

𝑡𝑡 =  𝑛𝑛, i.e., 𝑛𝑛 times of the unit time, we have 
𝑉𝑉𝑣𝑣𝑣𝑣�𝐵𝐵𝐻𝐻(𝑡𝑡 + 𝑠𝑠) − 𝐵𝐵𝐻𝐻(𝑠𝑠)� 

= 𝑛𝑛σ2 + 2σ2 × �(𝑛𝑛 − 𝑖𝑖)𝑣𝑣(i)
𝑛𝑛−1

𝑖𝑖=1

 

= 𝑛𝑛σ2 + σ2 × �(𝑛𝑛 − 𝑖𝑖)[(𝑖𝑖 + 1)2𝐻𝐻 + (𝑖𝑖 − 1)2𝐻𝐻 − 2(𝑖𝑖)2𝐻𝐻]
𝑛𝑛−1

𝑖𝑖=1

 

= 𝑛𝑛σ2 + σ2 × [(𝑛𝑛)2𝐻𝐻 − 𝑛𝑛] 
= σ2(𝑛𝑛)2𝐻𝐻 . 
According to Theorem II, we have equation (3), which finishes 
the proof.  

□ 

C. Flow Arrival Curve for the case of the Incremental Process 
being Generalized Cauchy Process 

In Section III-A, we have discussed the flow arrival curve 
when the incremental process is fractional Gaussian, but there 
is a linear relationship between fractional dimension and Hurst 
exponent of fractional Gaussian [31,32], namely,  

𝐷𝐷 + 𝐻𝐻 = 2. 
This implies that fractional Gaussian process is related with 

the local properties (fractional) and global characteristics 
(length correlation), while an intuitive consideration of this 
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relevance will cause defects. The generalized Cauchy process is 
defined as follows. 

Definition I If a random process is stationary Gaussian 
process, and its auto-correlation function satisfies the 
following equation: 

𝑣𝑣(𝜏𝜏) = 𝐸𝐸�𝑋𝑋(𝑡𝑡 + 𝜏𝜏)𝑋𝑋(𝑡𝑡)� = (1 + |𝜏𝜏|𝛼𝛼)−
𝛽𝛽
𝛼𝛼 , 

in which 0 < 𝛼𝛼 ≤ 2, 𝛽𝛽 > 0, such stationary Gaussian process 
is known as the Generalized Cauchy process. 

It can be shown that  

𝑣𝑣(𝜏𝜏) = 1 −
𝛽𝛽
𝛼𝛼

|𝜏𝜏|𝛼𝛼 , 

for |𝜏𝜏| → 0. Thus, 

𝑣𝑣(0) − 𝑣𝑣(𝜏𝜏)~
𝛽𝛽
𝛼𝛼

|𝜏𝜏|𝛼𝛼 ,  

for |𝜏𝜏| → 0. Meanwhile, 
𝑣𝑣(𝜏𝜏) = |𝜏𝜏|−𝛽𝛽 ,  

for |𝜏𝜏| → ∞. Hence, 
𝐷𝐷 = 2 − 𝛼𝛼

2
, 

𝐻𝐻 = 1 − 𝛽𝛽
2
. 

Thereby, in the generalized Cauchy process, 𝐷𝐷 is no longer 
related with 𝐻𝐻. However, the auto-correlation function itself is 
not sufficient to describe the network flow. In fact, the 
fractional dimension is a criterion for the local self-similarity; 
see, e.g., [33]. Based on local self-similarity, the network flow 
arrival model via fractional dimension and long correlation 
coefficient is proposed in [34]. Two parameters 𝑣𝑣 and 𝑣𝑣  are 
introduced in their model, and it is notable that these two 
parameters are not measurable at present. Hence, these models 
are unable to be used in practical applications. According to 
Theorem II, we present the network flow arrival model under 
the generalized Cauchy hypothesis: 

�̂�𝐴(𝑡𝑡) = 𝑐𝑐𝑡𝑡 + 𝑘𝑘𝜎𝜎�2� (𝑡𝑡 − 𝜏𝜏)(1 + |𝜏𝜏|𝛼𝛼)−
𝛽𝛽
𝛼𝛼𝑑𝑑𝜏𝜏

𝑡𝑡

0
, 

with 
𝑃𝑃𝑣𝑣�𝐴𝐴(𝑡𝑡 + 𝑠𝑠) − 𝐴𝐴(𝑠𝑠) > �̂�𝐴(𝑡𝑡)� = 𝛿𝛿 

and 
𝑘𝑘 = √−2𝑙𝑙𝑛𝑛𝛿𝛿 

being satisfied. One cannot obtain the analytical result with the 
term 

�2� (t − 𝜏𝜏)(1 + |𝜏𝜏|𝛼𝛼)−
𝛽𝛽
𝛼𝛼d𝜏𝜏

t

0
, 

whereas an approximation solution can be achieved by 
numerical algorithm. When modelling the network flow 
practically, since the arrival flow is defined as the discrete 
process in the minimum time scale, we are able to obtain the 
flow arrival curve by Corollary I. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Design 
In this section, we verify the arrival flow curves obtained in 

Section III-C according to the actual network flow dataset, and 
we compare the experimental results with the arrival flow 

curves obtained in Section III-B. In order to highlight the 
importance of this experiment, we adopt the network flow 
dataset in [35], which is widely used in related research filed. 
The experimental steps are as follows: 

Step 1. Given time scale (millimeter, second, etc.), we record 
the size of the network data in per unit time (s). The data in a 
unit time can be regarded as the incremental process of the flow 
process at the current scale. 

Step 2. Focusing on the incremental process obtained by the 
first step, we calculate the fractional dimension 𝐷𝐷 , Hurst 
exponent 𝐻𝐻 , mean 𝜌𝜌  and standard deviation 𝜎𝜎 , respectively. 
Among a variety of approaches, we adopt the variable diagram 
method [36] to calculate the fractional dimension and the 
detrended fluctuation analysis (DFA) method [37] to calculate 
the Hurst exponent. In this section, the RandomFields software 
package of the R language is used, which can also be used to 
obtain the fractional dimension and Hurst exponent. Next, we 
obtain the fractional Gaussian process and the generalized 
Cauchy process as, 

𝑣𝑣𝑓𝑓𝑓𝑓𝑛𝑛(𝑘𝑘) =
1
2

[(𝑘𝑘 + 1)2𝐻𝐻 + |𝑘𝑘 − 1|2𝐻𝐻 − 2(𝑘𝑘)2𝐻𝐻], 
and 

𝑣𝑣𝐺𝐺𝐺𝐺(𝜏𝜏) = 𝐸𝐸�𝑋𝑋(𝑡𝑡 + 𝜏𝜏)𝑋𝑋(𝑡𝑡)� = (1 + |𝜏𝜏|𝛼𝛼)−
𝛽𝛽
𝛼𝛼 , 

respectively. 
Step 3. According to the auto-correlation functions of the 

fractional Gaussian process and the generalized Cauchy 
process, the variance of the network flow for a given time 𝑡𝑡 is 
as follows: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝑛𝑛�𝐴𝐴(𝑡𝑡)� = 𝜎𝜎2(𝑛𝑛)2𝐻𝐻 , 
and 

𝑣𝑣𝑣𝑣𝑣𝑣𝐺𝐺𝐺𝐺�𝐴𝐴(𝑡𝑡)� = 𝑛𝑛𝜎𝜎2 + 2𝜎𝜎2 × �(𝑛𝑛 − 𝑖𝑖)(1 + 𝑛𝑛𝛼𝛼)−
𝛽𝛽
𝛼𝛼

𝑛𝑛−1

𝑖𝑖=1

. 

Step 4. We treat the given the time period 𝑡𝑡 as the unit time, 
count the network data, find its variance, and compare it with 
the variance obtained in Step 3. 

Step 5. Given the error 𝛿𝛿, the flow arrival curves for the case 
of fractional Gaussian process and generalized Cauchy process 
in a given time 𝑡𝑡 are as follows: 

𝐴𝐴𝑓𝑓𝑓𝑓𝑛𝑛(𝑡𝑡) = 𝜌𝜌𝑛𝑛 + 𝑘𝑘𝜎𝜎𝑛𝑛𝐻𝐻 , 
and 

𝐴𝐴𝐺𝐺𝐺𝐺(𝑡𝑡) = 𝜌𝜌𝑛𝑛 + 𝑘𝑘�𝑛𝑛𝜎𝜎2 + 2𝜎𝜎2 × �(𝑛𝑛 − 𝑖𝑖)(1 + 𝑛𝑛𝛼𝛼)−
𝛽𝛽
𝛼𝛼

𝑛𝑛−1

𝑖𝑖=1

. 

Step 6. We calculate the size of the maximum network data 
for the real data and that of the maximum data package under 
the given error during time interval 𝑡𝑡.The size of the maximum 
data package under the given error refers to the maximum value 
excluding 𝜃𝜃 numbers, where 𝜃𝜃 satisfies  

𝜃𝜃 = 𝛿𝛿 × 𝜔𝜔. 
Here, 𝜔𝜔  stands for the total data sample. We compare the 
computation results with the ones obtained in the Step 5. 

Step 7. When 𝑡𝑡 increases subject to multiple of 𝑠𝑠, we repeat 
Step 4, Step 5, Step 6. Then, we draw the curves for both actual 
and theoretical data. 
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B. Experimental Results 
We set the time unit as 0.001 second. With data in [35], we 

obtain the statistics of the fractional dimension 𝐷𝐷 , Hurst 
exponent 𝐻𝐻, mean 𝜌𝜌 and standard deviation 𝜎𝜎. The results are 
as follows:  

𝜌𝜌 = 138.1854, 
𝜎𝜎 = 1.1575 × 105, 

𝐻𝐻 = 0.8573, 
𝐷𝐷 = 1.9205. 

According to the experimental procedures in Section IV-A, 
diagrams with the curves of the incremental process are plotted, 
in which Curve 1 refers to the calculation results obtained under 
the assumption of fractional Gaussian process, Curve 2 refers to 
the calculation results obtained under the assumption of 
generalized Cauchy process, and Curve 3 refers to the statistical 
results from real data. 

 
Fig. 3.  Data variance (unit time 0.001s). 

 
Fig. 4.  Maximum data package (unit time 0.001s). 

Fig. 3 shows the comparison of the variance between two 
different models and that of the actual data when the 
experimental time is multiples of 0.001s. In Fig. 4, the 
experimental time is still multiples of 0.001s and we set 𝛿𝛿 to be 
0.0001, focusing on the maximum data package. Fig. 5 focuses 
on the size of the maximum data package under a given error 𝛿𝛿. 

 

 
Fig. 5.  The size of the maximum data package under a given error 𝛿𝛿 (unit time 
0.001s). 

 
Fig. 6.  Data variance (unit time 0.01s). 

 
Fig. 7.  The size of maximum data package (unit time 0.01s). 
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Fig. 8.  The size of the maximum data package under a given error 𝛿𝛿 (unit time 
0.01s) 

Fig. 6, Fig. 7 and Fig. 8 are plotted for the case of the unit 
time being 0.01s. From Fig. 3 to Fig. 8, it is obvious that the 
flow arrival curves obtained by the methodology proposed in 
this paper is feasible, and the calculation results obtained under 
generalized Cauchy process is closer to the statistical results 
from real data than that of fractional Gaussian process. In 
summary, the assumption of generalized Cauchy process 
appears to be more appropriate. 

V. SUMMARY 
In this paper, we study the equivalent model of monitoring 

system service performance. Attentions are drawn to the 
calculation problem of the equivalent transmission services 
curve under the shared network model. We propose the method 
of obtaining the node flow arrival curves based on the 
auto-correlation functions. Several lemmas, theorems and 
corollaries are obtained from the mathematical perspective. 
Base on the real data, different models are verified via 
simulations. The results indicate that generalized Cauchy 
process performs better than fractional Gaussian process for the 
considered problem. It is highlighted that we are focusing on 
developing theoretical results, and the analysis methods 
introduced in this paper can be applied under most scenarios of 
monitoring systems in smart grid. 

In recent years, the concept of energy Internet has been 
popular and is regarded as the 2.0 version of smart grid. In the 
field of energy Internet, energy and information are fused, and a 
bottom-up energy management principle is expected to be 
achieved by making full use of the information exchange of the 
entire system [38]. The latency problem of communication 
systems considered in this paper also exists in the energy 
Internet system. In addition, the studied performance modelling 
for data monitoring services can be further extended to energy 
transmission systems in energy Internet scenarios. For our 
future research, research on modelling and control for 
communication systems in energy Internet scenarios will be 
investigated. 
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