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Abstract8

With the development of smart grid, capacity of wind power that connects to the grid increases gradually, which9

makes the continuous and stable operation of wind turbine (WT) critically important. Therefore, by considering gear-10

box structure and operating condition, a diagnosis approach for coupling faults of WT gearbox is proposed based on11

multitask parallel convolutional neural network with reinforced input (RI-MPCNN). The overall information array of12

gearbox that fuses wavelet packet transform of vibration signals, domain knowledge of gearbox components and op-13

erating condition is used as RI-MPCNN input. Then, RI-MPCNN that has parallel sub-convolutional neural networks14

(sub-CNNs) and multiple classifiers realizes the diagnosis of coupling faults of multiple components simultaneously.15

Meanwhile, a reinforced input is added to each sub-CNN to improve the diagnosis accuracy of each component. It is16

notable that the proposed approach not only fuses the overall gearbox information at system level, but also realizes17

fault diagnosis at component level. In the approach evaluation based on two case studies, the proposed approach can18

improve diagnosis accuracies by about 3 and 20 percent compared with the existing methods, respectively.19
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Abbreviations22

WT Wind turbine23

ML Machine learning24

DL Deep learning25

CNN Convolutional neural networks26

MSCNN Multiscale convolutional neural networks27

FC Fully connected28

STFT Short time Fourier transform29
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WPT Wavelet packet transform1

CWT Continuous wavelet transform2

DK Domain knowledge3

FCF Fault characteristic frequency4

WPTM Wavelet packet transform matrix5

MPCNN Multitask parallel convolutional neural networks6

RI-MPCNN Multitask parallel convolutional neural networks with reinforced input7

CI Comprehensive information8

CFE Common feature exaction9

PCFE Parallel components feature exaction10

MC Multitask classification11

MLCNN Multi-label convolutional neural networks12

NO Normal condition13

BT Broken tooth14

MT Missing tooth15

RC Root crack16

SW Tooth surface wear17

DTS-CNN Dislocated time series convolutional neural networks18

HCNN Hierarchical convolutional neural networks19

Parameters and Variables20

Fi Fault state of i-th component in WT gearbox21

p Length of overall information array of Gearbox in sequence direction22

q Length of overall information array of Gearbox in frequency direction23

fs, fp, fH Rotating frequencies of sun gear, planetary gear and planet carrier24

fs f , fp f , fr f FCFs of sun gear, planetary gear and ring gear25

fm0 Meshing frequency of planetary gear train26

fin, fout Rotating frequencies of input and output shaft in parallel shaft gear train27

f1 f , f2 f FCFs of driving and driven gear in parallel shaft gear train28

fm1 Meshing frequency of parallel shaft gear train29

fIR, fOR, fBA FCFs of inner race, outer race and ball of bearing30

fb Rotating frequency of bearing31

fm, fr Meshing frequency and rotating frequency of a gear32

θ (·) Activation function33

∗ Convolution operation34
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1. Introduction1

Nowadays, with the rise of smart grid, power production becomes intelligent and distributed, which results in a2

fully utilization of wind energy, photovoltaics and other renewable energies [1]. As an indispensable role in smart grid,3

the stable operation of WT is very important to the control of smart grid. Gearbox is the key mechanical transmission4

part in WT, the failure of which seriously impacts the normal operation of WT and may cause long-term shutdown.5

Therefore, to master the operation status and health degree of WT gearbox in real time, it is necessary to carry out6

real-time online monitoring and intelligent diagnosis [2].7

Motivated by intelligent management and diagnosis, many ML based methods have been proposed for fault di-8

agnosis of WT gearbox[3, 4]. However, due to the use of simple ML algorithms, e.g., extreme learning machine[5],9

rough set theory [6], support vector machine[7, 8] and adaptive resonance theory 2 [9], most ML-based methods still10

need a complex feature extraction process.11

As an advanced form of ML, DL has greatly changed our daily life and been successfully applied in many fields12

[10, 11, 12]. DL can identify high-dimensional complex input and get rid of the dependence on artificial feature13

extraction algorithm, which could be a powerful tool to deal with the complex nonstationary vibration data of WT14

gearbox. Therefore, some DL algorithms have been applied in fault diagnosis of WT gearbox in recent years, e.g.,15

autoencoder [13], long short-term memory [14], generative adversarial networks [15] and CNN [16, 17]. Generally,16

two aspects need to be studied when designing a fault diagnosis method for gearbox based on DL, namely, design of17

DL network structure and construction of DL input[18].18

The design of DL network should consider the characteristics of fault signals and the potential failures to be19

diagnosed. Considering the multiscale characteristics in vibration signals of gearbox, an MSCNN architecture was20

proposed in [19]. A one-dimensional residual convolutional autoencoder structure was developed in [20] for learning21

features from vibration signals of gearbox in an unsupervised-learning way. A hybrid learning algorithm for fault22

diagnosis of gearbox was proposed in [21] by combining multi-layer perceptron and CNN based classifiers. These23

works focus on how to change the network structure to extract features well. However, the change of network task in24

gearbox diagnosis has not been paid much attention to, especially in the case of coupling faults.25

In practice, WT gearbox consists of multiple components, i.e., shaft, bearing and gear, and each of them may fail26

[22]. Coupling fault diagnosis for multiple components is a classification problem with multi-labels, which has not27

been well addressed by the state-of-the-art methods. In [19] and [21], all coupling fault combinations were coded28

by one-hot encoding, that is, each combination was regarded as a new category. However, one-hot encoding can not29

reflect the relationship between categories, since the same kind of gear faults that share same features would be in30

different categories. Moreover, in the case of coupling faults, there are many components and fault categories, which31

results in a DL model with excessive categories hard to be trained. This also causes that the existing methods can32

only judge the fault type of the whole gearbox, but the specific failure component cannot be identified [23, 19]. Fault33

identification of each component can achieve precise fault localization, which is of great help for WT maintenance34
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[24]. To classify the fault of each component, in [25], multiple classifiers were constructed after FC layers. However,1

as the main feature extraction process, the convolution structure has only one branch, which can not extract the features2

of multiple components separately, and lead to low diagnosis accuracy in some coupling fault cases.3

To transform vibration information into DL input, raw signals with simple recombination are used in [23] and [19]4

without applying signal analysis algorithms. Compared with raw signals that only provide time domain information,5

the time frequency analysis, e.g., STFT[26], WPT [27] and CWT[28], is a better choice, since it can provide more6

useful information. There are also methods that combines the results of different signal analysis algorithms, see7

[29]. Through the above methods, it seems that the vibration information has been fully extracted in different ways.8

However, operating condition and DK that includes gearbox structure and failure mechanism of components have9

not been adequately used in DL input [21]. In the situation of coupling faults, FCFs and the side bands of different10

components may overlap each other, which makes vibration signals very complex. Especially, as WT usually operates11

under variable conditions, the distribution of fault characteristics would change dramatically. Meanwhile, vibration12

energy of high speed components is large and would obscure the fault characteristics of low speed components, which13

makes it difficult to extract fault features of all components accurately using the existing methods without the guidance14

of operating condition and DK.15

In order to address the aforementioned problems, this paper proposes a novel fault diagnosis approach for coupling16

faults of multiple components in WT gearbox. Operating condition, DK and WPTM of multiple vibration signals are17

fused into overall information array of gearbox as DL input. An RI-MPCNN that has parallel sub-CNNs and multiple18

classifiers is proposed to realize the synchronous diagnosis of coupling faults. The main contributions of the proposed19

approach are as follows:20

1) A new multitask CNN with parallel structure is proposed for feature exaction and classification of coupling faults.21

It consists of common feature exaction module, parallel component feature exaction module and multitask classi-22

fication module, such that fault diagnosis of multiple components can be achieved simultaneously.23

2) A novel DK map including gearbox failure mechanism and operating condition information is constructed for gear-24

box fault diagnosis, which can locate fault features of different components under variable operating conditions.25

The overall information array that combines WPTM and DK map can help RI-MPCNN achieve faster convergence26

and higher diagnosis accuracy than single time frequency domain information when used as DL input.27

3) A reinforced input is added in parallel sub-CNNs to improve the ability of MPCNN in extracting fault features of28

each component. An adaptive loss algorithm is proposed to balance and accelerate the training of sub-CNNs for29

multiple components. The fault diagnosis result of RI-MPCNN is averagely 2 percent more accurate than that of30

several single task CNNs.31

The rest of this paper is organized as follows. Section 2 presents the procedure of the proposed diagnosis approach32

for gearbox coupling faults. Section 3 introduces the construction method of overall information array for gearbox.33

The RI-MPCNN and its training method are described in Section 4. Section 5 presents experimental verification based34
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Figure 1: Flowchart of the proposed gearbox coupling fault diagnosis approach.

on two case studies. Section 6 concludes this paper.1

2. The Proposed Approach for Gearbox Coupling Fault Diagnosis2

As a complex system, gearbox is comprised of multiple components. Through the condition monitoring with3

multiple sensors, the observed system state of gearbox S can be represented by combining the signals. Fault diagnosis4

of gearbox is to obtain its fault state based on observed system state S. Common fault diagnosis methods with single5

label [19] suppose that the whole system has only one fault state F and try to train a diagnosis model g to represent6

the relationship between S and F.7

In fact, to further obtain the specific faulty components and locations, fault diagnosis of a gearbox with n compo-8

nents should be expressed as a multi-label problem with the fault state F1, F2, ..., Fn, which needs a branch of gi to9

obtain the fault states of all components to be diagnosed.10

Fi = gi (S) (i = 1, 2, ..., n) (1)

In order to solve fault diagnosis problem with multi-labels, the following challenges need to be addressed: 1)11

the comprehensive acquisition of gearbox overall information with the use of DK and operating condition from the12

complex vibration signals of multiple components; 2) the construction of DL network to realize the simultaneous13

feature extraction and fault classification of different components in gearbox.14

This paper proposes a novel coupling fault diagnosis approach based on overall information array of gearbox and15

RI-MPCNN. The proposed approach integrates more fault related information into the input and reasonably uses the16

flexible network structure of the DL algorithm. Fig. 1 illustrates the procedure of the approach, and the main steps17

are described as follows:18
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Step 1: Install multiple accelerometers on different positions of WT gearbox to collect vibration signals of multiple1

gearbox components. Record operating condition including load and rotating speed of input shaft.2

Step 2: Use WPT to obtain WPTM of the vibration signals from different accelerometers. Build the information3

map of each component based on gearbox structure and component failure mechanism. Then add the operating4

condition to information map to form the DK map.5

Step 3: Combine DK map of each component with WPTM of the associated accelerometer to form the CI array6

of the component. Then CI arrays of different components are combined to obtain the overall information array of7

gearbox.8

Step 4: Construct the RI-MPCNN for coupling fault diagnosis. Set parameters of RI-MPCNN according to the9

input size and the number of components. Train the RI-MPCNN using adaptive loss algorithm with training samples.10

Step 5: Deploy the trained model to the online monitoring system of WT. Process the data using the same method11

and implement fault diagnosis for WT gearbox.12

3. Overall Information Array of Gearbox13

In order to represent the overall information of gearbox, vibration information, DK and operating conditions of14

different components are combined to form the overall information array. In this approach, several accelerometers15

are mounted on different locations of gearbox, and have different sensitivities to different components. Therefore, as16

shown in Fig. 1, DK map of each component is firstly combined with WPTM of the corresponding accelerometer17

signal to obtain the CI array of the component. Then the overall information array of gearbox is obtained by combining18

CI arrays of different components.19

3.1. Vibration Information Representation20

Because of the multi-stage transmission in the gearbox, the rotating frequencies, meshing frequencies and FCFs21

of gears and bearings are distributed in a wide range. Moreover, since the fault signals of gearbox always act as22

non-stationary signals, time frequency domain analysis methods are preferable to transform vibration data of gearbox23

into DL input. In this paper, WPT is selected as the basic analysis method for information representation of gearbox24

vibration data. Compared with other time frequency domain analysis methods, e.g., CWT [25] and STFT [26], WPT25

has uniform time-frequency resolution, and wavelet basis function in WPT is capable to analyze fault signals of26

gearbox usually in form of impact signals or sidebands. The reason why empirical mode decomposition is not chosen27

is that empirical mode decomposition does not have a fixed basis function, so the decomposition results of different28

fault signals are not convenient to be unified as DL input.29

After each decomposition, WPT decomposes the signal in high frequency and low frequency again based on30

wavelet function, so the information of middle and high frequency can be analyzed locally. In the calculation of31

WPT, input signal is decomposed into high-frequency part and low-frequency part by a set of high-pass and low-pass32

filters[30]:33
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c2m
j (k) =

∑
n

ancm
j−1 (2k − n)

c2m+1
j (k) =

∑
n

bncm
j−1 (2k − n)

(2)

where cm
j (k) is the kth coefficient of the mth frequency band after jth wavelet packet decomposition layer, an is the1

nth high-pass filter, and bn is the nth low-pass filter.2

Each decomposition operation halves the length of the signal. After N-layer WPT of the signal with l points, 2N
3

frequency bands are obtained. With the sampling frequency f , the width of each frequency band is f /2N+1Hz. The4

frequency range Ri corresponding to the coefficients of the ith frequency band ci
N is:5

f /
(
2N+1(i − 1)

)
≤ Ri ≤ f /

(
2N+1i

)
(3)

The wavelet packet coefficients obtained from all wavelet packet decomposition tree nodes are arranged according6

to frequency and combined into a matrix, which is called wavelet package transform matrix (WPTM), which is denoted7

as M:8

M =

[
c1

N
T
, c2

N
T
, · · · , c2N

N
T
]

(4)

where T is the matrix transpose, and [ ] is the matrix merge operation. Note that the length of M is p = l/
(
2N

)
in the9

sequence direction and q = 2N in the frequency direction.10

WPTM is used as the representation of vibration information, and will be part of DL input. According to the11

frequency range that relates to gearbox failures, we can retain the first several columns of WPTM. Fig. 3 is the12

WPTM of an accelerometer mounted on a gearbox under coupling faults of chipped sun gear and root crack on a13

parallel shaft gear. Dmey wavelet is used as the wavelet basis, which is also used in the case studies. The maximum14

frequency of the gearbox to be analyzed is under 2kHz, so the first 256 columns of WPTM are selected.15

Figure 2: WPTM of an accelerometer signal.
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3.2. Domain Knowledge Map with Operating Conditions1

When applying DL algorithms to a new domain, as the knowledge of target domain, DK indicates characteristic2

distribution and internal relations of data. The DL model built without considering DK is completely data-driven3

and has poor robustness. The accuracy of the model will reduce significantly once the data distribution changes [31].4

Therefore, for common components in gearbox, e.g., planetary gear train, parallel shaft gear train and bearing, a DK5

map construction method is proposed to assist the diagnosis of gearbox coupling faults, with the main steps described6

as follows.7

3.2.1. Gearbox FCFs analysis8

FCFs of a component, which can be obtained by dynamic analysis and numerical simulation, are the frequencies9

that appear in the vibration signal when the component fails. When applying signal analysis to gearbox fault diagnosis,10

most of the existing methods identify the fault type by extracting the amplitudes corresponding to FCFs from vibration11

signals [32, 33]. Therefore, it is necessary to guide the feature extraction process of DL algorithm with FCFs as DK.12

Accordingly, we analyze the failure mechanism of planetary gear train, parallel shaft gear train and bearing to obtain13

the FCFs of gearbox based on the transmission relationship.14

Firstly, for a planetary gear train, since a local fault on a gear sends out a pulse excitation once it is meshed to the15

faulty position, rotating frequencies, meshing frequency and FCFs of the gears are obtained by [34]:16

fp = fs(Zp − Zr)Zs/((Zr + Zs)Zp)

fH = fsZs/(Zr + Zs)

fm0 = Zp( fH − fp) = Zs( fs − fH)

fs f = K fm0/Zs

fp f = fm0/Zp

fr f = K fm0/Zr

(5)

where Zs, Zp, Zr are tooth numbers of sun gear, planetary gear and ring gear, respectively. K is the number of planetary17

gears.18

Then, for a parallel shaft train, the rotating frequencies, meshing frequency and FCFs of the gears are obtained by:19

fm1 = finZ1 = foutZ2

f1 f = fin

f2 f = finZ1/Z2

(6)

where Z1, Z2 are the tooth numbers of driving and driven gear, respectively.20

Finally, the FCFs of bearing are obtained by [35]:21
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fIR =
1
2

fbZ(1 − dcosα/D)

fOR =
1
2

fbZ(1 + dcosα/D)

fBA =
1

2d
fbD(1 − (dcosα/D)2)

(7)

where Z is the number of rolling elements, d is the rolling element diameter, D is the pitch diameter and α is the1

contact angle.2

3.2.2. DK map construction3

After obtaining FCFs of the gearbox components, DK map is constructed by addressing the FCFs and the operating4

condition information in a matrix that has the same size as WPTM.5

For bearing, fIR, fOR and fBA and their sidebands with the interval of fb need to be marked in the DK map, which6

are uniformly denoted as fBCF . When a gear fault occurs, the FCF fg f of the gear appears in the vibration signal,7

which also causes the amplitude increase of the rotating frequency fr and its frequency multiplication. A serious fault8

will also excite the sidebands near the meshing frequency fm with fr as the interval. Therefore, in the DK map of a9

gear, all the frequencies to be marked are fr, 2 fr, fg f , 2 fg f , fm, 2 fm, fm − fr and fm + fr, which are uniformly denoted10

as fGCF .11

Since the values of each column in WPTM correspond to the vibration energy in a certain frequency band, we12

mark the columns corresponding to all fBCF and fGCF according to (3) in the DK map:13

vi, j = 1 (1 ≤ i ≤ p, j = jBCF or jGCF) (8)

where vi, j is the value at position (i, j) in the DK map, jBCF and jGCF are the column coordinates corresponding to14

fBCF and fGCF , respectively. jBCF and jGCF are used in the DK map construction for bearing and gear, respectively.15

As WT has complex and changeable operating conditions, adding operating condition information to DK map16

can indicate the system state and enhance the robustness of the fault diagnosis model under variable operating17

conditions[31]. To mark the operating condition information, speed and load are graded and normalized, then repre-18

sented by the background values in the upper and lower half of the DK map, respectively.19

gi, j = −u/lLoad (1 ≤ i ≤ p/2, 1 ≤ j ≤ q)

gi, j = −w2/l2S peed (p/2 < i ≤ p, 1 ≤ j ≤ q)
(9)

where gi, j is the background value at position (i, j) in DK map, u is the load level, w is the speed level, lLoad is the20

total number of u, and lS peed is the total number of w.21

Fig. 3 shows the DK map of a sun gear monitored by the accelerometer in Fig. 2 with a size of 32 × 256. The22

yellow lines in the map are the marked fGCF , and the background values at lower part and upper part of the map are23

-0.75 and -1 for load level and speed level, respectively.24
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Figure 3: DK map of a sun gear.

4. Multitask Parallel CNN with Reinforced Input1

As described above, coupling fault diagnosis for multiple components is a classification problem with multi-2

labels. Meanwhile, most of the proposed DL models in fault diagnosis can only perform a single classification task.3

Various fault features of multiple components have to share the same feature extraction process[25], and are hard to4

be adequately extracted simultaneously. To solve this problem, a novel RI-MPCNN is proposed in this paper.5

4.1. RI-MPCNN Structure6

The structure of RI-MPCNN is shown in Fig. 4, which consists of three modules: CFE module, PCFE module7

and MC module. Convolution layer, max pooling layer, FC layer and softmax classifier are the basic elements that8

make up these modules.9

Figure 4: Structure of RI-MPCNN.

CFE module takes the overall information array of gearbox as input, and uses the combination of multiple convo-10

lution layers and pooling layers to extract the general features. The formula of convolution layer in CFE module is as11
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follows [36]:1

xt
j = θ(xt−1 ∗ kt

j + bt
j) (10)

where xt
j is the jth feature map after the tth layer, xt−1 is the feature maps after the (t − 1)th layer, kt

j is the jth2

convolution kernel at the tth layer, bt
j is the jth bias at the tth layer.3

PCFE module is composed of several parallel sub-CNNs. Each sub-CNN uses several convolution and pooling4

layers to extract the fault features of one component from the output of CFE module, respectively, so as to facilitate5

multitask classification. To enhance the component information that may be omitted in CFE module, the CI array of6

the corresponding component is used as an enhanced input of sub-CNN, as shown in Fig. 5.7

Figure 5: Structure of a sub-CNN in PCFE module.

To make the CI array in the same size as the previously extracted features, a convolution layer is performed on the8

CI array. The input of the ith sub-CNNs is obtained by:9

Ri
j = θ(Ci ∗W i

j + bi
j)

Xi = cat(H,Ri)
(11)

where Ci is the CI array of component i with a size of p × q × 2, W i
j is the jth convolution kernel with a size of10

r1 × r2 × 2, b j is the jth bias, Ri
j is the jth feature map of Ri, Xi is the input of the ith sub-CNN, H is the feature maps11

obtained by CFE module, and cat (·) is the operation of matrix merging in the third dimension.12

The stride o1, o2 of the convolution layer before concatenation is the same as r1, r2, which are obtained by:13

o1 = r1 =

m∏
k=1

pk
1, o2 = r2 =

m∏
k=1

pk
2 (12)

where m is the number of pooling layers in CFE module, pk
1, pk

2 are the pooling size of pooling layer k.14

MC module is composed of multiple FC layers and classifiers. Softmax classifier is used in this paper, and its15

formula is as follow[19]:16

Pi
k =

esi
k∑Ji

j=1 esi
j

(13)
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where Pi
k is the probability for fault state k of component i, si

k is the kth output of the ith FC layer, and Ji is the number1

of fault states of component i. Using the fault features obtained from PCFE module, MC module can identify the fault2

states of all gearbox components simultaneously.3

4.2. RI-MPCNN Training4

During the training of RI-MPCNN, the calculation of convolution and pooling layers in forward propagation5

process are the same as that in ordinary CNN, and the classification result is obtained by multiple softmax classifiers.6

In back-propagation process, the total loss function should be the sum of classification losses of multiple classification7

tasks. However, since different tasks may have different convergence rates, using the same loss ratio constantly may8

lead to the over fitting of some tasks and under fitting of others. To make all the classification tasks have the same9

convergence rate, an adaptive loss algorithm is proposed.10

Algorithm 1 Adaptive loss algorithm for RI-MPCNN training

1: Initialize training step k = 0;

2: repeat

3: Carry out forward propagation to obtain the output of all softmax classifiers;

4: for i ∈ 1, 2, ..., n do

5: Calculate the softmax loss of the ith component:

Li = − log(esi
real/

∑J
j=1 esi

j );

6: for i ∈ 1, 2, ..., n do

7: Obtain the weight αi for Li:

αi = nLi/
∑n

i=1 Li;

8: Calculate the total loss Ltotal by weighted sum of Li:

Ltotal =
∑n

i=1 αiLi + Lw;

9: for i ∈ 1, 2, ..., n do

10: Calculate the gradient for the ith classifier: ∂Ltotal/∂S i = ∂Ltotal/∂Li × ∂Li/∂S i = αi∂Li/∂S i;

11: Carry out back propagation using gradients for all classifiers to update the parameters in RI-MPCNN;

12: k ← k + 1;

13: until Ltotal < Lend

In Algorithm 1, Lw is the L2 regularization loss of the weights in convolution layers to prevent over fitting, si
real11

is the output of FC layer corresponding to the true label of the ith component, n is the number of components, S i is12

the input of ith softmax classifier, and Lend is the loss for convergence criteria. The weight of each classifier changes13

every training step according to the training progress of each sub-CNN. In this sense, the classifier with larger loss14

will receive a larger gradient to obtain a faster convergence.15
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5. Experiments1

To evaluate the performance of the proposed method, two gearbox case studies with coupling faults are analyzed2

in this section. In the case studies, the training of all DL models are conducted by tensorflow in Python environment3

on a computer with two E5-2667 v3 CPUs, a GTX1080Ti GPU and 64 GB memory.4

5.1. Case 1: PHM Data Challenge 2009 Dataset5

PHM Data Challenge 2009 Dataset[37] is focused on fault detection and magnitude estimation for a generic6

gearbox. Part of the labeled data are used to verify the proposed method. Schematic of the apparatus in the experiment7

are shown in Fig. 6, and components with fault injection are in red, namely, input shaft, bearing of idler shaft, bearing8

of input shaft and gear with 24T. Two accelerometers are used for synchronous vibration data sampling.9

Figure 6: Schematic of the apparatus.

The gearbox data are collected under 6 fault conditions with a sampling frequency of 66.7kHz. The detail fault10

states of 4 components in all fault conditions are list in Table 1. Under each fault condition, there are 10 working11

conditions which are the combinations of 2 load levels, namely, low and high, and 5 speed levels, namely, 30Hz,12

35Hz, 40Hz, 45Hz, 50Hz. From the collected data of each working condition under each fault condition, 52 samples13

with 16384 points are extracted. Therefore, 520 samples are obtained for each fault condition. For all fault conditions,14

there are 3120 samples totally. The data samples are divided into 5 datasets 1 to 5 for 5-fold cross validations. In each15

combination of datasets, there are 2496 training samples and 624 test samples.16

In the construction of overall information array, vibration samples are decomposed by 9 layers WPT to obtain17

WPTMs with sizes of 32 × 256. DK maps of gear and bearings are marked with GCFs of gear and BCFs of bearings,18

and fused with WPTM of accelerometer 1. DK maps of shaft are marked with the of rotating frequency multiples19

and fused with WPTM of accelerometer 2. Accordingly, the overall information array with a size of 32 × 256 × 820

is obtained as the input of RI-MPCNN. CFE module of RI-MPCNN has 3 blocks of convolution and pooling layers.21

PCFE module consists of 4 sub-CNNs, and MC module with 4 softmax classifiers can obtain the fault states of 422

components.23
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Table 1: Fault States of the Components with Fault Injection

Fault condition Gear with 24T Bearing of input shaft Bearing of idler shaft Input shaft

1 good good good good

2 chipped good good good

3 broken combination inner bent

4 good combination ball imbalance

5 broken good inner good

6 good good good bent

In the training process, learning rate is set as 0.0001. RI-MPCNN achieves convergence after about 100 training1

steps. With 10 times repetitive training for each dataset combination, the diagnosis results of all components in the 5-2

fold cross validation are shown in Table 2. It can be seen that all dataset combinations have high and stable accuracies3

for all components, which means the models are not over fitted. Compared with the results listed in [25] using the4

same dataset, namely, 94.02 ± 0.75% with MLCNN and 96.79 ± 1.45% with random forest, the proposed method has5

a much higher accuracy.6

Table 2: Fault Diagnosis Accuracies for All Components in 5-fold Cross Validation

Test set Gear with 24T Bearing of input shaft Bearing of idler shaft Input shaft Average

1 100±0% 99.46±0.08% 100±0% 99.26±0.12% 99.68±0.04%

2 99.87±0.08% 99.52±0% 100±0% 99.01±0.10% 99.60±0.04%

3 100±0% 99.26±0.10% 100±0% 99.26±0.16% 99.63±0.05%

4 99.97±0% 99.52±0% 100±0% 99.30±0.08% 99.70±0.03%

5 100±0.06% 99.20±0.16% 100±0% 99.60±0.08% 99.72±0.04%

5.2. Case 2: Coupling Faults Experiment on a Gearbox Test Rig7

The gearbox test rig selected in this case study is Drivetrain Diagnostics Simulator, the structure of which is8

shown in Fig. 7, including the motor, the gearbox, bearings and a magnetic brake. The test rig can be injected with a9

single fault or multiple faults on different components by replacing faulty components. Variable load can be applied10

by the magnetic brake.11

A structure with one-stage planetary gear train and two-stage parallel shaft gear train is adopted in the gearbox.12

The kinematic scheme and sensor installation positions are shown in Fig. 8. The components in red are fault injection13

positions including the sun gear in the planetary gear train, the driving gear of the second stage parallel shaft gear14

train and the right support bearing of the intermediate shaft in parallel shaft gear trains. Fault states of gears include15
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Figure 7: Structure of Drivetrain Diagnostics Simulator.

NO, BT, MT, RC and SW. Fault states of bearing include normal, ball fault, inner-race fault and outer-race fault. The1

green marks in Fig. 8 indicate the installation position of accelerometers. To monitor the vibration of the three fault2

injection components, three accelerometers are installed on the planetary gear train housing, the left bearing housing3

and the right bearing housing of the intermediate shaft, respectively.4

Figure 8: Kinematic scheme of Drivetrain Diagnostics Simulator.

Under each fault condition in the experiment, one or two components are injected with faults. Totally, 46 kinds5

of fault conditions are applied in this experiment, and 36 of them are injected with coupling faults. The occurrence6

frequencies of fault types and components are different, which accords with the situation of unbalanced samples in7

real application. For each fault condition, the motor speed has five levels: 10Hz, 20Hz, 30Hz, 40Hz and 50Hz.8

The currents of the magnetic brake used are 0A, 0.02A, 0.04A and 0.06A to apply variable load. So there are 209

combinations of operating conditions, which is in line with the variable operating conditions of WT. Under each10

operating condition, vibration data of three accelerometers are collected for about 1 minutes with a sampling frequency11

of 12kHz. Fig. 9 shows the waveforms and spectrums of vibration signals collected by the three accelerometers under12

the coupling fault of cracked sun gear and broken tooth in driving gear. It can be seen that multiple frequencies13

overlapped each other, which increases the difficulty in fault diagnosis.14

The data are equally divided into five datasets A, B, C, D and E for 5-fold cross validation, which means four of15
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(a) Waveform of accelerometer 1 (b) Waveform of accelerometer 2 (c) Waveform of accelerometer 3

(d) Spectrum of accelerometer 1 (e) Spectrum of accelerometer 2 (f) Spectrum of accelerometer 3

Figure 9: Waveforms and spectrums of vibration signals.

the datasets are selected as training set to diagnose the remaining one. Each dataset has 2057 samples with 3 vibration1

channels. The vibration data of 16384 points are decomposed by 9 layers WPT, and WPTMs with sizes of 32 × 2562

are obtained. Using the frequency of input shaft as basis frequency, according to (5) to (7), the rotating frequency,3

meshing frequency and FCF of each component with fault injection can be obtained as shown in Table 3. When4

building the DK map of each component, the frequencies in Table 3 along with their frequency multiplications and5

sidebands are marked.6

Table 3: Characteristic Frequencies of the Components with Fault Injection

Component Rotating frequency Meshing frequency FCFs

Sun gear 1 21.875 2.344

Driving gear 0.063 2.284 0.063

Bearing 0.063 - 0.147 / 0.344 / 0.226

After fusing the DK maps of components with WPTM of the corresponding accelerometer signals, the overall7

information array with a size of 32×256×6 is obtained as the input of RI-MPCNN. The CFE module of RI-MPCNN8

has 3 blocks of convolution layer and pooling layer. PCFE module has 3 sub-CNNs with 32×256×2 reinforced input.9

MC module with 3 softmax classifiers can obtain the fault states of the three components, respectively.10

In the training process, the learning rate is set as 0.0001. After about 300 training steps, RI-MPCNN model11
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achieves the convergence. Fig. 10 compares the loss curves during the training process with and without the adaptive1

loss algorithm when dataset A, B, C and D are used as training set. It can be seen that the loss curves using adaptive2

loss algorithm in light colors achieve faster convergence than the curves without adaptive loss algorithm, which shows3

the effectiveness of the adaptive loss algorithm.4

Figure 10: Loss curves during the training process.

To show the superiority of the proposed method, RI-MPCNN is compared with the MPCNN without reinforced5

input and DK map. The method that uses a separate CNN for each component with WPTM as input is also included6

in the comparison. The diagnosis results of all components in cross validation are shown in Table 4.7

Table 4: Fault Diagnosis Accuracies in Cross Validation (Sun Gear / Driving Gear / Bearing)

Test set RI-MPCNN (%) MPCNN with WPTM (%) Separate CNNs with WPTM(%)

A 98.34 / 99.66 / 95.33 98.00 / 94.50 / 91.78 98.01 / 95.33 / 93.19

B 98.74 / 100 / 96.21 98.01 / 94.17 / 92.81 97.86 / 95.33 / 94.21

C 98.88 / 99.66 / 95.38 97.81 / 94.21 / 92.22 98.15 / 95.33 / 93.68

D 98.54 / 99.66 / 95.19 97.96 / 94.70 / 92.85 98.20 / 95.38 / 94.11

E 98.74 / 100 / 94.80 97.52 / 94.80 / 92.08 97.32 / 95.33 / 93.49

Average 98.65 / 99.80 / 95.38 97.86 / 94.48 / 92.35 97.91 / 95.34 / 93.74

Table 4 shows that the proposed RI-MPCNN approach has the best diagnosis result for all gearbox components8

and dataset combinations. With the reinforced input and DK map, the fault diagnosis accuracies are significantly9

improved compared with MPCNN using WPTM as input. Since the vibration energy of the high-speed sun gear is far10

higher than that of the bearing, the fault features of bearing may be obscured. Therefore, the diagnosis accuracy of11

bearing reduces slightly with MPCNN. After the introduction of the reinforced input and DK map, the accuracies of12
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bearing and driving gear are significantly improved and beyond the accuracies using separate CNNs.1

Fig. 11 shows the confusion matrix of fault diagnosis results for all components when dataset E is used as test2

set. It can be seen that the RI-MPCNN has high diagnosis accuracies for all fault states of the components. The3

false positive rates for three components are 1.44%, 0% and 2.01%, respectively, which shows the proposed approach4

can commendably achieve fault detection. Based on the above analysis, the proposed approach is an intelligent and5

effective fault diagnosis approach for WT gearbox with coupling faults.6

(a) Sun gear (b) Driving gear (c) bearing

Figure 11: Confusion matrix of fault diagnosis results of each component.

To further verify the effectiveness of the proposed method under variable condition, which is common in the7

practical operation of WT, the fault diagnosis accuracies under different operating conditions is shown in Fig. 12. It8

can be seen that the accuracy is slightly improved with the increase of speed. The operating condition under 600 rpm9

and 0A load has the lowest accuracy, which is 92.98%. In general, RI-MPCNN has high accuracies for all operating10

conditions, which shows the proposed method is effective to the fault diagnosis of WT.11

Figure 12: Fault diagnosis accuracies under different operating conditions.

In addition, the proposed approach is compared with the state-of-the-art methods for fault diagnosis of gearbox12

and bearing. MLCNN [25] integrates CNN with CWT and multiple classifiers for gearbox fault diagnosis. DTS-13
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CNN [23] recombines vibration signals with different intervals for CNN classification. HCNN [38] is a bearing fault1

diagnosis method using CNN with deep hierarchical structure. In the comparison, dataset A, B, C and D are used as2

training set, E as test set.3

Table 5: Fault Diagnosis Accuracies Using Different Methods

Method Sun gear Driving gear Bearing Average

RI-MPCNN 98.74% 100% 94.80% 97.85%

MSCNN 89.21% 79.24% 58.68% 75.71%

MLCNN 23.25% 21.81% 72.81% 39.29%

DTS-CNN 71.66% 53.43% 40.98% 55.36%

HCNN 54.16% 49.30% 51.53% 51.67%

Table 5 shows that the diagnosis accuracy of the proposed approach is much higher than that of the state-of-the-art4

methods. As the only method that can handle multi-labels, MLCNN only has qualified accuracy for bearing. One of5

the reasons is that a single network is hard to extract fault features of all components at the same time. The other is that6

CWT has low frequency resolution in high frequency and low spatial resolution in low frequency. Different from the7

two-stage parallel shaft gearbox in [25], the multi-stage gearbox with high transmission ratio requires comprehensive8

feature extraction of vibration signals in various frequency bands. Although MSCNN has fine diagnosis accuracies9

for gears, due to the large transmission ratio of gearbox, MSCNN cannot identify low frequency bearing faults with10

only three levels of coarse-grained procedure [19]. DTS-CNN and HCNN with simple data preprocessing have low11

diagnosis accuracies, which shows that the general fault diagnosis methods of rotating machinery cannot achieve good12

results on gearbox without improving the methods by considering gearbox structure. Moreover, the above methods13

do not explicitly consider the impact of variable operating conditions, which also increases the difficulty in accurate14

diagnosis.15

6. Conclusion16

This paper proposed a novel fault diagnosis approach for WT gearbox with coupling faults. The overall informa-17

tion array of gearbox was obtained by combining WPT of vibration signals and DK map based on the analysis of FCFs18

and operating conditions. RI-MPCNN with sub-CNNs was developed to diagnose the fault states of all components19

in WT gearbox separately. In the two case studies, the proposed method improved the average diagnosis accuracy20

by about 3 and 20 percent compared with the existing methods, respectively. In general, the proposed RI-MPCNN21

approach can diagnose the coupling faults of all components in WT gearbox simultaneously with high accuracy.22

It is worth noting that the proposed method is feasible in real implementation, since many WTs have been mounted23

with vibration based condition monitoring system. The data needed for training can be obtained from fault experi-24
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ments of WT gearbox and the existing monitoring data. The RI-MPCNN model can be trained in the data center and1

updated regularly. In future work, transfer learning in fault diagnosis can be studied to further enhance the generality2

of the DL model obtained by the proposed method. Combined with DK and transfer training, the diagnosis model3

obtained in experiments would achieve accurate fault diagnosis for field equipment.4
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