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Recent years have witnessed the widespread popularity of Internet of things (IoT). By providing sufficient data 3
for model training and inference, IoT has promoted the development of artificial intelligence (AI) to a great 4
extent. Under this background and trend, the traditional cloud computing model may nevertheless encounter 5
many problems in independently tackling the massive data generated by IoT and meeting corresponding 6
practical needs. In response, a new computing model called edge computing (EC) has drawn extensive at- 7
tention from both industry and academia. With the continuous deepening of the research on EC, however, 8
scholars have found that traditional (non-AI) methods have their limitations in enhancing the performance 9
of EC. Seeing the successful application of AI in various fields, EC researchers start to set their sights on AI, 10
especially from a perspective of machine learning, a branch of AI that has gained increased popularity in the 11
past decades. In this article, we first explain the formal definition of EC and the reasons why EC has become 12
a favorable computing model. Then, we discuss the problems of interest in EC. We summarize the traditional 13
solutions and hightlight their limitations. By explaining the research results of using AI to optimize EC and 14
applying AI to other fields under the EC architecture, this article can serve as a guide to explore new research 15
ideas in these two aspects while enjoying the mutually beneficial relationship between AI and EC.
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1 INTRODUCTION26

Cloud computing has been widely used since its inception and has greatly changed people’s27
lifestyle. Many large companies, including Google, Amazon, and Microsoft, have launched their28
own cloud computing services (Google Cloud, Amazon Web Services, Microsoft Azure, respec-29
tively). Equipped with a large number of remotely located servers, cloud computing can intelli-30
gently provide users with computing, storage, and network services in real time according to user31
needs in terms of resource type, quantity, and so on [1]. In this case, users can easily obtain these32
cloud services with a small fee or totally for free [2].33

1.1 Edge Computing34

The development of Internet of things (IoT) has driven the production and application of a large35
number of hardware devices/sensors worldwide. These hardware devices/sensors have the ability36
to sense the surrounding physical environment and transform the environmental information into37
data. After these massive data are transmitted to the cloud for computing or storage, data con-38
sumers can access cloud data according to their individual needs and then extract the information39
they need [3].40

However, with the continuous development and widespread application of IoT, cloud com-41
puting has begun to expose more and more problems. For instance, if the data generated by42
global terminal devices are computed and stored in a centralized cloud, then it will cause a se-43
ries of problems, including low throughput, high latency, bandwidth bottlenecks, data privacy,44
centralized vulnerabilities, and additional costs (such as transmission cost, energy cost, storage45
cost, calculation cost). In fact, many application scenarios in IoT, especially Internet of vehicles46
(IoV), have requirements of high speed and low latency for data processing, analyzing, and result47
returning [4].48

To address these challenges of cloud computing mentioned above, a new computing paradigm,49
called edge computing (EC), has attracted widespread attention. Simply put, the core idea of the50
EC model is to offload the data processing, storage, and computing operations that were originally51
required by the cloud to the edge of the network near terminal devices. This helps to reduce data52
transmission time and device response times, reduce the pressure on network bandwidth, reduce53
the cost of data transmission, and also achieve decentralization [5].54

1.2 Artificial Intelligence55

Artificial intelligence (AI) is a kind of technology that endows the machine with certain intelli-56
gence so that the machine has the same ability to solve tasks as human beings [6]. While heuristic-57
based algorithms and data mining (DM) [7] have both played an important role in AI solutions58
to IoT in the past decades, we mainly focus on machine learning (ML), a recently popular area in59
AI. It is worth mentioning that, though DM and ML share similarities in utilizing massive data, ML60
focuses on mimicking the human learning process, but DM is designed to extract the rules from61
data [8, 9]. In contrast to DM, ML is a higher-level intelligence and represents the future direction62
of AI.63
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The widespread application of AI, especially ML, has clearly become an inevitable trend in the 64
“big data era” brought by IoT. It is worth noting that this article focuses on the new generation AI 65
algorithm, e.g., deep learning (DL), and so on. Note that some of these applications have high 66
requirements for latency and network stability, but these requirements are often not guaranteed 67
by cloud computing. In contrast, the new EC model can meet these requirements by deploying 68
AI at the edge and delegating some computing and storage resources to edge devices close to 69
the terminal. Although EC brings benefits such as reduced latency, improved data privacy, and 70
enhanced security, the limited computing and storage capacity of edge devices has brought new 71
problems. Using AI to optimize EC and solve the problems faced by EC has become a new trend 72
in related research [10]. 73

1.3 Combination of Edge Computing and Artificial Intelligence 74

The motivations of combining AI and EC in recent works can be roughly divided into two aspects, 75
which fully illustrate the mutual benefit between AI and EC: 76

(1) The development of EC still faces many challenges, e.g., task scheduling, resource allocation, 77
delay optimization, energy consumption optimization, and privacy and security. In response, 78
many researchers have adopted AI-based solutions to promote the development of EC. 79

(2) In spite of the rapid development of AI, its application relies on strong computing power. 80
Traditional cloud computing can provide abundant computing and storage resources, but 81
cloud-based AI reasoning and training may lead to significant delay as well as data privacy 82
and security issues. By executing AI tasks in edge nodes closer to the user side, EC can greatly 83
alleviate the aforementioned issues with improved stability, reliability, and user experience. 84

At present, researchers have made many great achievements in the above research problems. 85
This article summarizes these results, hoping that readers can quickly get updated with the latest 86
research status and relevant results. 87

1.4 Review of Existing Surveys 88

EC and AI are very popular research fields, and some related reviews have been published. In 89
Reference [11], authors focus on the motivation and research work of deploying AI algorithm on 90
the edge of the network. The latest development of ML in mobile EC is reviewed in Reference 91
[12], which includes the development of 5G network in automatic adaptive resource allocation, 92
mobility modeling, security, and energy efficiency. Survey work [13] reviews the application of 93
DL in EC, and it focuses on how to use DL to promote the development of edge applications, e.g., 94
intelligent multimedia, intelligent transportation, intelligent city, and intelligent industry. Various 95
methods of fast implementation of DL reasoning in the combination of end devices, edge servers 96
and cloud, and the methods of training DL models in multiple edge devices are also discussed 97
in Reference [14]. To achieve the best performance of DL training and reasoning, Reference [15] 98
comprehensively discusses how to design EC architecture with communication, computing power, 99
and energy consumption constraints. From the perspective of algorithms and systems, [16] csys- 100
tematically summarizes the latest approaches to overcome the communication challenges caused 101
by AI reasoning and training at the edge of the network. 102

Nonetheless, the mutually beneficial relationship between EC and AI (especially traditional ML, 103
DL, reinforcement learning (RL), and deep reinforcement learning (DRL)) are seldom dis- 104
cussed in previous surveys. From this point of view, this article reviews existing works on EC 105
performance optimization and different application scenarios of AI. In addition to the DL methods 106
discussed in References [13–15], other ML algorithms, especially RL and DRL, are also discussed 107
in this article. 108
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Fig. 1. Structure of the survey.

1.5 Our Contributions109

Our main contributions in this article are as follows:110

(1) We first outline the basic definition and architecture of EC and discuss the necessity of EC111
in the presence of cloud computing. We also describe the problems studied by EC.112

(2) We discuss the motivations for combining AI and EC from two perspectives:113
• AI algorithms can be utilized to optimize EC;114
• EC enables AI to be deployed on the edge to bring faster response speeds and network115

stability for AI applications in different fields.116
We summarize three ideas of deploying AI training and reasoning tasks in the EC architec-117
ture based on existing studies and analyze their advantages and disadvantages.118

(3) We mainly introduce popular ML algorithms in the field of AI and analyzes their respective119
advantages. We summarize the latest research on solving the problems of EC and optimizing120
the performance of EC by using AI algorithms. We also review the latest research on applying121
AI to other fields under the EC architecture.122

Roadmap. The remainder of this article is organized as follows: Section 2 introduces the defini-123
tion of EC, discusses why we need EC, and enumerates the challenges faced by EC and correspond-124
ing traditional (non-AI) solutions. In Section 3, we combine EC and AI. We first discuss the trends125
and reasons for the combination of the two, then introduce the corresponding AI algorithms, and126
finally conduct a comprehensive review of the research on using AI algorithms to optimize EC. In127
Section 4, we summarize recent works on applying AI to other fields under EC. We summarize this128
article in Section 5. The diagram in Figure 1 shows a clear picture of the structure of this article.129

2 INTRODUCTION OF EDGE COMPUTING130

Cloud computing has been a very popular or even a household concept for the past decade. Cloud131
computing brings many conveniences. For example, small- and medium-sized enterprises only132
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need to purchase cloud server resources at a relatively low cost, without the need of purchasing 133
their own hardware and equipment at high prices. This greatly reduces the cost of business oper- 134
ations and the threshold for companies to engage in technology research and development. 135

The centralized computing, storage, and network resources of cloud computing has exposed a 136
series of problems with the development of the times. In this context, EC, a new computing para- 137
digm, has begun to attract the attention of all areas. In this section, we will give a brief overview of 138
EC. We will first discuss why EC is needed, and then introduce what EC is. Finally, we will discuss 139
the problems of EC and corresponding traditional solutions, and point out the shortcomings of 140
these traditional solutions. 141

2.1 Why We Need Edge Computing 142

We will explain the necessity of EC from the following three aspects: the “big data era” caused by 143
IoT, more stringent requirements of high network stability and response speed, and the consider- 144
ation of privacy and security. 145

2.1.1 The Big Data Era Caused by Internet of Things. The concept of IoT was proposed in 1999 146
for supply chain management, but now IoT covers a much wider area [17]. With the integration 147
of IoT into traditional industries, many new application areas have been spawned, such as smart 148
home, smart grid, smart traffic, and intelligent manufacturing. The idea of IoT is that things con- 149
nected to the Internet form a huge network, achieving the interconnection of these things at any 150
time and place. With the continuous development of IoT, the number of various sensors, smart- 151
phones, healthcare applications and online social platforms is soaring, and the resulting global 152
data will increase to 175 zeta bytes (ZB) by 2025 according to the prediction of International 153
Data Corporation (IDC) [18]. This huge data volume has facilitated the world of big data [19]. 154

In the era of big data, the most direct and simple method for handling those data is to transfer 155
the data to the cloud for processing. The annual global cloud IP traffic of 2016 was 6.0 ZB, and it is 156
expected to reach 19.5 ZB in 2021, reported by Cisco in 2018 [20] . However, the computing power 157
of the cloud is increasing linearly [21], which is much slower than the current rate of data growth. 158
With the rapid growth of data, cloud computing will no longer be fully trusted. 159

2.1.2 More Stringent Requirements of Network Stability and Response Speed. There are some 160
IoT application scenarios that require extremely fast response speeds. For example, in the scenario 161
of intelligent driving, sensor devices such as cameras are installed in autonomous vehicles. These 162
sensor devices can continuously obtain data from the surrounding environment during the au- 163
tonomous driving mode. In the cloud computing model, these data will be uploaded to the cloud 164
for computing, and the results will be returned back to the vehicle’s control chip. Considering the 165
complicated driving environment of a vehicle, this method is actually very time-consuming, and 166
it may even cause the smart vehicle to fail to make the right decision in a timely manner, resulting 167
in serious consequences [3]. 168

In the fields of augmented reality (AR) and virtual reality (VR), mobile AR/VR applications 169
need to continuously transmit high-resolution videos, so they have high requirements for data 170
computing capabilities, network stability, and response speed [22]. At the current rate of data 171
growth, the cloud’s computing power becomes less and less proficient in meeting these require- 172
ments. However, uploading all the data to the cloud will cause serious network congestion. Due to 173
the limited network bandwidth, the data generated by a large number of IoT devices will impose a 174
lot of pressure on the network bandwidth, causing cloud computing to no longer meet the require- 175
ments of latency and response speed in these scenarios. In addition, these data may have a large 176
proportion of noise and errors. Some survey shows that only one third of the data obtained by 177
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most sensors are correct [23]. Putting these worthless data into the cloud will cause a huge waste178
of cloud server resources and a waste of network bandwidth.179

2.1.3 Privacy and Security. Cloud computing has outsourcing features. Users need to host local180
data to the cloud when using cloud computing. This leads to a series of data security and privacy181
issues [21]. The data loss during long-distance transmission between devices and the cloud can182
damage the integrity and accuracy of the data. In addition, highly centralized computing and stor-183
age can also become serious problems. When one device in a centralized system goes wrong due184
to benign errors or malicious attacks, other devices will be negatively affected. The data privacy185
problem refers to the theft and utilization by other unauthorized persons, companies or organiza-186
tions. Actually, data owners have lost control of their data uploaded to the cloud, so it is difficult187
to guarantee data privacy [24].188

2.2 The Definition of Edge Computing189

The origin of EC can be traced back to 1999 when Akamai proposed content delivery networks190
(CDN) for web page caching near the clients, aiming to improve the efficiency of web page load-191
ing [25]. The concept of EC was borrowed from the cloud computing infrastructure to expand the192
concept of CDN [26].193

EC now has many different definitions. For example, Openstack defines EC as a model that194
provides application developers and service providers with cloud services and IT environmental195
services at the edge of the network [27]. In Reference [28], the authors believe that the “edge” in196
EC refers to any computing and network resources between the data source and the cloud, such197
as smart phones, gateways, micro data center, and cloudnet. It can also be understood that EC198
offloads some cloud resources and tasks to the edge near users and data sources.199

It should be noted that EC cannot replace the roles and advantages of cloud computing due to200
the indispensable computing power and storage capacity of the cloud. The emergence of EC is201
to make up for the limitations of cloud computing, and the relationship between EC and cloud202
computing should be complementary. Therefore, how to coordinate the relationship between the203
cloud and the edge so that the two can cooperate more efficiently and securely is a problem that204
needs to be studied.205

EC’s general architecture is three-layered, as shown in Figure 2, which are end, edge, and206
cloud [29].207

• End. This layer has two main functions. The first is to perceive the world, which is to ob-208
serve, obtain and digitize the information of the physical world. This function is completed209
by various types of sensors, such as speed sensors on smart cars, or cameras in smart cities.210
The second is to receive information or data from the edge or cloud and perform the cor-211
responding tasks. Data obtained from the end is processed by the edge and the cloud, and212
then the results will be fed back to the end according to user needs, such as control signals213
in smart driving or video traffic accepted by smartphones. Devices in this layer may have214
some but very limited computing and storage capabilities.215
• Edge. The edge layer is between the cloud and the end. This layer contains certain computing,216

storage, and network resources, so some tasks that were originally performed in the cloud217
can be delegated to this layer for execution. Since this layer is closer to end devices, EC has218
the advantages of low latency. Generally, the edge layer is composed of gateways, control219
units, storage units, and computing units.220
• Cloud. This layer actually refers to cloud servers that has been widely used in practice. In221

addition to its powerful computing and storage capabilities, the cloud also has the ability to222
macro-control the entire EC architecture.223
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Fig. 2. Architecture of EC. Gray arrows indicate the data transmission between the end, the edge, and the

cloud. Blue and gray boxes indicate that the task is scheduled to the edge and the cloud, respectively.

EC has advantages in offloading some resources and tasks on the cloud to the edge. The edge 224
layer is closer to end users and data source, so the transmission distance is greatly shortened, and 225
the corresponding transmission time is greatly reduced. This effectively improves the response 226
speed of user requests. At the same time, the shortened transmission distance also reduces the 227
cost and data security issues caused by the long-distance transmission. From the perspective of 228
the cloud, large-scale raw data will be processed on the edge to filter out a large number of useless 229
and erroneous data first, and then the edge uploads important data or information to the cloud. 230
This greatly reduces the bandwidth pressure, the transmission cost, and the possibility of user 231
privacy leakage. 232

2.3 Problems Studied in Edge Computing 233

Next, we will describe three problems studied in the field of EC in detail: computing offloading, 234
resource allocation, and privacy and security. We will also explain the shortcomings of traditional 235
solutions to these problems. 236

2.3.1 Computing Offloading. Computation offloading was originally proposed in cloud com- 237
puting. The definition is that the terminal devices with limited computing power delegates part 238
or all of the computing tasks to the cloud for execution. Similarly, computing offloading in EC 239
refers to the problem that terminal devices with limited computing power delegate part or all of 240
its computing tasks to the edge [30]. The main considerations are whether terminal devices will 241
offload, how much they will offload and to which nodes they will offload. Computing offloading 242
solves the problems of insufficient resources and high energy consumption in terminal devices. 243

Traditional methods of computing offloading applied to cloud computing are based on many 244
assumptions, including that the default server has sufficient computing power and does not care 245
about its energy consumption or network condition. However, traditional methods based on 246
the above assumptions are not suitable for solving the computing offloading in EC where edge 247
devices and servers have limited computing capabilities [31]. Reasonable computing offloading 248
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strategies are able to reduce energy consumption and latency. Therefore, computing offloading is249
an important research topic for optimizing EC.250

2.3.2 Resource Allocation. Compared to traditional cloud computing, the most prominent ad-251
vantage of EC is that it does not need to upload all the data to the cloud for computing and storage252
tasks, which largely frees up network bandwidth and other resources occupied by cloud comput-253
ing. In the meanwhile, since tasks are distributed on each edge node with limited resources, an254
intelligent and efficient solution for resource management is crucial for EC.255

2.3.3 Privacy and Security. EC also faces new challenges regarding data security and pri-256
vacy [32]. Some of these challenges come from the inherent problems of cloud computing, and257
others come from the distributed and heterogeneity nature of EC itself [33]. Traditional solutions258
for data security and privacy issues of cloud computing are not applicable to the non-centralized259
computing model of EC. Therefore, further improving data security and further protecting data260
privacy is a problem worthy of researchers’ attention.261

2.4 Summary262

Aiming at the problems described above, many studies based on traditional methods have made263
good progress. In solving the problem of resource allocation and computing offloading in EC,264
some researchers adopt Lyapunov optimization algorithm [34] to find the optimal decision [35, 36].265
Some studies also regard resource allocation and computing offloading as optimization problems266
such as linear programming [37] and mixed integer non-linear programming [38–40]. Other tra-267
ditional methods include alternating direction method of multipliers (ADMM) [41], Stack-268
elberg game [42], and so on. In terms of security, Jing et al. [43] adopt a linear programming269
method to reduce data loss. Kang et al. [44] use blockchain technology to protect the security of270
data storage and sharing. In terms of privacy protection, traditional methods include differential271
privacy [45], wavelet transform [46], and so on.272

Although traditional methods above have achieved good results in optimizing EC, they still have273
some shortcomings. First, the underlying model needs to be known, which is not an easy task due274
to the complexity and dynamics of EC itself. Second, they are easy to converge to local optima,275
and their efficiency is usually very low. Moreover, they lack the ability to perform deep and high-276
dimensional data mining, automatically extract important features to make fast optimal decisions,277
and make prediction. Note that these are all advantages of AI algorithms, and we will describe278
how they optimize EC in the next section.279

In summary, this section mainly focuses on the concept and motivation of EC. At the same time,280
the problems and challenges faced by the development of EC are also described. It is worth noting281
that traditional methods have achieved good results in solving these problems, but they still suffer282
some shortcomings. In the future, AI algorithms might become more adaptable to new situations,283
able to change inputs, outputs, and constraints more easily, and do not need mathematical models284
when data are sufficient [12].285

3 WHEN EDGE COMPUTING MEETS ARTIFICIAL INTELLIGENCE286

In this section, we will first analyze the respective development of AI and EC and the motiva-287
tion for the combination of the two, and then we will give an overview of related AI algorithms.288
Finally, we will summarize AI-based algorithms for topics such as computing offloading optimiza-289
tion, non-computing offloading methods to reduce energy consumption, EC security, data privacy,290
and resource allocation optimization.291
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Fig. 3. Mutually beneficial relationship between AI and EC. The right-to-left arrow indicates that the opti-

mization and development of EC require the assistance of AI algorithms (e.g., computation offloading opti-

mization). The left-to-right arrow indicates that EC needs to be deployed closer to terminal devices to meet

the requirements of some latency-sensitive AI applications (e.g., smart city).

3.1 Motivations of Combining Edge Computing and Artificial Intelligence 292

Artificial intelligence is a very critical technology in the era of big data. It brings intelligence and 293
reasoning capabilities to a large number of terminal devices in IoT. At present, many studies and 294
applications have combined the two hot areas of AI and EC, and their motivations can be roughly 295
divided into two aspects: 296

• The optimization and deployment of EC requires the assistance of AI algorithms; 297
• EC provides necessary computing functions for AI applications that need to be deployed 298

close to terminal devices for low latency and high network stability [47]. 299

It can be seen that the development of AI and EC is mutually beneficial (see Figure 3 for a straight- 300
forward description), and the combined development of the two has attracted the attention of 301
many researchers. 302

3.1.1 Edge Computing Benefits Artificial Intelligence. In detail, EC brings benefits to the appli- 303
cation of AI. With the advent of the big data era, the widespread application of AI in people’s 304
daily lives has become an irresistible trend. Of course, this trend still faces challenges. For exam- 305
ple, AI’s reasoning and training requires strong computing power and sufficient energy support, 306
but terminal devices often do not meet these two requirements. In recent years, cloud computing 307
has fulfilled these needs by offloading AI model training and reasoning tasks that terminal devices 308
cannot perform to the cloud server. However, relying solely on cloud computing will cause prob- 309
lems like insufficient bandwidth and high latency when a large number of AI models are used by a 310
large number of terminal devices [48]. With the advent of EC, AI can be deployed near terminal de- 311
vices and users on the edge and terminal with certain computing resources and storage resources, 312
therefore meeting the needs for low latency and high network stability [11]. 313

In return, EC also brings three ideas to the application of AI in other fields (visually represented 314
by Figure 4). 315

(a) Massive data are preprocessed and then uploaded to the cloud for AI training and reason- 316
ing [49]. Although this idea has greatly reduced the pressure of massive data on bandwidth 317
and transmission costs, it does not meet the requirements of many applications in terms of 318
latency (e.g., IoV and AR/VR applications). 319

(b) To reduce the latency of applications, AI reasoning tasks are performed on the edge or the 320
end, while model training tasks are still performed in the cloud [50]. 321
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Fig. 4. Hierarchical modes for deploying AI in EC. The figure is divided into three parts by two vertical dotted

lines, which correspond to three hierarchical modes. Neural networks and cylinders represent training tasks

and reasoning tasks, respectively. (a) The leftmost part describes that both training and reasoning tasks are

deployed in the cloud. (b) The blue part in the middle describes that the training tasks are performed in the

cloud, but the reasoning tasks are performed in both cloud and edge. The red part in the middle describes

that the training tasks are in the cloud, while the reasoning tasks are performed completely on the edge.

(c) The blue part in the rightmost part indicates that both training and reasoning tasks are deployed in both

cloud and edge. The red part describes the training and reasoning tasks performed only on the edge.

(c) Delegate part or all of AI training and reasoning tasks to the edge [51]. With distributed322
characteristics, this idea helps enhance the location awareness of AI models while reducing323
the latency and bandwidth pressure [33]. Note that the requirements for energy consumption324
and computing power of edge devices will also increase as the number of tasks devolved to325
the edge side increases.326

As can be seen from the above, these three ideas have their own advantages and disadvantages, so327
existing studies are more inclined to choose the best idea according to the specific situation.328

3.1.2 Artificial Intelligence Benefits Edge Computing. AI is playing an important role in the opti-329
mization of EC [52]. Since EC is distributed and the workload of each edge device changes dynam-330
ically with time and location, this uncertainty and unpredictability have brought huge obstacles331
to the application of EC. In this sense, EC still needs to be optimized and improved in many as-332
pects, such as optimizing computing offloading, optimizing resource allocation, reducing latency333
and energy consumption, and improving user experience.334

Many optimization problems in EC are very complex non-convex problems. As the number of335
devices and users increases, the scale of these problems will also rapidly increase [53]. Compared336
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to traditional methods, ML is more suitable for solving optimization problems of EC and has better 337
results [54]. In addition, AI algorithms are also good at effectively mining hidden information and 338
laws from data in complex and noisy EC environments, which has plagued traditional optimization 339
methods for a long time. 340

3.2 Introduction of Artificial Intelligence Algorithms in Edge Computing 341

We are going to introduce these AI algorithms used in EC, namely, traditional ML algorithms, DL, 342
RL and DRL algorithms. We will also provide some examples of application accordingly. In this 343
article, we mainly focus on the field of ML in AI algorithm. Other algorithms such as evolutionary 344
algorithm are not the focus of this article, but are briefly introduced in this section. 345

3.2.1 Traditional Machine Learning. The traditional ML algorithms in this work particularly 346
refer to those ML algorithms other than DL and RL. Given the availability of label information, 347
the traditional ML algorithms can be divided into supervised learning, semi-supervised learn- 348
ing, and unsupervised learning. Among them, supervised learning requires labeled data to train 349
the model, while unsupervised learning can autonomously discover the principles implicit in the 350
data. As a hybrid of supervised learning and unsupervised learning, semi-supervised learning has 351
access to both labeled data and unlabeled data. For example, the common supervised learning 352
methods include support vector machines (SVM), boosting, and random forests; the common 353
semi-supervised learning methods include label propagation and graphical models; the common 354
unsupervised learning methods include clustering algorithms such as K-means and dimension re- 355
duction algorithms such as principal component analysis (PCA). 356

There are some obvious shortcomings of traditional ML algorithms. For instance, they are sen- 357
sitive to data sets, the data become less effective when the data set is large enough, and they need 358
complicated artificial feature engineering. In spite of these shortcomings, traditional ML has small 359
energy consumption, small computing power cost, and is easy to deploy compared to DL and 360
RL. Due to the distributed nature of EC, the appropriate AI algorithm can be reasonably selected 361
according to the resource situation and task requirements of each edge and terminal device, so 362
traditional ML can also rely on these advantages to find its place in EC [55]. 363

3.2.2 Deep Learning. DL resembles the functions of human brains. It has the ability to au- 364
tonomously learn high-level features from raw data, thereby efficiently performing classification 365
and prediction tasks [56, 57]. DL is usually deployed in a multi-layer structure. These layers can 366
be fully connected layers, convolutional layers, pooling layers, normalization layers, or activation 367
layers. A DL algorithm can be formed by the free combination of these layers. The more layers 368
the algorithm includes, the “deeper” it is. The input of a neuron in each layer is the weighted sum 369
of the outputs of the neurons in the previous layer. After the input is activated by an activation 370
function, the obtained number is used as the output of the neuron [58]. Compared to traditional 371
ML algorithms, DL has a more powerful ability to extract high-level features from massive data 372
due to its multilayer structure [59]. 373

The common DL models include: deep neural networks (DNN), convolutional neural net- 374
works (CNN), recurrent neural networks (RNN), and so on. 375

• DNN, also known as multiple linear perceptrons (MLP), is a neural network with multi- 376
ple hidden layers. The neural network layer in DNN can be divided into three types: input 377
layer, hidden layer and output layer. By adding hidden layers, DNN model can obtain more 378
powerful learning ability. 379
• CNN is composed of a series of different convolution layers. High-level features hidden in 380

the input data can be extracted through the convolution operation in these convolution 381
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layers [60]. CNN has powerful representation abilities and picture recognition capabilities.382
Based on this, some studies have adopted CNN algorithms in the fields of fault detection383
and video surveillance in EC. For example, Zhang et al. [61] detects microseismic events by384
deploying CNN models on edge devices.385
• RNN is a DNN algorithm that is good at modeling and processing sequence data. However, a386

major disadvantage of RNN is that it is easy to forget. That is, the impact of the input of the387
starting moment on the later moments will become smaller and smaller with time. Therefore,388
an improved version of RNN named long short-term memory (LSTM) [62] is proposed.389
At present, some studies [63–65] have adopted the LSTM algorithm to solve the issues faced390
by EC.391

When a large number of labeled data are available, compared with traditional ML algorithms,392
DL performs better in natural language processing, computer vision and many other fields [57].393
The characteristics of EC make the data collected from the physical environment can be processed394
locally, which meets the requirements of DL. Therefore, some EC studies also focus on using DL395
in EC anomaly detection [66], task scheduling and resource allocation in EC [67], and privacy396
protection [68].397

3.2.3 Reinforcement Learning and Deep Reinforcement Learning. Unlike supervised learning398
and unsupervised learning that rely on static data, RL is a learning algorithm that trains mod-399
els through dynamic interaction with the environment. The core idea is that agents receive the400
state of environment and make actions to maximize the reward according to historical experience.401
Because reinforcement learning is good at solving decision-making problems, some studies [69, 70]402
have adopted RL algorithm in the decision-making of EC resource management, allocation, and403
scheduling.404

Typical algorithms in RL are model-free and value-based Q-learning algorithm [71]. Each iter-405
ation of Q-learning algorithm will calculate an expected cumulative reward, called the Q-value,406
according to current state and given action. However, as the environment becomes more complex,407
the state space and action space will expand exponentially, thus reducing the convergence speed408
and taking up a lot of memory [72].409

To solve this problem, deep Q network (DQN) [73] is proposed, which utilizes a DNN to ap-410
proximate the Q-values. Compared with the classical RL algorithms, DQN has three advantages411
in dealing with EC with high complexity [74]. First, it is able to deal with high dimensional and412
complex systems. Second, it can learn the regularity of system environment. Last but not least, it413
is able to make optimal decisions based on current and past long-term reward. Therefore, some414
studies [75, 76] use DQN algorithms to optimize the control decision-making problems in EC and415
obtain good results.416

However, DQN also has its shortcomings. Especially, when using nonlinear functions such as417
neural network to approximate the Q-function, the learning result of DRL is unstable or even418
divergent. To solve this problem, an experience replay mechanism using the prior experience is419
integrated into DQN [77, 78].420

3.2.4 Federated Learning. Federated learning (FL) is a distributed ML framework, which can421
effectively help multiple organizations train models under the requirements of user privacy pro-422
tection, data security, and government regulations [79]. In this framework, different local users do423
not need to put all the raw data on the central server for training, but train the local model through424
privacy related data, then all the local models are aggregated into a global model on the central425
server [80].426

As discussed above, the goal of EC is to deploy computing tasks at the edge of the network427
near the client. However, the data of a single edge node may not meet the requirements of model428
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training. Therefore, the cooperation model training between different nodes under data privacy 429
protection is a research hotspot; see, e.g., Reference [81]. 430

3.2.5 Evolutionary Algorithms. Evolutionary algorithms are a kind of optimization methods 431
inspired by biological evolution mechanism and biological behavior [82]. Evolutionary algorithms 432
include particle swarm optimization (PSO), genetic algorithm (GA), differential evolution 433
(DE), and so on. 434

Generally speaking, evolutionary algorithms are divided into the following steps. The first step 435
is to initialize variables. After that, the evolutionary algorithms continuously iterate three steps 436
named fitness evaluation and selection, population reproduction and variation, and population 437
updating [82]. Finally, the second step is iterated until the termination condition is satisfied. 438

At present, evolutionary algorithm has been applied in many problems of EC, such as resource 439
scheduling optimization [83], load balancing [84], and task scheduling [85]. In this article, we 440
mainly discuss ML, a recently popular AI subclass, so evolutionary algorithm is only briefly intro- 441
duced here. 442

3.3 Artificial Intelligence Solutions for Optimizing Edge Computing 443

Now, we are going to provide a comprehensive summary of studies (listed in Table 1) that uses AI 444
methods to optimize EC in different scenarios including computing offloading, reducing energy 445
consumption, increasing the security of EC, keeping data privacy, and resource allocation. 446

3.3.1 Computing Offloading Optimization. At present, more and more studies have begun to 447
make full use of AI to solve computing offloading [86]. We will summarize the AI-based computing 448
offloading schemes in existing research to reduce energy consumption, reduce latency, and reduce 449
both. 450

Reducing energy consumption. In terms of reducing energy consumption, a partial computing 451
offloading scheme based on DL decision-making is proposed by Ali et al. [31]. The authors estab- 452
lish a new type of decision-making process, which can intelligently select the optimal computing 453
offloading strategy, thus reducing the total energy consumed in the execution of computing tasks. 454
Compared with its previous work in Reference [87], this strategy additionally considers the energy 455
consumption of user equipment in the cost function, which reduces its energy consumption by 3%. 456

Reducing latency. Although EC itself has the advantage of low latency compared to cloud com- 457
puting, it still has room for optimization. Smart-Edge-CoCaCo [88] is proposed to minimize the 458
latency by jointly optimizing the wireless communication model, the collaborative filter caching 459
model, and the computing offloading model. In addition, since the computing power of edge de- 460
vices is limited, offloading all tasks to edge devices may exceed the capacity of the edge device. 461
With this in mind, Xu et al. [89] propose a DL-based heuristic offloading method. This method uses 462
origin-destination electronic communications network distance estimation and heuristic searching 463
to find the optimal computing offloading strategy. 464

Reducing both energy consumption and latency. All the methods mentioned in previous para- 465
graphs either only minimize energy consumption, or only minimize latency. There are also studies 466
that consider the minimization of both through RL. Kiran et al. [54] propose a scheme that uses 467
Q-learning to make optimal control decisions to reduce the delay in EC and adds constraints to 468
the cost function to reduce energy consumption in EC. Although this scheme has a good effect on 469
reducing energy consumption and delay, it does not take into account the curse-of-dimensionality 470
problem of EC. 471
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Table 1. Summary of Research on AI-optimized EC

Problem Goal Citation AI Contribution

Reduce energy
consumption

[98] Distributed DL-based
offloading algorithm

Add the cost of changing local
execution tasks in the cost
function

Reduce
latency

[88] Smart-Edge-CoCaCo
algorithm based on

DL

Joint optimization of wireless
communication, collaborative
filter caching and computing
offloading

[89] A heuristic offloading
method

Origin-destination electronic
communication network
distance estimation and heuristic
searching to find optimal
strategy for shorting the
transmission delay of DL tasks

[54] Cooperative
Q-learning

Improve the search speed of
traditional Q-learning

[90] TD learning with
postdecision state and
semi-gradient descent

method

Approximate dynamic
programming to cope with
curse-of-dimensionality

[91] Online RL Special structure of the state
transitions to overcome
curse-of-dimensionality;
additionally consider the EC
scenario with energy harvesting

Computing
offloading

optimization

Reduce both
energy

consumption
and latency

[93] DRL-based offloading
scheme

No prior knowledge of
transmission delay and energy
consumption model; compress
the state space dimension
through DRL to further improve
the learning rate; additionally
consider the EC scenario with
energy harvesting

[94] DRL-based computing
offloading approach

Markov decision process to
represent computing offloading;
learn network dynamics through
DRL

[95] Q-function
decomposition

technique combined
with double DQN

Double deep Q-network to
obtain optimal computing
offloading without prior
knowledge; a new function
approximator-based DNN model
to deal with high dimensional
state spaces

[10] RL based on neural
network architectures

An infinite-horizon
average-reward continuous-time
Markov decision process to
represent the optimal problem; a
new value function
approximator to deal with high
dimensional state spaces

(Continued)
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Table 1. Continued

Problem Goal Citation AI Contribution

Optimize the
hardware

structure of
edge devices

[102] Binary-weight CNN A static random access memory
for binary-weight CNN to
reduce memory data
throughput; parallel execution
of CNN

[104] DNNs FPGA-based binarized DNN
accelerator for weed species
classification

Other ways to
reduce energy
consumption

Control
device

operating
status

[105] DRL-based joint
mode selection and

resource
management

approach

Reduce the medium- and
long-term energy consumption
by controlling the
communication mode of the
user equipment and the
light-on state of the processors

Combine
with energy

Internet

[106] Model-based DRL Solve the energy supply
problem of the multi-access
edge server

[70] RL A fog-computing node powered
by a renewable energy
generator

[113] Minimax-Q learning Gradually learn the optimal
strategy by increasing the
spectral efficiency throughput

[114] Online learning Reduced bandwidth usage by
choosing the most reliable
server

[115] Multiple AI
algorithms

Algorithm selection mechanism
capable of intelligently
selecting optimal AI algorithm

Security of
edge

computing

[117] Hypergraph
clustering

Improve the recognition rate by
modeling the relationship
between edge nodes and DDoS
through hypergraph clustering

[112] Extreme Learning
Machine

Show faster convergence speed
and stronger generalization
performance of the Extreme
Learning Machine classifier
than most classical algorithms

[56] Distributed DL Reduce the burden of model
training and improve the
accuracy of the model

[120] DL, restricted
Boltzmann machines

Give active learning capabilities
to improve unknown attack
recognition

(Continued)
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Table 1. Continued

Problem Goal Citation AI Contribution

[122] Deep PDS-Learning Speed up the training with
additional information (e.g., the
energy utilization of edge
devices)

Privacy
protection

[124] Generative
adversarial networks

An objective perturbation
algorithm and an output
perturbation algorithm that
satisfy differential privacy

[125] A deep inference
framework called

EdgeSanitizer

Data can be used to the
maximum extent, while
ensuring privacy protection

[77] Deep Q-learning Derive trust values using
uncertain reasoning; avoid local
convergence by adjusting the
learning rate

Resource
allocation

optimization

[166] Actor-critic RL An additional DNN to represent
a parameterized stochastic
policy to further improve
performance and convergence
speed; a natural policy gradient
method to avoid local
convergence

[76] DRL-based resource
allocation scheme

Additional SDN to improve QoS

[127] Multi-task DRL Transform the last layer of
DNN that estimates Q-function
to support higher dimensional
action spaces

The curse-of-dimensionality refers to the problem that the complexity of the problem solving472
will increase at an exponential speed as the dimensionality increases [90, 91]. To solve the curse-473
of-dimensionality problem, Xu et al. [91] propose an algorithm that uses the special structure of474
state transitions of the considered EC system to overcome the curse-of-dimensionality problem. It475
is worth noting that the authors use energy harvesting [92] to reduce the consumption of tradi-476
tional energy by fully utilizing renewable energy, but the transmission delay model and the energy477
consumption model are required to be known (this requirement can be eliminated by the method478
proposed in Reference [93]).479

Compared with RL algorithms, DRL algorithms have stronger abilities to deal with high-480
dimensional state space. Therefore, Cheng et al. [94] propose a model-free DRL-based comput-481
ing offloading method based on a space-air-ground integrated network to reduce EC latency and482
energy consumption. This method uses Markov decision process to represent the computing of-483
floading decision process, and uses DRL to learn network dynamics.484

Yet the ability of DRL algorithms to cope with high-dimensional state space is not perfect in ev-485
ery respect. Chen et al. [95] propose a new DNN model based on function approximator, and they486
also adopt double deep Q-network so that the optimal offloading strategy can be discovered with-487
out prior knowledge. Similarly, Lei et al. [10] propose a new type of value function approximator488
to deal with high-dimensional state equations. The authors also use an infinite-horizon average-489
reward continuous-time Markov decision process to represent the optimal problem. Finally, DRL490

ACM Computing Surveys, Vol. 00, No. JA, Article 00. Publication date: August 2022.



CSUR-2021-0611 acmart Trim: 6.75 X 10 in August 29, 2022 11:25

Edge Computing with Artificial Intelligence: A Machine Learning Perspective 00:17

is applied to solve the optimal computing offloading decision to reduce the energy consumption 491
and latency of EC. 492

The DRL-based methods mentioned above use a centralized style for model learning. However, 493
there is a potential assumption in this style that edge devices in EC have sufficient computing 494
power. In fact, many edge devices do not yet have such powerful computing capabilities. As a 495
result, Ren et al. propose a distributed computing offloading strategy combining federated learning 496
and multiple DRLs [96]. It is proved by experiments that this method outperforms the centralized 497
learning method in reducing the transmission cost in EC. In addition, distributed learning also 498
has the advantage of fast convergence [97]. This is proved in Reference [98] by the method of 499
optimizing computing offloading through distributed ML. 500

3.3.2 Non-computation Offloading Methods to Reduce Energy Consumption. EC provides cer- 501
tain computing capabilities near the data source, so that many computing tasks do not need to 502
be delivered to the cloud for execution. While this model brings high response speed to people, 503
it will inevitably cause a surge in energy consumption on the edge side. Moreover, many applica- 504
tions in EC require AI algorithms to make real-time decisions (such as intelligent driving [99] and 505
intelligent monitoring systems [100]), but AI algorithms are computationally intensive to varying 506
degrees. This is a huge challenge for devices with limited power. From the perspective of overall 507
energy consumption, with the gradual popularization and widespread application of AI, how to 508
control global overall energy consumption or improve energy efficiency is also very important. 509

Apart from computation offloading, there are many other factors that affect the energy con- 510
sumption of edge devices. For example, different AI algorithms and different hardware structures 511
adopted by edge devices will also affect energy consumption [101]. We will introduce AI solutions 512
to reduce EC energy consumption in terms of optimizing hardware structure, controlling operating 513
status, and combining energy Internet. 514

Optimizing hardware structure. A static random access memory (SRAM) [102] is able to re- 515
duce memory data throughput, and it combines parallel CNNs to enable simultaneous access to 516
different memory blocks. Experiments show that this architecture significantly reduces energy 517
consumption compared to traditional digital accelerator using small bitwidths. Based on field- 518
programmable gate array (FPGA) [103], Lammie et al. [104] design a binarized DNN accelera- 519
tor for weed species classification, which reduces energy consumption by 7 times compared with 520
GPU-based accelerator under the same conditions. The authors believe that well-cultivated FPGA- 521
based accelerator for AI algorithms is an ideal choice for edge devices with limited resources but 522
need to perform learning and reasoning tasks. 523

Controlling operating status. Sun et al. propose a method based on DRL to reduce the medium 524
and long-term energy consumption of EC by controlling the communication modes of user devices 525
and the light-on state of processors [105]. This method uses Markov process to model the energy 526
consumption of cache states and cloud processors and DRL to make decisions. According to some 527
constraints (quality of service constraints, transmission power constraints, and the computing ca- 528
pability constraint in the cloud), the method uses an iterative algorithm to optimize the precoding 529
of user devices. 530

Combining Energy Internet. EC has distributed characteristics, and the workload of edge-side 531
devices will dynamically change with different geographical locations and times, which makes the 532
energy consumption of each edge node unpredictable and uneven. To deal with the huge energy 533
demand of EC and its heterogeneity, the combination of energy Internet (including smart grid 534
and microgrid) with EC can provide renewable energy for EC [70, 106]. Energy Internet is a dis- 535
tributed energy production model that achieves local energy self-sufficiency by making full use 536
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of renewable energy sources [107, 108]. This feature of energy Internet is very suitable for provid-537
ing energy to EC, thereby reducing the consumption of non-renewable energy. Since renewable538
energy is infinite, reducing non-renewable energy consumption is also equivalent to reducing en-539
ergy consumption. However, due to the uncertainty of renewable energy production [109], some540
studies [70, 106] also aim to balance the energy supply and demand of EC through DRL-based con-541
trol strategies. With the deployment of EC devices into energy Internet, energy management will542
also become more complex [110]. DRL combined with curriculum learning [111] has been used to543
realize a bottom-up energy management scheme [110].544

3.3.3 Security of Edge Computing. Delegating computing and storage tasks from the cloud to545
the edge can reduce the security problems caused by network congestion and centralization to546
some extent. However, the distributed environment of EC also brings new security problems, such547
as distributed denial of service (DDoS) attacks and jamming attacks that cause illegal distri-548
bution of distributed system resources [33, 112]. What was previously applicable to a centralized549
environment (like cloud computing) is no longer applicable to solving these new security issues.550
In this part, we will review the studies on improving the security of EC based on AI algorithms.551

Traditional machine learning methods. Traditional ML can help with the identification and clas-552
sification of different attacks. In response to jamming attacks that threaten EC security, Wang553
et al. [113] propose a stochastic game framework that maximizes the spectral efficiency through-554
put by minimax-Q learning, thereby gradually learning the optimal strategy. The disadvantage555
of this method is that it needs extra bandwidth to avoid jamming attacks. This can be avoided556
by selecting the most reliable server based on online learning to reduce the security risks caused557
by jamming attacks [114]. To reduce the false alarm rate and data transmission delay of tradi-558
tional intrusion detection systems, an algorithm selection mechanism can be deployed on the edge559
side [115]. This enables intelligent selection of the optimal ML algorithm for edge devices to dis-560
tinguish false alarms. The experimental results prove that the method based on AI algorithm can561
improve the security of EC more effectively than the method based on non-AI algorithm.562

Among various network attacks, DDoS is a relatively common attack method. Hypergraph clus-563
tering [116] can be adopted to model the relationship between edge nodes and DDoS to improve564
the recognition rate [117]. Kozik et al. uses a single-layer neural network to build the extreme565
learning machine classifier [112]. In this method, the training task of the attack detection classifier566
model is performed in the cloud with powerful computing resources. The trained classifier model567
is then offloaded to the edge devices for attack detection. In addition, experiments have also proven568
that the extreme learning machine classifier has faster convergence speed and stronger general-569
ization performance than most traditional classification algorithms (such as SVM, or single-layer570
perceptron).571

DL methods. Although traditional ML algorithms can improve the accuracy and robustness572
of network attack detection and recognition, they lack the ability of automatic feature extrac-573
tion [118]. As a result, traditional AI algorithms are not sensitive to known but slightly changed574
attacks. At the same time, due to the lack of prior knowledge of unknown vulnerabilities, they575
can not effectively detect zero-day attacks [119]. Deep learning, however, has been successfully576
applied in image processing, computer vision and many other fields in recent years because of577
its structure that can automatically mine and learn the hidden features in massive data [63]. Re-578
searchers begin to focus on DL, since the problem of cyber-security attack identification in EC is579
similar to the tasks in these fields.580

Abeshu et al. [56] propose a DL-based method for attack detection in EC. To reduce the bur-581
den of model training and improve the accuracy of the model, this method uses a pretrained582
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stacked autoencoder to screen the real valuable features and then uses softmax to do classification. 583
This method shows great advantages in the aspects of availability, scalability and effectiveness 584
compared with traditional ML algorithms. However, the authors fail to take into account the im- 585
provement of the detection rate of new attacks. This can be solved by unsupervised learning. The 586
DL-based algorithm proposed in Reference [120] learns the characteristics of the attack through 587
the deep belief network and uses the softmax function to identify various attacks on the EC. The 588
difference is that this solution incorporates unsupervised learning restricted Boltzmann machines 589
into the proposed model. Since unsupervised learning restricted Boltzmann machines is a stochas- 590
tic artificial neural network with active learning characteristics, this model enables active learning 591
to improve the recognition rate of attacks that have never occurred before. 592

3.3.4 Data Privacy. To a certain extent, EC reduces the risk of privacy leakage caused by upload- 593
ing data to cloud servers that users cannot control. However, the problem of data privacy leakage 594
also exists on the edge side. On the one hand, the distributed nature of EC brings new challenges to 595
privacy protection. On the other hand, the application of AI on the edge side requires massive data 596
for model training and reasoning, which are inevitably mixed with a large amount of user privacy. 597
During the training process, some models may save part of the training set with private data, so 598
an attacker can illegally obtain users’ privacy by analyzing these models [121]. Consequently, it 599
is very important to ensure the data privacy and security of edge-side users without affecting the 600
performance of EC. This topic has attracted the attention of many researchers in recent years. 601

Post-decision state learning. A post-decision state (PDS) learning method is proposed in Refer- 602
ence [122], in which the state transition function is factored into known and unknown components. 603
This method first uses the Markov decision process to describe EC’s offloading problem and then 604
solves the problem by combining PDS-learning technique with the traditional deep Q-network 605
algorithm. This combination can well balance task scheduling and privacy protection. It is worth 606
noting that compared with the traditional deep Q-network, the new algorithm can speed up the 607
model training by learning some additional information (such as the energy utilization of edge 608
devices). 609

Federated learning. A privacy-preserving asynchronous FL mechanism (PAFLM) for EC is 610
proposed, which allows multiple edge nodes to realize more efficient FL without sharing private 611
data and affecting inference accuracy [81]. Because the local model training of each node depends 612
on the data inside the node to a large extent, it is easier to lead to local optimum. Through FL, the 613
local model can be optimized with the help of the model parameters of other nodes, which can 614
solve local optimum problem and improve the accuracy of model. 615

Differential privacy. To protect the user privacy in the training data set under EC, AI algorithms 616
are usually combined with differential privacy, a system where including or excluding any piece 617
of data will not change the results of related data analysis to a great extent [123]. In other words, 618
by applying differential privacy, observers cannot tell from its output if any particular piece of 619
information has been used [123]. Du et al. [124] propose two AI-based algorithms that satisfy 620
differential privacy: objective perturbation algorithm and output perturbation algorithm. The dif- 621
ference between the two is that objective perturbation adds Laplace noise to objective functions, 622
while output perturbation adds the noise to outputs. By injecting Laplace noise, ML algorithms 623
show better efficiency and accuracy in prediction, and they are more effective in protecting the 624
privacy of training data used in EC. Similarly, a deep reasoning framework based on differential 625
privacy, called EdgeSanitizer, is proposed in Reference [125]. The framework uses as much useful 626
information as possible with a DL-based data minimization method. Then it removes as much sen- 627
sitive private information as possible from data sets by adding random noise to the original data 628
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through a local differential privacy method [126]. This approach ensures that the data is used to629
the maximum extent while protecting the privacy in EC.630

3.3.5 Resource Allocation Optimization. DRL has been proven to be capable of handling dy-631
namic decision problems with high-dimensional states and action spaces [127]. At present, some632
studies have focused on DRL to solve the resource allocation problem in EC.633

The method in Reference [77] captures the fact that the EC environment state is constantly634
changing. The information about wireless channel conditions, each node’s trust value, the con-635
tents in the cache, and the vacant computational capacity is passed to the DNN to estimate the636
Q-function. The network operator’s revenue is regarded as the reward, and the agent trains the637
DNN through the obtained reward. It avoids local convergence by adjusting the learning rate. Al-638
though this method has a good effect, there is still room for improvement in convergence and639
performance.640

Although the study above proves that DQN has a good performance in optimizing dynamic641
decision problems with high-dimensional state space, there are still some limitations when solving642
problems based on high-dimensional action space. Therefore, Chen et al. [127] propose a new DRL-643
based resource allocation decision framework that makes the following two contributions:644

• The framework uses DNN to train with a self-supervised training process to predict the645
resource allocation action, with the training data generated by the Monte Carlo tree search646
(MCTS) [128] algorithm;647
• The authors modify the last layer of the traditional DNN used to estimate Q-function, so648

that it can support higher-dimensional action space.649

The experiment proves that compared with the method of directly using DQN, this method has650
reduced the delay by 51.71%.651

3.4 Summary652

In this section, we first explain the mutual benefit between AI and EC. Then, we introduce AI653
algorithms (especially traditional ML, DL, RL, and DRL) in detail. Finally, from the perspectives of654
task scheduling, resource allocation, privacy protection and security, the research results of using655
AI algorithms to optimize the performance of EC are reviewed. In the future, considering that the656
EC is faced with large-scale computing tasks, it would be very important to combine the multi-657
dimensional perspectives of network, computing, power allocation, and task scheduling for real-658
time joint optimization. To deal with these complex optimization problems, it is a potential research659
direction that uses the model-free method of AI algorithms to learn efficient strategies [11].660

4 APPLICATION OF ARTIFICIAL INTELLIGENCE UNDER EDGE COMPUTING661

In recent years, AI has made many achievements in various fields. Among them, smart city, smart662
manufacturing, and the IoV usually have more critical requirements for network delay and sta-663
bility than other scenarios such as AR/VR, online gaming, or content distribution. Unfortunately,664
traditional cloud computing often fails to guarantee these requirements. Some researchers have665
started using EC to provide computing and storage resources on edge. To emphasize the advan-666
tages of EC in AI applications, this section will focus on summarizing the research results of AI667
applications in smart city, smart manufacturing, and the IoV under the EC framework.668

This section summarize the existing research from the perspective of EC hierarchical architec-669
ture. The categorization of EC architecture, together with the corresponding target field and AI670
(ML) algorithm, are detailed in Table 2.671

In this article, different EC architectures used in AI applications are summarized into three672
categories with detailed explanation and analysis. The three modes are: (a) the edge side is only673
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Table 2. Summary of AI Algorithms and Architectures

Field Goal DL DRL RL
Traditional

ML
EC Architecture Citation

√
(c) [131]

Security of city
√

(c) [100]√
(c) [132]√
(b) [133]

Smart city
Urban healthcare

√
(b) [135]√
(c) [51]√
(a) [49]

Urban energy

management

√
(a) [138]√

(b) & (c) [140]

√ √
(a) [143]

Smart

manufacturing

√
(b) [50]√
(a) [65]√
(b) [145]√
(b) [61]

√
(c) [149]

Internet of Vehicles

√
(c) [152]√
(c) [53]√ √
(b) [153]√
(b) [157]

The EC architectures are defined in Section 4, which can be divided into the following three categories. (a) The edge

side is only responsible for data cleaning, and the cloud is responsible for training and reasoning. (b) The cloud is

responsible for training, while the edge side is responsible for inference. (c) Delegate part or all of AI training and

reasoning tasks to the edge (see Section 3.3.1 and Figure 4 for details).

responsible for data cleaning, and the cloud is responsible for training and reasoning; (b) the cloud 674
is responsible for training, while the edge side is responsible for inference; (c) part or all of AI 675
training and reasoning tasks are delegated to the edge (see Section 3.3.1 and Figure 4 for details). 676
This section will accordingly summarize the research works (listed in Table 2) of AI application 677
in many fields under above different EC hierarchical modes to emphasize the advantages of EC 678
in AI application. Table 2 classifies and summarizes them from the perspective of architecture, AI 679
algorithm, and target field. 680

4.1 Smart City 681

With the explosive growth of urban population and the trend of urbanization, the concept of smart 682
city has been proposed and attracted widespread attention. Smart city uses smart means to reduce 683
energy consumption in cities, enhance energy efficiency, ease traffic pressure [129], ensure the 684
safety of cities and residents, and improve the quality of life of residents. In the smart city environ- 685
ment, there are a large number of hardware devices that generate data all the time. These devices 686
include light smart devices for daily life (such as smart phones, smart bracelets, and portable medi- 687
cal devices), as well as surveillance cameras and various environmental detection sensors for urban 688
security. AI is a good choice for smart city to improve the accuracy and efficacy of data analysis 689
because of its proficiency in dealing with massive data [130]. 690

In a population- and equipment-intensive area like a city, smart city has stricter requirements on 691
real-time response and network stability to ensure the comfort and security of civil life in the city. 692
However, the intensive computing tasks of AI training and reasoning pose a great challenge to the 693
above requirements. To meet this challenge, some researchers have turned their attention to EC. 694
We will subsequently describe in detail the schemes of using AI algorithms under EC architecture 695
to deal with the problems in smart city scenarios. 696
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4.1.1 Security of City. Smart cities need to continuously monitor the infrastructure and opera-697
tion of the city, and they need to make quick judgments and respond quickly to security incidents.698
Integrating AI algorithms can improve the accuracy of security event identification. However, the699
network bandwidth is limited, and excessive data transmission will cause instability in network700
transmission. How to deal with massive data is therefore a very difficult problem for real-time701
monitoring systems. EC performs most of the data processing and analysis tasks on the edge and702
transmits only part of the data to the cloud. This can greatly reduce the network transmission pres-703
sure caused by massive monitoring data while improving the response speed of the application.704

To ensure the safety of urban residents in public places or private places, a series of monitoring705
systems (e.g., traffic monitoring, indoor and outdoor monitoring, facility monitoring, violence and706
crime detection) need to be widely deployed to analyze and tackle the surrounding environment707
in real time. In urban monitoring, for instance, person re-identification is an important part to708
ensure the safety of residents. A new Siamese network architecture for person re-identification709
is proposed in Reference [131]. This architecture speeds up the retrieval of pedestrians by intro-710
ducing EC. Considering that traditional methods may learn poorly and inefficiently due to the low711
resolution of images, together with the limited computing power on the edge side, the architecture712
introduces a residual model layer that can mine deep features and reduce the complexity of the713
global average pooling layer.714

Utilizing the distributed characteristics of EC and the geo-distribution characteristics of monitor-715
ing data, it is a good idea to apply different AI algorithms to EC in a distributed way. A monitoring716
system based on distributed deep learning model is mentioned in Reference [100]. By introducing717
EC, the system reduces the cost of communication and improves response speed. This article uses718
the distributed characteristics of the edge side to deploy a distributed DL training method based on719
task-level and model-level parallel training. The goal is to speed up the training of the sub-model by720
taking advantage of different learning models while also using the computing power of edge nodes.721

In contrast, Tang et al. [132] adopt the idea of configuring different AI algorithms in the edge and722
the cloud. The proposed general-purpose EC architecture for urban pipeline monitoring systems723
takes advantage of the low latency of edge nodes so that pipeline faults can be discovered in724
time, and response decisions can be made quickly. The architecture consists of four layers, and the725
architecture deploys different AI algorithms and control strategies in different layers to achieve726
low latency, low energy consumption, and high accuracy for smart pipeline monitoring to ensure727
the safety of pipelines in cities.728

Challenges. In the process of protecting urban security, data privacy and security are also crucial.729
AI is an effective method of identifying malicious attacks and preventing privacy leakage, but the730
computing resources of edge devices are limited. Therefore, it is still a major challenge to design731
lightweight and effective AI algorithms suitable for EC [131].732

4.1.2 Urban Healthcare. With the popularity of IoT and cloud computing, more and more733
personal medical devices are being used in daily life. These devices can collect users’ physical734
data and upload the data to a cloud server. Through AI analysis, these data can greatly improve735
the accuracy of medical systems for disease classification and diagnosis. However, this model of736
cloud computing cannot really meet the requirements of telemedicine for time delay and data737
transmission.738

Compared with traditional cloud computing, the application of EC meets the requirements of739
medical system for stable data transmission, transmission delay, and data security. In some emer-740
gency situations, for example, just the occurrence of errors such as long response time or data loss741
may directly threaten human life. Besides, EC has strong location awareness characteristics [33].742
The higher processing speed of EC becomes a critical factor for location-sensitive medical systems.743
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Next, we will summarize existing urban medical and residents’ health works that use EC to 744
improve AI algorithms in terms of remote diagnosis and early warning of diseases, infectious 745
disease prevention and control, and smart assessment. 746

Remote diagnosis and early warning. Muhammad et al. [133] propose a voice disorder assessment 747
and treatment system. The sound data collected by the system is pre-processed by edge devices 748
before being uploaded to the cloud. The system configures the CNN model to the edge server, so 749
that the edge side has the capability of voice disorder detection and classification. Compared with 750
the method without EC architecture in Reference [134], this method has lower latency and can 751
effectively reduce the pressure on network bandwidth. However, this system still needs to send 752
the diagnosis to a human expert, and the human expert decides the treatment plan. 753

For some diseases that are not easy to detect at an early stage and those that can be best treated 754
in the early stages of the disease (e.g., lung cancer), the patient’s survival can be significantly 755
extended if a patient is diagnosed and treated early in the disease [135]. To improve the early 756
diagnosis rate and accuracy of lung cancer, a lung cancer diagnosis system based on EC and AI is 757
proposed in Reference [135]. This system can not only improve the early accuracy of lung cancer 758
but also improve the efficiency and security of diagnosis. In the future, how to combine EC and 759
AI algorithms to diagnose diseases and generate corresponding treatment plans without a human 760
doctor is a valuable research direction. 761

Infectious disease prevention and control. The use of EC’s powerful location awareness feature 762
can effectively strengthen the prevention and control of infectious diseases. The healthcare frame- 763
work proposed in Reference [51] can diagnose whether a user has been infected by Kyasanur 764
forest disease and can map out areas where infectious diseases are likely to occur on the map. The 765
network edge near the data source in this structure is responsible for data preprocessing, model 766
training and reasoning. To more accurately identify infected people and outbreak-prone areas, this 767
layer incorporates a classifier called EO-NN, which combines hybridization of the extremal op- 768
timization (EO) and the neural networks (NN). Once a new infected person is detected, it will 769
inform the infected person and nearby hospitals immediately. With the distributed nature of EC, 770
the system has the ability to identify areas prone to infectious diseases. 771

Smart assessment. Residents’ daily dietary structure management is also an important part of 772
urban medical care, which also plays an important role in the prevention of diseases. Based on 773
food image recognition, Liu et al. [49] propose a dietary assessment system under an EC architec- 774
ture. The edge layer between end users and the cloud can minimize the response time and energy 775
consumption, and the CNN algorithm can improve the accuracy of recognition. Compared to the 776
previous system in Reference [136], which is only suitable for small data computing tasks, this 777
system has the ability to perform large-scale data computing tasks. 778

Challenges. Medical diagnosis needs accurate judgment, which requires AI algorithms to extract 779
all useful information from big data. However, the useful information that can be obtained by 780
existing algorithms is rather limited. For supervised learning, manual labeling of data may also 781
lead to unknown mistakes. In addition, the data acquisition system of smart medical in the future 782
will be mainly deployed on wearable devices. To quickly analyze and respond to the collected data, 783
it is also an important direction to deploy AI model to these wearable devices [136], which poses 784
a great challenge to the energy supply of devices. How to balance the accuracy and lightweight of 785
AI models is a direction worthy of studying [137]. 786

4.1.3 Urban Energy Management. The trend of urbanization is also prompting the rapid in- 787
crease of energy consumption in cities. This poses many challenges for urban energy management. 788
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Fig. 5. A typical structure of smart energy management in smart city [140]. The architecture mainly includes

three parts: (1) cloud with central control capability and powerful computing resources; (2) edge severs with

local energy control through data analysis; (3) energy devices deployed at the terminal, including users,

energy-producing and energy-consuming equipment, sensors, and so on.

For example, to meet the city’s demand for energy, energy companies need to produce excess elec-789
tricity to ensure continuous energy supply to the city. This leads to a certain degree of waste of790
energy [138]. In the era of big data, a large number of sensors deployed in various corners of the791
city can obtain data related to energy consumption in real time. These data include population792
density, electricity usage, and a wealth of environmental information that helps predict energy793
consumption and energy management. In addition, applying AI algorithm to energy management794
has greater advantages than traditional methods [139]. Under these conditions, the introduction795
of EC and AI can make energy consumption prediction and energy management faster and more796
accurate. A typical EC-based smart city energy management architecture is shown in Figure 5.797

Real-time energy management decisions require dynamic predictions of energy consumption.798
However, the complexity and diversity of energy data and the dynamic nature of IoT data make799
it rather difficult to build an effective energy prediction system. In response to this problem, Liu800
et al. [140] design an EC-based energy management framework for reducing energy consumption801
in cities. Under this framework, the authors propose two DRL-based energy scheduling strategies:802

• Edge DRL: model training and reasoning tasks are executed on the edge;803
• Cooperative DRL: model training tasks are executed in the cloud, and dynamic energy man-804

agement is implemented on the edge side based on models obtained from the cloud.805

The authors prove by experiment that cloud-edge collaboration works best in terms of energy806
consumption, followed by the method of deploying AI algorithms only on the edge side, and the807
worst is the method of deploying AI algorithms only on the cloud [138]. This also indicates that EC808
is not a substitute for cloud computing, and the relationship between the two should be synergistic809
and complementary.810
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Challenges. The rapid growth of the number of edge devices deployed to cities has exacerbated 811
the global energy crisis and global warming. One way to alleviate this problem is to use renewable 812
energy to power edge devices. Considering that edge devices are scattered in different locations of 813
the city, the energy consumption of traditional energy can be greatly reduced by using distributed 814
renewable energy generation devices. However, this solution still faces many challenges, such as 815
how to minimize the consumption of traditional energy while ensuring the normal operation of 816
edge devices, and how to establish a complementary power system for different edge devices [140]. 817
As a control center in EI system, energy router needs certain computing power [141, 142]. There- 818
fore, it is also a feasible idea to combine energy router with EC in future research. 819

4.2 Smart Manufacturing 820

Introducing EC and AI in industrial production can maximize the use of hardware devices and 821
the use of distributed computing and storage resources. The combination of the two also achieves 822
efficient and secure resource management and task distribution, thereby greatly improving the 823
plant’s production efficiency, production quality and plant safety [143, 144]. 824

Dynamic control. To improve the automation and intelligence of the real-time production con- 825
trol process, the authors of Reference [143] propose an intelligent robot factory system architecture 826
called iRobot-Factory. With the assistance of EC, the architecture can dynamically adjust the con- 827
figuration of the production line, collect and process a variety of data generated in the factory in 828
real time, and identify and judge by AI means to achieve more efficient feedback control. The archi- 829
tecture shows great advantages over the traditional factory using cloud computing with respect 830
to network communication time delay and recognition rate. Different devices in the factory need 831
to cooperate with each other through groups to achieve swarm intelligence, not just each device 832
operating independently. To realize swarm intelligence, how to use AI and EC technology in smart 833
factory is a new challenge. 834

Equipment monitoring. In terms of industrial production site safety, it is essential to monitor 835
the operating status of the machinery in the factory, since the quality issue of the machinery 836
will inevitably arise during long-term work. To detect the running status of the machine, Wu 837
et al. [50] propose an EC framework that includes a device layer, a local private edge cloud near 838
the device layer, and a remote public cloud. The framework uses powerful public cloud to train 839
the predictive model and then delegates the model to private edge cloud where online diagnostic 840
and prognosis tasks are performed. This reduces the delay to a certain extent and enhances the 841
accuracy of diagnosis and prognosis. 842

To better monitor and manage the equipment in the factory, it is important to clarify the type 843
and quantity of onsite equipment. In response to the high cost of manual classification methods, 844
a non-intrusive load monitoring system is proposed based on EC and LSTM [65]. In the system 845
architecture, the edge is responsible for data cleaning and feature selection, while the cloud with 846
the LSTM algorithm deployed analyzes power features uploaded by edge devices to classify and 847
count field devices. 848

Defective product detection. In addition to ensuring the safety of factory equipment, some re- 849
searchers have also turned their attention to monitor the quality of products more accurately and 850
efficiently. Li et al. [145] build a DL-based product quality classification system for production 851
quality monitoring, so that products with quality defects can be quickly detected on the edge side. 852
The system deploys lower-level CNN layers at edge layers to capture defective products that are 853
more easily to identify and high-level CNN in the cloud to capture defective products that are dif- 854
ficult to identify with edge layers. This design improves the efficiency and accuracy of identifying 855
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defective products, on the one hand, and it also reduces the network transmission cost, on the856
other hand.857

Microseismic monitoring. In oil and gas production, the low signal-to-noise ratio and the need858
for real-time data transmission bring challenges in high-precision microseismic monitoring. Zhang859
et al. [61] design a neural network-based EC architecture called Edge-to-Center LearnReduce Mi-860
croseismic Monitoring Platform under the environment of oil and gas production. The platform861
uses EC architecture with a new microseismic events detection algorithm based on LSTM, and862
CNN is deployed in the data center (i.e., the cloud). The model obtained through data training in863
the cloud will be delegated to each edge device, so that the edge device has the ability to recognize864
microseismic events. The real-time performance is improved by analyzing and processing data on865
the edge side that can get detection results faster and take corresponding actions. However, the866
data generated will first be processed by the edge device to extract useful information for the data867
center. This greatly reduces the volume of the data that need to transfer to the data center, so the868
platform can effectively improve transmission efficiency and reduce network transmission pres-869
sure. Experiments have shown that this monitoring platform combining neural network and EC870
can achieve an accuracy rate of more than 96% and improve the data transmission efficiency by871
about 90%.872

4.3 Internet of Vehicles873

IoV is currently a hot academic and commercial field, and it is a key step for humans to move874
towards an intelligent life in the future [147]. IoV can ease traffic congestion, reduce traffic acci-875
dents caused by improper driving, and improve passenger experience [99]. Abundant in-vehicle876
applications, road condition sensors, and intelligent systems bring a very convenient, comfortable,877
and safe riding experience for people traveling.878

Although traditional cloud computing is currently the mainstream solution to the challenges879
brought by the increasing number of applications and data, it cannot meet the requirements of IoV880
(e.g., stable networks and low latency), due to the limitations of cloud computing itself. Using EC881
can effectively make up for the limitations of cloud computing [148]. IoV has the characteristics882
of limited resources, such as distributed computing and storage. How to allocate limited resources883
and how to schedule tasks are the problems that IoV needs to solve.884

EC and AI can bring faster and more precise control, faster network communication, better user885
experience, and more computing resources for traditional vehicular network [149]. A typical EC-886
based IoV architecture is shown in Figure 6. Today, more and more fields use AI as a means to solve887
optimal strategies, and AI algorithms can also be applied to IoV to deal with the above problems. We888
will summarize the application of the combination of EC and AI in IoV from three perspectives:889
optimizing task offloading and resource allocation in IoV, improving the user experience of on-890
board entertainment, and improving vehicle intelligence.891

4.3.1 Optimizing Task Offloading and Resource Allocation. The rapidly changing network struc-892
ture, communication status, and computing load have led to the dynamics and uncertainty of task893
offloading [150], making efficient task offloading and resource allocation decisions more difficult.894
Feng et al. [148] use the ant colony optimization algorithm with fast convergence to solve the895
NP-hard task assignment problem. This method establishes multiple objective functions, and uses896
heuristics algorithm for optimization. However, this method is not good at making optimal de-897
cisions for offloading multiple data dependency tasks. In response to this problem, an EC frame-898
work for obtaining the optimal solution of task offloading through DRL is proposed in Reference899
[149]. The framework takes into account data dependencies, as well as resource requirements, ve-900
hicle movements, and access networks. It uses the asynchronous advantage actor-critic (A3C)901
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Fig. 6. A typical structure of IoV [146]. In this architecture, the edge is composed of roadside units with

certain computing capabilities, so computing tasks on vehicles can be offloaded directly to roadside units

for processing instead of offloading into the distant cloud [146].

algorithm [151] for the online optimization of task offloading decision to adapt to the dynamic 902
changes of the vehicular network. Edge nodes will first distribute the trained decision model to 903
the surrounding vehicles, and then upload the decision model online after vehicles’ complete learn- 904
ing. To improve the performance of resource allocation and management, the prediction of wire- 905
less channel parameters is a very important means. Liu et al. [152] use LSTM to excel in spatio- 906
temporal correlation in channel parameters and propose a wireless channel parameter prediction 907
model based on LSTM and EC to optimize resource allocation and task scheduling in vehicular 908
network. 909

In IoV, energy consumption is a huge obstacle that restricts its development. However, the stud- 910
ies mentioned above fail to consider the issue of energy consumption while making optimal of- 911
floading decisions. Yang et al. [53] put forward a joint optimization problem consisting of power 912
control, user association, and resource allocation to minimize energy consumption in IoV. Finally, 913
the feasible solution of this problem is obtained by an algorithm based on fuzzy c-means clustering 914
that allows one data point to join multiple clusters. 915

4.3.2 Improving On-board Experience. The maturity and application of autonomous driving 916
technology will bring more free time to passengers and drivers in the future. This will increase 917
passengers and drivers’ demand for on-board entertainment, such as listening to music, watching 918
videos, and more [153]. These on-board entertainment activities have extremely high requirements 919
for network latency, so implementing these computing-intensive applications in a connected ve- 920
hicle with limited resources is facing great challenges [154]. These challenges include how to effi- 921
ciently cache network content and how to efficiently schedule tasks and allocate resources. 922

The traditional content caching method is to cache the current popular content in roadside units 923
in advance, but this also causes a waste of storage resources. To coordinate passenger experience 924
and content caching costs, Hou et al. [153] propose a Q-learning-based caching strategy under 925
the EC architecture. The action of this caching strategy consists of two parts, one is the cache 926
amount, and the other is the roadside units to which the content is cached. The reward of this 927
caching strategy is the elapsed time of transmitting the content required by the user. In addition, 928
this article uses LSTM to predict the driving direction of the vehicle to better select roadside units. 929
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In contrast, the method of Reference [155] imposes the task of content caching on both roadside930
units and vehicles. It uses a collaborative model based on Q-learning vehicles and roadside units for931
content caching and computation distribution. This model can make full use of the limited storage932
and computing resources of vehicles. In other words, the system will select vehicles and roadside933
units to perform the tasks of caching and computing according to the position and direction of934
motion of the car requesting the service. If the vehicles and roadside units around the car cannot935
meet their requirements, then the cache and calculation tasks will be handed over to the base936
station.937

Aiming at the challenges of executing compute-intensive applications on cars with limited re-938
sources, Ning et al. [154] first use finite-state Markov chains to model vehicle-to-infrastructure939
communication and computing states and then express the resource allocation and task schedul-940
ing strategy as a goal to maximize users’ quality of experience (QoE).941

4.3.3 Improving Vehicle Intelligence. In addition to the macro-control of resource allocation, it942
is also an important research direction to give AI technology to vehicle intelligence under the EC943
architecture [156]. For example, Ferdowsi et al. [157] propose an EC architecture that integrates944
DL to handle complex vehicle and traffic information. The architecture enables functions such as945
vehicle automatic control and driving route analysis. This architecture uses different DL algorithms946
according to the characteristics of different problems:947

• Restricted Boltzmann machines are used to process complex data in intelligent transporta-948
tion systems (ITS);949
• CNN and LSTM are used to perform real-time analysis of road conditions;950
• Bi-RNN is used to predict driver behavior;951
• LSTM is used to ensure data transmission security.952

The increasing number of vehicles aggravates the problem of traffic jam. Traffic scheduling is a953
very effective way to deal with this problem. However, due to the large number of vehicles and954
the scale of road network, the number of routes that vehicles can choose increases exponentially.955
Therefore, it is not feasible to use centralized controller for route planning. Based on this problem,956
a distributed cooperative routing algorithm based on evolutionary game theory is proposed in957
Reference [158]. Each edge node deploys a roadside unit (RSU), in which normal RSU is respon-958
sible for collecting traffic information, and game RSU controls nearby vehicles through proposed959
evolutionary game strategy.960

4.3.4 Challenges. The combination of EC and IoV improves the response speed of vehicle sched-961
uling and control, which further promotes the vehicle intelligence. However, there are still some962
challenges [159]. For example, when the vehicle is moving at a high speed, its communication963
connection needs to be switched between different edge servers, which may lead to a series of964
problems, such as disconnection or the degradation of user experience. In addition, one of the965
cores of IoV systems is resource sharing between different vehicles. As a result, how to set a rea-966
sonable incentive mechanism to encourage participants to share resources is vital. Finally, resource967
sharing will also bring some data privacy and security issues [160].968

4.4 Summary969

Table 2 summarizes the research works of combining EC with three different AI application sce-970
narios. Apparently, these works adopt different AI algorithms and EC architectures in different971
scenarios according to their respective requirements for response speed, privacy, and so on, to972
maximize the performance of the AI models.973
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In essence, offloading all or part of the computing process of AI algorithms to the edge of the 974
network is nevertheless to transfer AI computing tasks from a resource intensive environment to 975
a resource limited environment [6]. Therefore, how to lighten AI models so that they can work 976
efficiently at the edge of the network with limited computing, energy, and other resources needs 977
further exploration [164]. In addition, an AI application often needs to collect data from different 978
edge nodes, which poses a great threat to user privacy. Federated learning, as a very popular and 979
potential research direction [96] can enable participants to learn jointly without sharing data. In 980
recent years, the blockchain technology has been widely applied in many fields to establish mutual 981
trust among participants in an open and distributed way [162, 165]. Incorporating blockchain to 982
tackle the challenges of combined systems of AI and EC mentioned in this section is also a direction 983
worthy of further exploration. 984

5 CONCLUSION 985

EC is a very promising new computing paradigm to make up for the shortcomings of existing 986
cloud computing, while AI is a very popular field in both academia and industry. By summarizing 987
the existing research results on the combination of AI and EC, we come to two conclusions. On the 988
one hand, AI can further improve and optimize the performance of EC, because traditional non-AI 989
methods have limitations in dealing with the complicated and dynamic environment in EC. On 990
the other hand, EC can bring faster response time and more stable network status to the practical 991
application of AI. 992

Although the research on combining AI and EC has made a lot of progress, there are still prob- 993
lems to be solved. For example, in the first aspect mentioned above, the complexity, dynamics, 994
and high dimensions of the EC process make accurate modeling rather difficult. Therefore, it is 995
an important research direction to design and adopt model-free methods to obtain efficient strate- 996
gies [94]. In addition, for the second aspect, the key to deploying AI to the edge of the network 997
is how to enhance the efficiency of AI algorithms with limited computing and energy resources, 998
which requires further research and design of lightweight AI models [6, 164]. 999

In summary, we hope that researchers will understand the importance of combining AI and EC 1000
and the mutually beneficial relationship between them through this article. We believe that there 1001
should be more academic research focusing on enabling EC to have higher computing offloading, 1002
privacy, and security performance and to enable wider use of AI. In the future, we plan to explore 1003
more research fields that combine the two, for example, distributed training and reasoning in the 1004
setting of EC. 1005
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