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Abstract Controllability problems of dynamical high-order
multi-agent systems are concerned. A methodology on graph
topology transformation is proposed, which can help to ana-
lyze the controllability. According to this methodology, a
path can be regarded as controllability canonical form of
graph, and any controllable graph can be transformed into
an equivalent path. Besides, controllability of heterogeneous
multi-agent systems is also discussed.
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1 Introduction

During recent years, dynamical multi-agent systems have
been extensively studied by scholars in the field of con-
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trol theory [1–22]. The majority of attention is focused on
the consensus problem [3–9], which is essentially a stability
problem [7]. However, only a few researchers have started to
notice the controllability problems. Mesbahi [10] proposed
the concept “state-dependent graph” and defined “control-
lability” for state-dependent graphs. Tanner [11] postulated
that more information exchange may be detrimental to con-
trollability. Ji et al. [12] gave some sufficient conditions for
controllability, based on the algebraic characteristics of cer-
tain matrices about the graphs. Rahmani et al. [13] extended
the work of Ji et al. in [12], concerning the relationship
between graph symmetry and controllability. Cai et al. [14–
18] studied formation controllability of high-order systems
and discussed approaches for controllability improvement of
graph topology. Liu et al. [19,20] concerned the controllabil-
ity of discrete-time multi-agent systems with switching graph
topologies, applying their previous results on controllability
of switching linear systems. Wang et al. [21] attempted to dis-
cuss the effect on controllability through different schemes
of leader choices and strength of communication links.
Ji et al. [22] proposed conditions for graph controllability,
which are analogous to the early results in [23]. Liu et al. [24]
endeavored to analyze the relation between controllability
and topology of large-scale weighted complex networks,
from a viewpoint upon multiple disciplinary backgrounds.

The results in the current paper form an extension to our
previous works [15–18]. The novel features here are twofold:
(1) A methodology is introduced for controllability analysis,
which can transform a graph topology into equivalent forms.
Based on this methodology, it will be shown in detail that any
controllable graph with a single leader can be transformed
into a graph. (2) The controllability problem of heteroge-
neous multi-agent systems is also discussed.

The controllability analysis of multi-agent systems is far
more involved than stability analysis. The major concern of
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nearly all recent relevant works [11–13,19–24] is to attempt
to reveal the relationship between the geometric character-
istics of a graph topology and its controllability. They did
obtain some theoretical results. However, none of them have
really finished their initial objective. Actually, such a direct
relationship might not exist at all. Our technical route for
investigating the controllability of multi-agent systems is dif-
ferent from the majority of relevant works, while we mainly
focus on the algebraic characteristics of matrices instead of
paying attention to the topologies of graphs.

The rest of this paper is organized as follows. Section 2
formulates the controllability problem of high-order multi-
agent systems. Section 3 introduces the graph transforma-
tion method, providing one of the main results. Based on it,
the controllability canonical form of graph is also analyzed.
Section 4 discusses the controllability problem for heteroge-
neous systems. Finally, Sect. 5 concludes the paper.

Notation: φ represents any vector with all 1 elements. PN

denotes an N th order path.

2 Problem Formulation

The dynamical multi-agent system model to be considered
is described as:

ẋi = F
N∑

j=1

wi j (x j − xi ) + Bui (i = 1, 2, . . . , N ) (1)

where xi ∈ Rd , F ∈ Rd×d , wi j ∈ R, B ∈ Rd×m , and ui ∈
Rm . xi is the state vector of an agent. wi j is the edge or arc
weight of a graph G, representing the strength of information
link between the two neighbors i and j . For an LTI system,
the time-invariant graph G can be denoted by its adjacency
matrix W . If the input ui (t) ≡ 0, then agent i is called a
follower; or if agent i is actuated by some ui (t) not being
zero identically, it is called a leader. If all state vectors of
agents are stacked together, then the entire state matrix of
the system is X ∈ Rd×N .

The first-order dynamical multi-agent system model with
linear consensus protocol that has been studied extensively
in the literature, e.g., in [3,4,19–24], is a particular instance
of the model depicted by (1).

The dynamics of the overall system can be described by
the following matrix state equation:

Ẋ = −F X LT + BU (2)

where L ∈ RN×N is the Laplacian matrix of the graph G.
The relationship between the adjacency and the Laplacian
matrices of a graph G is:

L = diag(Wφ) − W. (3)

From the definition of L , one will find that:

Lφ = 0, (4)

i.e., φ is always an eigenvector corresponding to eigenvalue
0 of L . (4) can be regarded as a criterion to check whether a
given matrix is a Laplacian matrix of certain existing graph.

Remark 1 The matrix differential equation (2) is more com-
plicated than the usual vector equation studied in control the-
ory. There is not only a left coefficient matrix −F , but also
an additional right coefficient matrix LT. Thus, it is more
difficult to analyze the controllability of these systems.

Suppose that Nl of the agents are leaders. To discriminate
between the followers and the leaders, partition L:

L =
[

L ff Lfl

L lf L ll

]
(5)

where L ff ∈ R(N−Nl)×(N−Nl) indicates the arcs of G among
the followers; Lfl ∈ R(N−Nl)×Nl the arcs from the leaders to
the followers; L lf ∈ RNl×(N−Nl) the arcs from the followers
to the leaders; and L ll ∈ RNl×Nl .

Definition 1 (Graph Controllability [14,22]) With the last
Nl agents as the leaders and a partitioned form of adjacency
matrix L as (5), the graph G of the dynamical multi-agent
system is controllable if and only if (L ff , Lfl) is controllable.

With the criterion given by the following lemma, complete
controllability of an LTI dynamical multi-agent system of
high order can be checked.

Lemma 1 [14,18] The LTI dynamical multi-agent system
(1) is completely controllable if and only if the two conditions
below are simultaneously satisfied:

(1) The graph G is controllable;
(2) (F, B) is controllable.

Evidently, Lemma 1 manifests a separation principle, with
the two conditions being independent of each other. The con-
trollability of a multi-agent system (1) is determined jointly
by the controllability of the two dynamic systems below:

ξ̇ = −Lξ (6)

η̇ = Fη + Bu (7)

The following assumption is assumed to be satisfied through-
out this paper. Under this assumption, the rest of the problem
for controllability of (1) is determined by the controllability
of graph, i.e., controllability of system (6).

Assumption 1 (F , B) is controllable.

Remark 2 The settings of model and problems introduced
in this section are mainly similar to that in [14]. Based on
the train of thoughts, new approaches and results will be
expounded in the subsequent two sections.
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3 Equivalent Transformation to Graphs

The mapping between a weighted digraph G and a square
matrix W (G) is bijective: W (G) ↔ G. Nevertheless, Lapla-
cian matrix cannot reflect the relationship between any ver-
tex and itself. Actually, if we assume that there is no loop in
G, a graph topology can also be uniquely determined by its
Laplacian matrix according to the following equation:

W (G) = D(G) − L(G) (8)

where D(G) is the diagonal of L(G).
It is evident that Laplacian matrix plays a major role in

regulating the dynamics of dynamical multi-agent systems.
Consider the dynamic system (6). If a similarity transforma-
tion is applied to matrix L , e.g., L̃ = P−1L P , an equivalent
dynamic equation ξ̇

� = P L P−1ξ
� can be derived. The similar

matrix L̃ of L is the Laplacian matrix representing another
graph topology G

�
, which can be regarded as being similar

to the original graph G in the sense of system dynamics.
Although such a G

�
is similar to G, the graph topology is

different. If G is bidirectional, its Laplacian matrix is sym-
metric. But generally the symmetry of a matrix could not
be preserved after a similarity transformation. Therefore, G

�

might become a directed graph. There is a determinate and
clear definition as to the Laplacian matrix of a bidirectional
graph. But for directed graphs, there are different definitions.
Instances over three types of definitions exist in the litera-
ture [3,25–27]. In this paper, the simplest definition in [3]
is taken by default. Despite the variation of definitions, usu-
ally (4) is a fundamental rule for Laplacian matrix that zero
must be the eigenvalue for eigenvector. Unfortunately, this
rule might be broken after a direct linear transformation, and
L̃φ = P−1L Pφ is no longer zero. Only specific non-singular
transformations could reserve this property.

Proposition 1 If the non-singular transformation P is sto-
chastic [28], then for the similar matrix L̃, zero is still the
eigenvalue of eigenvector φ. Thus, such an L̃ is the Laplacian
matrix of a graph topology.

Proof Because P is stochastic, Pφ = φ. Therefore,

L̃φ = P−1L Pφ = P−1Lφ = P−10 = 0.

��
As an instance, the most typical stochastic matrix is permu-
tation matrix [28]. Actually, a similarity transformation via
a permutation matrix P transforms an original graph G into
its isomorphic graph G

�
.

In general, the result of a similarity transformation to some
Laplacian matrix L does not meet condition (4) anymore. L̃
can be regarded as the sum of two parts: L̃ = L

� + �L
�

,
with L

�
representing the Laplacian matrix derived from the

non-diagonal entries of L̃ satisfying condition (4), and �L
�

1

23

0

Fig. 1 Third-order graph induced by generalized Laplacian matrix

is the redundant part, which is diagonal. If �L
�

is not zero,
it can be regarded that there is an adjunctive virtual vertex
in the graph increasing its order into N + 1, with the state of
the corresponding virtual agent always being 0. Meanwhile,
�L

�
indicates the neighborship between each agent and this

particular virtual agent.

Example 1 Let

L̃ =
⎡

⎣
0 1 0
0 −4 3
−1 −1 −2

⎤

⎦ .

According to the definition of Laplacian matrix (3),

L
� =

⎡

⎣
−1 1 0
0 −3 3
−1 −1 2

⎤

⎦

and

�L
� = L̃ − L

� = diag(
[

1 −1 −4
]
)

The adjacency matrix W (G
�

) is

W (G
�

) =
⎡

⎣
0 −1 0
0 0 −3
1 1 0

⎤

⎦ .

The transformed G
�

is shown in Fig. 1.

In a dynamical multi-agent system described by (2), if
some of the agents are assigned as leaders, with the Lapla-

cian matrix in the partitioned form L(G) =
[

L ll L lf
Lfl L ff

]
, then

the leader set and follower set are determinate, and any lin-
ear transformation to the graph topology would not affect
this situation. Therefore, a feasible non-singular linear trans-

formation should take the form: P =
[

Pl 0
0 Pf

]
, with both

Pl ∈ RNl×Nl and Pf ∈ R(N−Nl)×(N−Nl) being non-singular.
So we have:
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Fig. 2 Single-leader controllability canonical digraph, (Left most
agent is the leader while others are followers; dashed arcs may exist or
not)

L̃ = P−1L P =
[

P−1
l 0

0 P−1
f

] [
L ll L lf

Lfl L ff

] [
Pl 0

0 Pf

]

=
[

P−1
l L ll Pl P−1

l L lf Pf

P−1
f Lfl Pl P−1

f L ff Pf

]

After the technique for linear transformation to graphs is
introduced, one will see its application in controllability
analysis. By the theorem that follows, it will be shown that
a path is representative as the controllable type of graph
topology.

Lemma 2 [14] A path P is strictly structurally control-
lable.

So long as one end of the path is the single leader, and the
path is connected, whatever the values of edge weights, the
entire path must be controllable.

Definition 2 (Controllability Canonical Digraph with Sin-
gle Leader) Suppose there is a dynamical multi-agent system
with N agents indexed by {1, 2, . . . , N }, with agent N the
single leader, and G a weighted digraph. G is a controllabil-
ity canonical digraph if its Laplacian matrix L(G) ∈ RN×N

has the following form:
⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 · · · 0 0
1 −1 · · · 0 0

· · · · · · 0 · · ·
0 · · · 0 1 −1 0
∗ ∗ · · · · · · ∗ ×
∗ ∗ · · · · · · ∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where ‘×’ is a non-zero value, and ‘*’ could be any value.

In a controllability canonical digraph with single leader,
all the followers form a path. The configuration of such a
digraph is illustrated in Fig. 2 [14,18].

Lemma 3 [14]: A single-leader controllability canonical
digraph must be a controllable digraph.

Theorem 1 If the graph topology of a single-leader dynami-
cal multi-agent system is denoted by digraph G, and G is con-
trollable, then there must exist a non-singular linear trans-

formation P =
[

Pf 0
0 Pl

]
∈ RN×N , such that the Laplacian

matrix be transformed into L(G
�

) = P L(G)P−1, with L(G
�

)

representing a controllability canonical digraph, i.e., a path.

Proof Let Pf = [
p1 p2 · · · pN−1

]T ∈ R(N−1)×(N−1).
Because

L(G
�

) = P L(G)P−1

=
[

Pf 0

0 Pl

][
L ff Lfl

L lf L ll

] [
P−1

f 0

0 P−1
l

]

=
[

Pf L ff P−1
f Pf Lfl P−1

l

Pl L lf P−1
f Pl L ll P

−1
l

]
=

[
L
�

ff L
�

fl

L
�

lf L
�

ll

]

we have L
�

ff = Pf L ff P−1
f or Pf L ff = L

�
ff Pf . According to

(9), suppose that the structure of L(G
�

) takes the canonical
form as

L
�

ff =

⎡

⎢⎢⎣

1 −1
1 −1

· · · · · ·
∗ ∗ ∗ ∗

⎤

⎥⎥⎦

Then,
⎡

⎢⎢⎢⎢⎢⎣

pT
1

pT
2

...

pT
N−1

⎤

⎥⎥⎥⎥⎥⎦
L ff =

⎡

⎢⎢⎢⎢⎣

1 −1

1 −1

· · · · · ·
∗ ∗ ∗ ∗

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

pT
1

pT
2

...

pT
N−1

⎤

⎥⎥⎥⎥⎥⎦
(10)

The series of equations below can be derived from the rows
of (10) above

pT
1 L ff = pT

1 − pT
2

pT
2 L ff = pT

2 − pT
3

. . . . . .

pT
N−2L ff = pT

N−2 − pT
N−1.

It follows that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pT
2 = pT

1 (I − L ff)

pT
3 = pT

2 (I − L ff) = pT
1 (I − L ff)

2

...

pT
N−1 = pT

1 (I − L ff)
N−2

(11)

Let

L
�

f l Pl = Pf Lfl =

⎡

⎢⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

pT
1 Lfl

pT
1 (I − L ff)Lfl

...

pT
1 (I − L ff)

N−2Lfl

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ RN−1
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Transpose this equation:

(L
�

fl Pl)
T =

⎡

⎢⎢⎢⎢⎢⎢⎣

pT
1 Lfl

pT
1 (I − L ff )Lfl

. . .

pT
1 (I − L ff )

N−2 Lfl

⎤

⎥⎥⎥⎥⎥⎥⎦

T

∈ R1×(N−1)

=
[

pT
1 Lfl pT

1 (I − L ff )Lfl . . . pT
1 (I − L ff )

N−2 Lfl
]

= pT
1

[
Lfl (I − L ff )Lfl . . . (I − L ff )

N−2 Lfl
]

= [
0 0 . . . 1

]
. (12)

As a result

pT
1 = [

0 0 . . . 1
] [

Lfl (I − L ff )Lfl . . . (I − L ff )
N−2 Lfl

]−1
.

It is evident that if G is controllable, then [Lfl(I − L ff)Lfl. . .

(I − L ff)
N−2 Lfl

]
must be non-singular. Besides, all the

eigenvectors of (I − L ff) superpose those of L ff . Therefore,
the root of equation (12) pT

1 must exist. According to (11), it
is easy to derive the required similar transformation Pf . ��

Remark 3 Theorem 1 constitutes one of the main contribu-
tions of the current paper. Actually, it is analogous to the
corresponding result in linear systems theory that the con-
trollability canonical form of a single-input system is of the
upper-triangular formation of series of integrators.

4 Controllability of Heterogeneous LTI Dynamical
Multi-Agent Systems

So far, we have dealt with homogeneous multi-agent systems.
Suppose the model is heterogeneous, then the dynamics of
agents are depicted by the following equations:

ẋi =
N∑

j=1

wi j Fi j (x j −xi )+Bi ui (i ∈ {1, 2, . . . , N }) (13)

where xi ∈ Rd , wi j ∈ R, Fi j ∈ Rd×d , ui ∈ Rm and Bi ∈
Rd×m . The scalar wi j can be combined into Fi j , and (13)
becomes

ẋi =
N∑

j=1

Fi j (x j − xi ) + Bi ui (i ∈ {1, 2, . . . , N }). (14)

Comparing (14) with the well-known first-order multi-agent
system model in the literature [3,4,19–24], one will sense that
the square matrix Fi j ∈ Rd×d plays the role of edge weight.
If Fi j is regarded as edge weight of the graph topology G,
then the adjacency matrix is:

W =

⎡

⎢⎢⎢⎣

0 F12 · · · F1N

F21 0 · · · F2N

· · · · · · · · · · · ·
FN1 FN2 · · · 0

⎤

⎥⎥⎥⎦ ∈ Rd N×d N . (15)

Each element in such an adjacency matrix is a matrix instead
of a scalar value. Naturally, the corresponding Laplacian
matrix is:

L =

⎡

⎢⎢⎢⎢⎣

∑N
j=1 F1 j −F12 . . . −F1N

−F21
∑N

j=1 F2 j . . . −F2N

. . . . . . . . . . . .

−FN1 −FN2 . . .
∑N

j=1 FN j

⎤

⎥⎥⎥⎥⎦
. (16)

The analysis for the controllability of such a heterogeneous
dynamical multi-agent system is far more sophisticated than
homogeneous systems depicted by (1). For heterogeneous
systems, two sufficient conditions for uncontrollability will
be proposed in this section.

Remark 4 It is well known that [15] for any LTI system in a
given coefficient space, there always exist controllable sys-
tems in its arbitrarily small neighborhood. Also, for any LTI
system with random coefficients, the probability for control-
lability equals to 1. Consequently, controllable systems are
common, whereas uncontrollable systems are exceptional
cases. In such a sense, criteria to check uncontrollability are
more meaningful than controllability.

Definition 3 (Identical Uncontrollability) Suppose that there
is a set of matrix pairs {[ Ai ∈ Rd×d Bi ∈ Rd×m

]

|i = 1, 2, . . . , N }, and Bi =
[

b(i)
1 b(i)

1 · · · b(i)
m

]
, with b(i)

k ∈
Rd being a column vector. The set of matrix pairs is identi-
cally uncontrollable if each shares a common left eigenvector
q ∈ Rd , and the set

{b(i)
k

∣∣ i = 1, 2, . . . , N k = 1, 2, . . . , m } ⊆ q⊥

with q⊥ the orthogonal complement of vector q.

Proposition 2 If the matrix-weighted graph represented by
(15) is bidirectional: Fik = Fki (∀i, k = 1, 2, . . . , N ), and
the set of matrix pairs {[ Fik Bi

] |i, k = 1, 2, . . . , N } is iden-
tically uncontrollable, then the multi-agent system (14) is
uncontrollable.

Proof The system state is first written in vector form as:

x = vec(X) = [
xT

1 xT
2 · · · xT

N

]T ∈ Rd N

[u = vec(U ) = [
uT

1 uT
2 · · · uT

N

]T ∈ Rm N

Then, the dynamics of the entire system can be expressed by
equation:

ẋ = −Lx + Bu
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where L ∈ Rd N×d N takes the form of (16), and

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

B1

0
B2

. . .

0
BN

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rd N×m N .

Suppose q ∈ Rd is the specific common left eigenvector of
Fik : qT Fik = λikqT, with λik ∈ C the corresponding
eigenvalue. By considering the structure of L according to
(16) and the identical uncontrollability, it is simple to verify
that vector (φ ⊗ q) ∈ Rd N must simultaneously satisfy both
of the equations below:

G

{
(φ ⊗ q)T L = 0

(φ ⊗ q)T B = 0

where φ = [
1 1 · · · 1

]T ∈ RN . According to the PBH test
for LTI systems, the proof can be concluded. ��
Proposition 3 If the graph topology G of the heterogeneous
multi-agent system is structurally uncontrollable [29], then
the overall system must be uncontrollable.

Proof Since the graph topology is structurally uncontrol-
lable, the configuration of information flow among agents
must be non-input-connectable [29]. According to the def-
inition of input connectability, some of the follower agents
receive no information transmitted from any leader, either
directly or indirectly, and they are out of control. As a result,
the entire multi-agent system is uncontrollable. ��

5 Conclusions

Controllability problem of high-order LTI multi-agent sys-
tems is the major subject in this paper. An approach based on
linear transformation to Laplacian matrix is devised, which
can transform the graph topology of a dynamical multi-agent
system into another graph equivalent to the original one in
the sense of swarm dynamics, but is more convenient for
analysis. Based on this approach and our previous theoreti-
cal results, it is shown that a path is a controllability canonical
form for graphs and is strictly structurally controllable. Con-
trollability problem of heterogeneous LTI high-order multi-
agent systems was also dealt with, which is far more sophis-
ticated than homogeneous situations. For heterogeneous sys-
tems, two sufficient conditions for uncontrollability were pre-
sented, concerning the graph topology and the interactive
dynamics, respectively. The controllability canonical form of
digraph in this paper has only one leader. Besides, the current
conditions for uncontrollability of heterogeneous dynamical

multi-agent systems are relatively conservative. The study
on heterogeneous systems is still at its initial stage. Relax-
ing these limitations will be the main objective of our future
research.
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