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Abstract: Energy Internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and
has aroused the concern of many scholars. In the research of EI control systems, the access of distributed energy cause the
power system to exhibit complex nonlinearity, high uncertainty, and strong coupling. Traditional control and optimization methods
often have limited effectiveness in solving these problems. With the widespread application of distributed control technology and
the maturity of artificial intelligence (AI) technology, the combination of distributed control and AI has become an effective method
to break through current research bottlenecks. This paper reviews the research progress of EI distributed control technologies
based on AI in recent years. It can be found that AI-based distributed control methods have many advantages in maintaining EI
stability and achieving optimal energy management. This combination of AI and distributed control makes EI control systems more
intelligent, safe, and efficient, which will be an important direction for future research. The purpose of this paper is to provide a
reference as well as useful research ideas for the study of EI control systems.
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Nomenclature

ADMM Alternating Direction Method of Multiplier
AI Artificial Intelligence
ANN Artificial Neural Network
DRL Deep Reinforcement Learning
EI Energy Internet
ES Expert System
GA Genetic Algorithm
PV Photovoltaic
RL Reinforcement Learning

1 Introduction

1.1 Energy Internet

Nowadays, the rapid development of human society has led to the
massive consumption of fossil energy, forcing mankind to face many
challenges such as energy crisis, environmental pollution, and global
warming. Therefore, people began to pay attention to the production
and utilization of renewable energy [1, 2]. According to statistics
in [3], the annual growth of the world’s total wind and solar power
generation since 2000 is 22% and 40%, respectively. It is esti-
mated that by 2050, renewable energy will account for 80% of the
total power generation in the United States [4]. However, the tradi-
tional power grid cannot adapt to the large-scale access of renewable
energy due to their disadvantages of intermittence and randomic-
ity [5], which limits the use of clean energy. Taking wind power as
an example, China’s wind power curtailment in 2016 was as high as

4.97×1010kW·h, accounting for 17% of China’s total wind power
generation [6].

The continuous development of modern information technology
and renewable energy technology provides feasible methods to solve
these problems. The concept of EI emerges as the times require to
realize a distributed and open sharing network based on renewable
energy [7]. Resembling the functions of the routers in a mod-
ern information Internet, energy routers are usually added in the
EI’s architecture to achieve the energy and information exchange
between power generation systems, energy storage devices, and
loads [8, 9]. Based on the existing energy supply network, EI
combines renewable energy power generation technology, advanced
information technology, and energy storage technology to achieve
large-scale utilization of distributed energy resource [10, 11]. In
addition, low-carbon renewable energy, such as wind, solar, and
nuclear energy, can be delivered to different types of users through
EI [12], thereby alleviating the aforementioned problems.

According to Jiang et al. [13], EI has the following features:
• It replaces non-renewable energy such as fossil energy with
renewable energy such as solar and wind energy;
• Energy is generated, stored, and consumed at the same time to
achieve efficient system operation;
• Energy flows in both directions, and users can be both energy
producers and energy consumers;
• Cold, heat, electricity, and gas networks interconnect with each
other to accomplish the conversion between different forms of
energy;
• A large-capacity energy storage system is required to ensure a
stable output of energy;
• The energy flow and the information flow circulate in both
directions.
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The implementation of EI requires a large number of advanced
supportive technologies, such as control technology [14–17], energy
storage technology [18, 19], power grid security technology [20],
renewable energy based power generation technology [21], and big
data technology [22]. It is worth mentioning that EI is currently not
only at the level of theoretical research. Many demonstrative projects
have also implemented EI’s theoretical techniques and achieved rel-
atively satisfactory results, providing valuable experience for EI’s
research and development. For example, Beijing Yanqing Energy
Internet Comprehensive Demonstration Zone in China, Shanghai
Chongming Energy Internet Comprehensive Demonstration Project,
France’s Greenlys Project, Sweden’s Stockholm Royal Sea Port
Project, and the US Irvine SG Demonstration Project [23].

1.2 Distributed Control Technology in Energy Internet

This paper mainly focuses on the control technology of EI. In
recent years, the research on EI control and energy management
strategies has yielded many results. For example, Hua et al. [24]
describe the energy management problem as a stochastic optimiza-
tion problem, which can be solved using dynamic programming.
The modeling process combines the recurrent neural network with
Ornstein-Uhlenbeck process to obtain the accurate power model of
the photovoltaic (PV) panel and load. The proposed control method
can not only effectively prolong the service life of energy storage
equipment, but also realize the reasonable use of microturbines and
avoid the situation of overcontrol. In [25], a short-term wind power
forecasting algorithm based on noncoopertative game theory and
deep learning is proposed in microgrid energy management. The
algorithm uses a stacked automatic-encoder to extract features from
the training data, back-propagation algorithm to calculate the weight
of the overall neural network, and genetic algorithm to optimize the
learning speed of the entire process. Their experiments show that
accurate wind power prediction results are helpful for the design of
management schemes. Kumrai et al. [26] propose a fitness-based
modified game particle swarm optimization algorithm to minimize
the operating costs of microgrid and multi-microgrid systems while
minimizing pollutant emissions.

Energy management and control problems are usually solved
as optimization problems. Most existing solutions can be divided
into two categories, namely centralized methods and distributed
methods [27, 29]. A large number of existing projects use central-
ized methods to solve management and control problems. However,
as more and more power devices are deployed in the distribution
network, the centralized approach faces many challenges.

Centralized methods usually require the establishment of a cen-
tral controller to monitor the system and make decisions [30, 31].
As the number of distributed generation devices increases, central-
ized methods may become increasingly difficult to operate. The main
reasons are listed as follows [27, 28, 32]:
• Lack of specialized management units;
• Large amount of computing;
• Difficulty in timely communication due to large geographical
span;
• Complicated to redesign, even replacing only one unit will affect
the central controller;
• Lack of data sharing;
• Reliability and security issues of the central controller.

In contrast, distributed control technology fully considers the
interaction between units, and assigns control tasks to different units
according to the control objectives of different periods [32]. All
smart devices work together to reach a collective decision based on
the set goals. Each controller only needs to communicate with neigh-
boring nodes. Global information about the network (i.e., the status
of all nodes) is not required to make control decisions [33].

Compared with centralized control, distributed control has many
advantages. First, distributed control algorithms are robust to the
failure of a single controller node [34]. Moreover, only limited
information is shared between each pair of nodes, which not only
improves the security of the network, but also reduces the construc-
tion cost of the basic communication facilities [35]. Since parallel

computing is enabled, the computing speed and the scalability of the
system can be superior to the centralized algorithm [36]. In addition,
distributed algorithms can protect privacy well, which is of great sig-
nificance in future practical applications. Therefore, more and more
studies focus on distributed control in recent years.

1.3 Artificial Intelligence-Based Control

With the development of AI technology and computer hardware,
using AI to solve complicated problems has become a research
hotspot in recent years. In the studies of renewable energy power
generation and load forecasting, traditional physical methods usu-
ally require a large amount of computing and are extremely sensitive
to initial conditions. It is difficult to improve their prediction accu-
racy at the current level. Deep neural network can fuse massive data
information through the association of feature variables to improve
the accuracy of prediction and early warning [37, 38].

In the field of control, taking stability research as an example,
the randomness of renewable energy power generation makes it dif-
ficult to determine the operation mode of the power grid, and the
complexity of control continues to increase. Outdated offline control
strategies may not match actual working conditions. The comprehen-
sive guarantee technology based on AI, such as machine learning,
fuzzy set theory, or multi-agent, can effectively improve the stability
of EI. For example, machine learning can continuously monitor the
operating status of the system [39], automatically determine abnor-
mal conditions, early warning of possible risks [40], and reduce
the risk of misoperation and refusal of relay protection. The use of
reinforcement learning (RL) can improve the degree of matching
of emergency control strategies with real working conditions [41].
Data-driven response technology can cope with small probability
accidents and prevent system crashes.

AI is an effective tool for solving complicated situations such as
nonlinear problems [42]. Modeling errors in traditional methods can
also be reduced by AI-based methods. Besides, traditional control
methods may sometimes be difficult to achieve the desired control
effect when the practical system’s operating state deviates unex-
pectedly from the theoretical assumptions or models. In contrast,
AI-based control methods can be more proficient in continuously
tracking the changes of the system, adjusting control strategies,
and improving the ability to deal with uncertainty [43]. AI-based
methods also have unique advantages in terms of computing speed,
modeling of complicated problems, and system automation degree.

1.4 The Difference between Microgrid, Smart Grid, and
Energy Internet

In particular, EI mentioned in this paper is a broad concept, includ-
ing smart grid and microgrid. A microgrid is a small energy system
composed of distributed power generation devices, energy storage
devices, energy conversion devices, loads, and related control and
protection devices [44]. It can accomplish self-control and self-
management due to its capability of operating either in parallel
with the external grid or in isolation [45]. Compared with micro-
grid, smart grid considers various problems in the energy system
based on the overall situation of regional power grid. It uses sensors
to monitor critical devices for power generation, transmission, and
power supply in the energy network in real-time and further inte-
grates and analyzes the acquired data [46]. Smart grid can achieve
optimal management in a more extensive energy network according
to the analysis results. EI, in contrast, further expands and deepens
the concept of smart grid. It differs with smart grid in the following
ways [47–49]:
• The physical entity of an EI is composed of electricity, natural
gas, and transportation systems, while the physical entity of smart
grid is mainly the power system;
• The energy in an EI can be transformed into various forms, such
as electric energy and thermal energy. In contrast, the energy in smart
grid is only transmitted and used in the form of electric energy;

IET Research Journals, pp. 1–13
2 © The Institution of Engineering and Technology 2015



Traditional distributed 

control method

Stability control

Optimal energy 

management

Model Solution

Model Solution

Voltage control

Frequency control

Power system monitoring 

and fault recovery

Demand response

Economic dispatch

Distributed stability 

control based on AI

Distributed optimal energy 

management based on AI

AI technology

Fig. 1: Architecture of This Paper

• There are more participants in an EI. In addition, its energy
consumption forms include both local consumption and wide-area
coordination. In smart grid, energy consumption is mainly local;

Due to the lack of existing research work on the combination of
AI and distributed control in high-voltage energy systems, the tech-
nologies discussed in this paper mainly focus on the low-voltage
part. Therefore, the term “EI” in this paper refers to the low-voltage
type, a local energy system composed of microgrids or smart grids.

1.5 Contributions of This Paper

Today, more and more projects choose AI-based methods to solve
specific problems in energy management and control [50–53]. This
paper mainly focuses on the distributed control based on AI tech-
nologies rather than the application of AI technology in distributed
systems. This paper does not attempt to list traditional distributed
control methods and AI-based distributed control methods. Instead,
this paper first describes the development trend from centralized con-
trol to distributed control and then to distributed control based on
AI, and then analyzes the contingency and inevitability of this trend
combined with the development direction of energy system. So far,
although there is not much research work on the combination of dis-
tributed control and AI, this is a meaningful research direction. This
paper summarizes and analyzes some existing work to show readers
a variety of research methods and ideas in related fields and provides
specific reference value for scholars engaged in EI control research.

The rest of this paper is organized as follows: Section 2 briefly
describes traditional distributed control methods in EI; Section 3
briefly introduces the AI technology; Section 4 summarizes the
research work of the combination of AI and distributed control in
the study of EI; Section 5 concludes this paper and provides outlook
for future work. The architecture of this paper is shown in Fig. 1.

2 Traditional Distributed Control Methods in
Energy Internet

This section briefly introduces traditional distributed control meth-
ods in EI and outlines some existing research works. These works do
not use AI methods in modeling or problem solving.

2.1 Distributed Control Technology in Energy Internet

The distributed control technology in EI needs to fully consider the
interaction between units. According to different control objectives
with respect to different time periods, tasks are assigned to different
units. Each unit retains sufficient autonomy. When there are enough
units, one way to perform coordination strategies is to establish a

control hierarchy. Depending on the required time frame, the con-
trol hierarchy can be divided into primary control, secondary control
(also called energy management system), and tertiary control [32].
Primary control is the fastest and responds to system dynamics in
real time. It is often used to ensure that the voltage and frequency are
within controllable ranges. The use of secondary control can allevi-
ate long-term voltage and frequency deviations while coordinating
units to achieve other goals, such as power quality optimization or
loss reduction. Tertiary control is the most advanced control and is
responsible for managing multiple microgrids.

As summarized in [32], distributed control technologies com-
monly used in EI include distributed model predictive control-based
techniques [54], consensus-based techniques [55], agent-based tech-
niques [56], and decomposition-based techniques [57]. In the current
research of EI control systems, distributed control has been widely
used in economic dispatch, frequency conversion speed regulation,
voltage control, and many other fields.

2.2 Applications of Traditional Distributed Control in Energy
Internet

The studies reviewed in this section use traditional distributed
control without involving AI methods in modeling and solving.

2.2.1 Traditional Distributed Control for System Stability:
The stability of EI refers to the ability of the EI system to resist
disturbances. The massive access to renewable energy increases the
disturbances that the entire power system may face. In the absence
of an effective control scheme, voltage and frequency fluctuations in
a wide range caused by disturbances may interrupt the entire power
system and cause significant losses. How to ensure the long-term
stable operation of the system is a problem that scholars are more
concerned about.

Energy Storage: Energy storage system is an important device in
EI, which can be used to maintain the stability of the system.
Askarzadeh et al. [58] use a decentralized adaptive model with bat-
tery energy storage systems for real-time power grid control. Its
control objectives include voltage control and congestion manage-
ment. Reference [58] partition the entire energy network into areas
and conduct control to multiple areas. Voltage regulation in real-time
network control is achieved by considering the accurate dynamic
model of battery energy storage systems. Compared with the previ-
ous work in [59], the distributed design in [58] effectively reduces
the communication cost and computation workload. In order to coor-
dinate energy storage units, PV panels and controllable load units in
single-phase low-voltage microgrids, Golsorkhi et al. [60] propose a
novel distributed cooperative control framework to regulate the volt-
age, and coordinate the charge and power state between each energy
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storage unit. In addition, measures to limit PV power are also con-
figured in the system to avoid overcharging or overdischarging of
energy storage units. The distributed method proposed can avoid the
disadvantages of single point failure or high communication cost that
may occur in the centralized method. It achieves better performance
by avoiding power quality degradation due to frequency and voltage
deviations.

Reactive Power Optimization: Reactive power optimization is a
measure of reactive power adjustment that optimizes one or more
performance indicators of the system under given structural param-
eters and load conditions. It aims to maintain the voltage level by
reasonably allocating reactive power flow. Therefore, reactive power
optimization is an important means to maintain grid stability.

In [61], an optimal reactive control scheme based on a fully
distributed multi-agent system is established. Compared with pre-
vious centralized and semi-distributed control methods, this fully
distributed control scheme can effectively reduce the probability of
single point of failure. In addition, it can not only respond to envi-
ronmental changes in a timely manner to ensure the stability of the
system, but also has scalability for systems of different sizes and
topologies. Similarly, Shafiee et al. [62] propose a fully distributed
control methodology for secondary control of AC microgrids. This
method guarantees global voltage and frequency adjustment as well
as accurate active/reactive power sharing in droop-based microgrids.
Each power supply participates in reactive power support according
to its predetermined rated power. The method also uses active power
measurements to successfully synchronize the frequencies among
multiple microgrids, so the controller no longer requires additional
measurement equipment, thereby reducing costs.

Active Power Sharing: There are also some other works that study
active power sharing between microgrids. Considering the more
practical situation where multiple microgrids are intercontected,
an event-based distributed consensus-based control approach is
designed in [63]. The advantage of adopting the event-based method
is that the communication between agents is greatly reduced, and
the flexibility and stability of the entire system are improved. The
use of distributed methods also enables the plug-and-play function
of the system, which can still maintain the effectiveness in the case
of islands and communication link loss.

2.2.2 Traditional Distributed Control for Optimal Energy
Management: Optimal energy management is also an important
research direction of EI. The measures proposed in the studies of
this area can minimize the cost of power generation [64], maxi-
mize social welfare [65, 66], and achieve economic dispatch, thereby
making EI operate more rationally and efficiently.

Social Welfare Maximization: Social welfare maximization is a goal
to reduce the total production cost of all power generators as much as
possible, while maximizing the total utility of all users [67]. On this
issue, Xu et al. [68] propose a distributed optimal control algorithm.
The construction of the objective function takes into account both
the generator and the load user. Each unit uses a consensus algorithm
to find the common incremental cost by minimizing the incremen-
tal difference between adjacent units. The adjustment rate is then
controlled to optimize the power generation or load change process.
Therefore, the proposed control method can achieve the dynamic
minimization of adjustment costs while ensuring the balance of
smart grid power generation demand. The algorithm is robust to
communication failures due to the distributed control method. More-
over, it is adaptive to communication topology changes. Future
research on this issue should focus more on improving distributed
solutions, such as introducing energy storage system constraints.

The Social Welfare Maximization energy management problem
in smart grid is also studied in [69]. The study aims to maximize the
overall social welfare that balances power generation costs, user-side
payments, and transmission costs. Through continuous information
exchange, the distributed projected control algorithm can obtain the

global optimal solution asymptotically. In order to save communica-
tion resources, the event-triggered condition of each generator and
each load is employed to determine when its related states should be
sampled and transmitted to adjacent loads.

Demand Response: Demand response research can promote the
development of the power industry towards higher efficiency. To
achieve optimal energy management scheduling between users and
utility companies, a distributed real-time scheduling algorithm is
designed in [70]. The algorithm uses dual decomposition technology
to decompose the original problem into several independent sub-
problems, which overcomes the obstacles caused by spatial coupling
constraints.

Since a noncoordinated response of customers may lead to severe
peak rebounds at periods with lower prices, it is sometimes nec-
essary to coordinate demand to avoid peak rebounds. Safdarian et
al. [71] propose a system-wide demand response management model
to coordinate the demand response of residential customers. The
model is first described as a bi-level optimization problem. Then
the problem is converted into an equivalent single-level problem,
which is finally solved by an iterative distributed algorithm so that
the impact to total load curve by user demand is minimized. Nev-
ertheless, the method in [71] fails to consider network constraints,
which can be a future research direction.

On the other hand, Diekerhof et al. [72] propose a hierarchical
robust distributed optimization method suitable for day-ahead and
intra-day scheduling of flexible devices (electric-thermal units) in
urban areas. The optimization is based on direction alternating of
multipliers, which can prioritize each individual customer and its
own private objective, and fully consider the needs of customers in
the scheduling process.

There are some other works focusing on minimizing the total
power generation cost while satisfying the total demand and the
power generation limit of a single generator. The distributed
algorithm provided in [64] is based on the results of [73, 74] and
incorporates the robust control methods in [75, 76]. This algorithm
can be used to solve optimal coordination of distributed energy
resources in communication networks with packet loss. Compared
with some previous research works, the method in [64] is more
robust and has a smaller computational load. Further studies could
extend the method under more constraints, e.g, transmission line
loss, power flow, and transmission line flow constraints.

For the problem of inaccurate prediction, Nguyen et al. [77]
develop a distributed controller based on the work of [78]. A dis-
tributed model predictive controller is embedded in the universal
smart energy framework. There is also an aggregator layer above
the prosumer layer. These two layers are coupled by an objective
function to form a three-tier structure, which balances the responsi-
ble party, aggregators and prosumers. The flexibility of the system
is quantified in order to distribute the day-ahead planning to various
integrators, and then a model predictive controller is developed to
minimize the imbalance between grid forecast and actual supply and
demand. The improvement of [77] lies in integrating multiple tiers,
such as flexible consumption and congestion management, into one
model, which is more in line with practical application requirements.

In [79], the real-time scheduling problem of energy hub under
dynamic pricing market is studied. The interaction between energy
hubs is modeled as a potential game, given the accurate poten-
tial function of the energy center game. The authors prove that the
only Nash equilibrium corresponds to the global maximum of the
potential function. The Nash equilibrium is then determined by a
distributed energy scheduling algorithm. This scheduling algorithm
can be executed by the energy management system of each energy
hub in real time to determine the profit maximization strategy of the
user’s electrical and thermal devices.

2.3 From Traditional Methods to Artificial Intelligence

Nowadays, advanced AI algorithms are becoming more and more
consummate, and the functions of computer hardware are constantly
improving. Although the massive data generated by EI devices
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Fig. 2: From Traditional Methods to Artificial Intelligence

increase the complexity of system control, they provide possibility
and feasibility for the practical application of AI technologies at the
same time.

In controlling and retrieving massive data streams, traditional
methods usually require a local infrastructure to access each device.
This not only leads to increased costs, but also limits the size of
the data being processed. Therefore, adaptive algorithms and AI-
based coordination mechanisms are needed to achieve flexibility and
distributed data management [80–82].

In addition, big data in the power grid conceal a lot of valuable
information. Through the analysis and utilization of these data, AI
technology can realize the automation and intelligence of the EI
control system, thereby completing more precise and intelligent con-
trol and scheduling. Traditional methods may have overlooked the
value behind these data. A detailed comparison between traditional
methods and AI methods is shown in Fig. 2.

On the prediction problem, AI methods can effectively improve
prediction accuracy and break through the bottleneck of traditional
methods. For example, in electricity price prediction, existing tech-
nologies include statistical models, time series methods, and AI-
based methods. Compared with the high volatility of independent
and dependent variables in statistical models, AI-based methods
have significant advantages in terms of estimation accuracy [83]. In
addition, AI technology can also deal well with nonlinear problems
related to short-term electricity price forecasting [84].

AI technology is also widely used in the prediction of renewable
energy power generation [24]. Wind speed, light intensity, and other
factors that may affect the power generation of renewable energy
could bring strong nonlinearity and great uncertainty to the con-
trol problem, which makes it rather difficult to solve the problem by
traditional power generation forecasting methods. AI methods such
as neural networks and genetic algorithms, however, are important
means to solve nonlinear problems [85]. These methods can discover
pattern from a large amount of historical data and improve predic-
tion accuracy. For example, extreme learning machines and direct
quantile regression can be combined to achieve non-parametric
probability prediction of wind power generation [86]. In addition,
the hybrid of integrated deep learning framework and an atten-
tion mechanism can be implemented to predict PV power output.
This high-precision prediction of the power generation equipment is
indispensable in future EI systems.

In terms of EI system control, traditional modeling methods
inevitably have errors, and sometimes they have difficulties achiev-
ing the ideal control effect. For some complicated problems, tradi-
tional physical modeling is even infeasible. In contrast, AI-based
modeling methods can not only improve the accuracy of the model,
but also reduce the difficulty of modeling complicated problems. For
instance, reinforcement learning methods have the unique features
of “no model” and “no prior information required”. In addition, the
input and output data dimensions of EI are very high at present, and
the data are usually interrelated. Traditional control methods are dif-
ficult to obtain comprehensive control and optimization strategies,
while AI methods such as deep learning, reinforcement learning and
transfer learning are effective ways to solve these problems [87, 88].

In other aspects of EI, AI is also a good auxiliary tool. In power
grid stability analysis, an AI-based method can significantly improve
the efficiency of analyzing large-scale power grid data [89]. More-
over, the online load modeling method based on big data not only
improves the accuracy of the model, but also increases the process-
ing speed while reducing the repetitive workload of the staff. In the
grid dispatching problem, the method based on AI can transform
dispatching method from empirical to intelliget, and complete better
adjustment under more constraints [90]. In the field of power grid
protection and control, emergency control schemes based on rein-
forcement learning can quickly provide real-time control schemes
based on the operating state of the power grid, helping the grid
resume normal operation faster [91].

The operation and management of future EI will develop in the
direction of becoming more and more intelligent. Massive data has
been difficult to process with the experience of the staff, and human
participation in the operation of the power grid needs to be reduced.
AI is an effective way to realize this concept. Similarly, as one of
the important control methods in recent years, the combination of
distributed control technology and AI will be a promising direction.
The combined use of these two technologies can not only solve some
non-convex, nonlinear and other complicated problems, but also has
the advantages of fast calculation speed, low calculation cost, and
good privacy.

3 Overview of Artificial Intelligence Technology
in Energy Internet

AI technology can be generally divided into four areas, namely
expert systems, fuzzy logic, artificial neural networks (ANNs), and
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genetic algorithms or generalized evolutionary computation [92].
This section will briefly introduce some commonly used AI methods
in EI, including ANNs, reinforcement learning, genetic algorithms
and expert systems, and the application of these methods in EI.

3.1 Artificial Neural Networks

An ANN is an operation model composed of a large number of
interconnected nodes, also called neurons. Neurons can handle the
complicated behavior of the system by the connections between neu-
rons and weight parameters [93]. Perceptron is a commonly used
model of neuron. It accepts multiple different inputs, sums them with
specified weights, and then gets the output through the activation
function [94]. In general, multiple parallel perceptrons form a layer,
and the layers are serializedly connected. The output of the previ-
ous layer is used as the input of the next layer, forming a multi-layer
network architecture as a whole. ANNs can solve problems through
massive data training. The main training modes are supervised mode
and unsupervised mode. The advantages of ANN include adaptive
learning, self-organization, fault tolerance, and easy integration with
existing technologies [95].

In the EI system, ANN can discover the nonlinear relationship
between variables in complex environments through good learn-
ing ability [95]. As a consequence, ANN has a significant effect
in solving prediction problems such as the output power prediction
of PV systems [96, 97], household energy consumption forecast-
ing [98, 99] and power system state prediction [100]. In the research
of demand response, the use of ANN can complete the modeling
of controllable loads under complicated constraints. This modeling
method is simpler than traditional modeling methods, and the result-
ing model is more accurate. For example, Mosaddegh et al. [101]
establish Bayesian regularization back-propagation algorithm to
obtain a neural network model of controllable loads based on the
history of load data and achieve optimal energy management. In
addition, ANNs have also been widely applied to EI energy man-
agement [102, 103], fault detection [104], network security [105]
and many other research topics.

3.2 Reinforcement Learning and Deep Reinforcement
Learning

Reinforcement learning (RL) is an important group of machine
learning algorithms. In RL, the agent learns in a “trial-and-error”
manner, and the action taken for each “trial-and-error” is random.
Agents guide their subsequent actions based on the reward and pun-
ishment obtained from actions taken in the current environment. The
ultimate goal of the training is to enable agents to obtain the maxi-
mum reward, so that the external environment can best evaluate the
learning system in a certain sense.

RL has a wide range of applications in EI since it is profi-
cient in solving decision problems under uncertain conditions. At
the cybersecurity level of the grid, the online anomaly detection
can be described as a partially observable Markov decision process
problem, and the model-free RL framework of partially observable
Markov decision process problems can be utilized in establishing a
general robust online detection algorithm [106]. The algorithm can
detect network attacks against the power grid in time, which is con-
venient for the system to take reasonable countermeasures before
any damage is caused by the attacks, ensuring the network security
of the system. In addition, RL is a common solution in the fields
of energy trading [107], dynamic pricing and energy consumption
scheduling [108], and demand response [109].

At present, the combination of RL and deep learning has also
brought a new field, deep reinforcement learning (DRL). Some
works have begun to use DRL in solving many complicated prob-
lems. For example, Wan et al. [110] describe the real-time charging
scheduling of electric vehicles as a Markov decision process with
unknown transition probabilities, and propose a model-free opti-
mal scheduling method using DRL to obtain charge and discharge
scheduling. Mocanu et al. [111] use the deep policy gradient method
as part of the DRL method to perform online optimization of energy

management system scheduling. An et al. [112] propose a DRL-
based scheme to detect integrity attacks in AC power grid. In [113]
the DRL method is used to obtain an optimal energy management
strategy, such that the operation cost of the considered EI scenario
can be minimized.

3.3 Meta-Heuristic Algorigthms

Meta-heuristic algorithms mainly refer to a general type of heuristic
algorithms. They are the product of the combination of radomized
algorithms and local search algorithms, such as genetic algorithm,
simulated annealing algorithm and ant colony optimization. These
algorithms have great similarity in the optimization process, and they
all have “neighborhood search” structure. A typical meta-heuristic
algorithm starts with a set of initial solutions. Under the control of
the key parameters of the algorithm, the neighborhood function gen-
erates multiple neighborhood solutions, and continuously updates
the key parameters and states until the convergence criteria are sat-
isfied. The optimization mechanism does not depend too much on
the organizational structure information of the algorithm, and can
well solve combinatorial optimization and function calculation. This
paper mainly introduces genetic algorithms commonly used in EI.

Genetic algorithm (GA) is a randomized search method that bor-
rows from the evolutionary laws of the biological world (such as
survival of the fittest). Through the genetic operations of replication,
crossover and mutation, the group of “chromosomes” represented by
the problem code can “evolve” from generation to generation. When
the result eventually converges to the most suitable group, it can be
considered that the optimal or satisfactory solution to the problem
is found. GA has the advantages of simple principle and operation,
strong versatility, unlimited constraints, and parallelism and global
searching capabilities. At the same time, as a stochastic optimization
method, GA considers probabilistic factors in the algorithm, which
helps it escape from the local optimum and find the global optimal
solution [114].

There have been some studies using GA to solve problems in EI.
The method proposed in [115] accomplishes a two-step forecast-
ing of electricity prices: in the first step, a set of relevance vector
machines (RVM) is adopted, and each relevance vector machine is
used to make individual advance price predictions; the second step is
to integrate relevance vector machines prediction into multiple lin-
ear regression ensemble, and use GA to get regression coefficients.
In order to achieve route optimization of electric vehicles, a learnable
partheno-genetic algorithm combining GA with a knowledge model
can be utilized to solve the optimal path model [116]. Acquiring
useful expert knowledge from these dynamically updated solutions
helps guide the subsequent searching process to quickly discover a
more accurate electric vehicles route.

In EI, the application of GA can handle some optimization prob-
lems pretty well. However, GA also has the problem of premature
convergence, especially when the problem is nonlinear and there
are multiple local minima. This defect can be solved by making
appropriate improvements to GA. In [117], a memory-based genetic
algorithm can automatically and optimally fairly share power gen-
eration tasks among the distributed energy resources in microgrid.
It is further pointed out that it is beneficial to improve the perfor-
mance of GA by using memory schemes to reuse the stored useful
information.

3.4 Expert System

Expert system (ES) is an intelligent computer program based on
Boolean logic, which covers massive knowledge or experience in a
specific field and can be utilized to solve problems in this field. The
core components of ES mainly include the knowledge base and the
inference engine. The knowledge base is composed of knowledge,
data, facts and sentences that support these knowledge, which is the
basis of reasoning. The inference engine is used to control and coor-
dinate the entire system. It relies on the knowledge in the database
to obtain the results of the problem through algorithms.

IET Research Journals, pp. 1–13
6 © The Institution of Engineering and Technology 2015



In EI systems, ES has a wide range of applications. In terms of
improving power quality, Moreira et al. [118] propose an ES to
select the most suitable compensator through k-nearest neighbor pat-
tern recognition algorithm and the knowledge base, thereby reducing
losses and increasing power quality. Compared with the technology
based on decision trees or neural networks, the classification system
based on ES has higher classification accuracy in such problems. On
the issue of energy management, ES can be combined with a vari-
ety of learning algorithms to enhance the classification function to
achieve energy saving and management of smart homes [119]. In
addition, ES can also be applied to problems like power grid fault
recovery [120].

4 Distributed Control Based on Artificial
Intelligence in Energy Internet

By deeply integrating energy systems and the Internet, EI empha-
sizes the characteristics of energy equivalence, openness, intelli-
gence and timely response. Traditional technologies generally have
difficulties in establishing accurate models, obtaining results in a
short time, and meeting the requirements of high intelligence [121].
On the other hand, intelligence-enabled modeling, control, and
optimization methods can quickly adapt to the environment and
have dynamic predictability, strong fault tolerance, and robustness
to disturbances [122]. That is why AI-based distributed control
and management methods are more and more favorable in solving
complicated problems.

4.1 Distributed control based on Artificial Intelligence for
System Stability

The stability of the power system has always been regarded as
an important guarantee for the safe and efficient operation of EI.
Stability refers to the ability of the power grid to withstand distur-
bances [123, 124]. With the large-scale access to distributed energy
and the integration of information technology, EI faces disturbances
from both the physical layer and the network layer. Therefore,
maintaining system stability becomes more challenging [125].

Optimization studies with system stability as the research goal,
such as transient voltage stability, are of great significance for main-
taining the effective and safe operation of power systems [126].
Among many system control methods, distributed control can give
consideration to remote data and minimize the requirements of
communication. At the same time, distributed controllers are more
reliable in terms of network security [125]. In view of the advantages
of AI technology, research on AI-based distributed control methods
with respect to system stability has achieved some results, which is
summarized in Table 1.

4.1.1 Voltage Control: Voltage instability is one of the most
common causes of power quality degradation of the system. In
extreme cases, a voltage collapse will cause the entire system to
power off [127]. It is a basic idea to keep the voltage stable within
a controllable range and avoid large fluctuations during operation.
AI approaches such as neural networks and machine learning can
be well combined with distributed methods to provide effective
solutions for voltage control.

For example, Karim et al. [128] bring up a distributed sec-
ondary control method for maintaining rated voltage in an inde-
pendent microgrid. This method trains a distributed machine learn-
ing algorithm based on different voltage stability conditions. The
algorithm first takes available wind energy, available solar energy,
controllable load and load mutation as input attributes, and takes a
binary class representing system stability or instability as the target
attribute. It then uses a set of bagged decision trees to prepare for
the classification process. If the classifier predicts possible instabil-
ity, an appropriate neural network will be selected based on cluster
values corresponding to the specific events prepared in advance. The
selected neural network will then make necessary modifications to
the main controller in a single cluster. Elmitwally et al. also pro-
pose a control scheme without energy storage that uses pulse width

modulation to track the maximum power of the PV array [129]. In
addition, a fuzzy logic-based diesel generator speed control scheme
is designed for the same research problem. This method is suf-
ficiently effective for diesel PV power generation systems, but it
fails to suit microgrids based on wind PV, which indicates the
meaningfulness of [128].

There are other research ideas about distributed secondary voltage
control methods, like the distributed collaborative control strategy
adopted in [130]. In more detail, it combines radial basis function
neural network with sliding mode control to stabilize the system
in a short time. The radial basis function neural network is used
to adjust the switching gain of the sliding mode control in real
time to reduce chattering, where the sliding mode control is used
to restore the microgrid voltage. However, the microgrid model in
[130] does not conform to the real situation because the authors
fail to address the delay and interference of communication links.
It would be more sensible if future research can be conducted in a
more realistic microgrid model.

On the other hand, Amoateng et al. [131] design an interter-
based distributed voltage controller based on ANN and collaborative
control theory under the multi-microgrid structure. In their study,
the model-based controllers are first designed using Lyapunov the-
ory and the dynamics of the distributed generation system. Then
ANN is used to approximate these dynamics and minimize the coop-
erative tracking error function, thus obtaining a smart controller
that does not require much prior information. The proposed con-
troller achieves good active and reactive power sharing in distributed
multiple microgrids, and it has strong robustness to power system
disturbances. Compared with the previous work in [132], the con-
troller proposed in [131] is simpler and requires less information.
Future studies can explore how the controller of [131] can keep
running in the presence of system failures.

4.1.2 Frequency Control: In the EI system, distributed power
generation has great uncertainty. Some power system components
also have nonlinear characteristics, so they are prone to frequency
fluctuation issue, which affects the stability of the power grid [133].
Frequency control is also an important means to ensure the stable
operation of the power grid.

Regarding the imbalance between power generation and load, the
traditional centralized load frequency control structure is not con-
venient for exchanging information in large scale. In addition, the
increasing calculation and storage costs make this structure more
and more difficult in practical implementation. To solve this prob-
lem, Singh et al. [134] propose a distributed controller that combines
RL and multi-agent systems. The frequency controller in [134] has
lower communication costs, higher flexibility, and better effective-
ness. It is used to implement load frequency control in a smart
grid environment where the communication topology can change
dynamically. Using the event-triggered control method, the proposed
solution improves the dynamic system performance and reduces the
burden of network communication.

Similarly, Sun et al. propose an actor-critic neural network that
integrates a distributed RL control scheme to compensate for the
frequency regulation of the power grid [135]. The online learning
algorithm of this neural network is derived from the constructed
error function. The purpose of the learning process is to reduce the
error between the actual value and the estimated value of the radial
basis, so as to approximate the strategic utility function and optimize
the control output. The network structure also establishes the rela-
tionship between control output and performance estimation, which
further improves the efficiency of energy utilization. Compared with
previous methods of separating actors and critics in [136, 137], this
combination of actor and critic neural network yields two advan-
tages. First, the relationship between the strategic utility function
estimation and the expected control output estimation is established
to improve the long-term performance. Second, the stability and the
bound of performance can be obtained through theocratical analysis.

4.1.3 Power Grid Monitoring and Fault Recovery: Real-time
monitoring during power grid operation and timely recovery when a
fault occurs can further improve the stability of grid operation and
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Table 1 Distributed Control Methods for System Stability

Control Problem Scenario Methodology Reference

Voltage control

Wind-PV-based isolated microgrid Distributed secondary control based on machine learning. [128]

Inverter-based islanded microgrid
Secondary controller using radial basis function neural network sliding mode control
algorithm.

[130]

Multi-microgrid structure
Adaptive voltage control using distributed cooperative control and adaptive neural
networks.

[131]

Frequency control Smart grid
An intelligent controller with communication topology changes using multi-agent RL. [134]

An actor-critic neural network that integrates a distributed RL control scheme. [135]
Power grid monitoring

and fault recovery
Stand-alone microgrid Feature selection-based distributed machine learning approach. [138]

the resilience to small faults. In order to achieve the above purpose,
Karim et al. [138] integrates the concepts in [139, 140] and pro-
pose a novel algorithm that detects dynamic events from distributed
generator data in a sectionalized way. Its purpose is to facilitate the
decision-making process after a fault occurs, so that the indepen-
dent microgrid can resume normal operation without intervention
from the central station. As for data preparation that requires a lot
of time and resources, the algorithm considers an alternative method
to avoid real-time feature selection by implementing a set of pre-
processed input features. In dynamic event detection algorithms and
fault recovery mechanisms, machine learning methods are used to
improve their performance. Compared with traditional methods, this
method reduces the calculation cost and is suitable for practical
applications.

4.2 Distributed control based on Artificial Intelligence for
Optimal Energy Management

In addition to stability-oriented control and management strategies,
there are also many works that aim to optimize energy use by min-
imizing costs or maximizing benefits, extending the life of energy
storage systems, or minimizing energy utilization cost. This paper
summarizes the two main research directions of optimal energy man-
agement, namely the demand response problem and the economic
dispatch problem that does not consider demand response. Note that
some existing studies adopt distributed approaches, others use cen-
tralized approaches. This paper mainly focuses on distributed control
methods based on AI since distributed methods have many advan-
tages in the optimal operation problem over centralized methods
[141].

4.2.1 Economic Dispatch: The goal of the economic dispatch
problem is to establish a reasonable dispatch plan based on predicted
energy production and consumption conditions, in order to minimize
the total operating cost and achieve the economic operation of EI.

In [142], a fully distributed algorithm based on neural network
is designed to reduce the total cost. The essential feature of the
proposed neurodynamic optimization method is its inherent paral-
lel computation and theoretically guaranteed optimality that can be
obtained in real time without specific initialization. This algorithm
can solve the problem when the objective function is not neces-
sarily strictly convex and smooth, with the existence of multiple
coupling constraints. Compared with previous methods in [143, 144]
that only consider local constraints, their results have a wider range
of applications.

From the perspective of the operator, the authors in [145]
design the energy management algorithm for networked microgrids
using the registration minimization and online alternating direc-
tion method of multiplier (ADMM) in machine learning. Standard
ADMM requires forecast data, and inaccurate forecast results may
increase the cost of power generation. What is more, when the stan-
dard ADMM uses robust optimization formulation, it may lead to
conservative results. Combining ADMM with machine learning and
registry minimization can make up for these defects. Furthermore,
the algorithm proposed in [145] is implemented in a distributed
manner, which significantly reduces the workload in computing and

communication. Although [146] also proposes an online optimiza-
tion algorithm for single microgrid based on regret minimization,
the underlying physical power network is ignored in the algorithm
design. When designing online energy management, [145] considers
both the underlying grid and the networked microgrid, so the method
in [145] is more complicated.

In economic dispatch, existing control methods not only consid-
ers the operating cost, but also considers other constraints such as
the combination of cost-effectiveness and system stability, so that
the proposed control method can simultaneously optimize multiple
problems.

Kohn et al. [147] propose a new distributed intelligent control and
management architecture based on hybrid systems. The uniqueness
of this architecture is that it includes a distributed inductive engine
in learning local dynamics of generators and loads in the micro-
grid. Aiming at solving the problem of insufficient accuracy of the
load model in traditional methods, an optimization method based
on machine learning is adopted, and the load prediction can reflect
the dynamic change of the load in real time. In addition, the control
method has good scalability, meaning that the calculation amount of
each node remains unchanged as the number of nodes increases.

Although some existing research works can achieve optimal eco-
nomic dispatch [148–150], the acquisition of accurate a priori
statistical information of all distributed generator sets and loads in
the microgrid is not simple, which limits the practical application
of these methods. In order to avoid establishing a random model in
advance, when trying to use RL-based methods, the studies in other
aspects, such as household energy management [151] and power
generation control [152], have achieved good results. However, in
the distributed economic dispatch of microgrids, the state space and
decision variables are continuous. Classical RL faces the problem of
“curse of dimensionality”, and the fuzzy Q-learning algorithm that
solves this problem has a slow convergence rate.

Based on this, a collaborative RL algorithm is designed in [153]
for microgrid economic dispatch. This algorithm not only minimizes
the operating cost of the microgrid, but also keeps the voltage stabil-
ity of the entire system. A coordination mechanism is introduced
in the RL algroithm with function approximation to make up for
the deficiencies mentioned above. In this distributed collaboration
mechanism, each controller makes action decisions based not only
on its own state, but also on the state of neighboring controllers. The
algorithm uses “trial-and-error” interaction with the dynamic envi-
ronment to find the optimal decision sequence to minimize operating
costs. Future work may as well consider designing a hierarchical RL
structure to achieve coordination between multiple microgrids, or
adding more constraints.

When studying multi-objective optimization problems, some
research works consider reducing the energy loss of the system in
the process of economic dispatch. By embedding frequency control
into a distributed economic dispatch method based on consensus, the
scheme developed by Li et al. [154] can overcome the shortcomings
of previous works, such as relying on a centralized information cen-
ter to calculate the initial value of mismatch and strong assumptions
about the availability of power mismatch [155–157]. In addition, Li
et al. also show an idea of combining a consensus protocol with a
control algorithm, which can be generalized in the future.
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Table 2 Distributed Control Methods for Optimal Energy Management

Control Problem Scenario Methodology Reference

Economic dispatch

Energy internet
A fully distributed algorithm based on neural networks, applicable for nonsmooth and
general convex objective functions.

[142]

Networked microgrids
A distributed algorithm for energy management based on online alternating direction
method of multipliers and machine learning.

[145]

Microgrid

A fully distributed algorithm based on neural networks, capable of solving convex
optimization where objective function is not necessarily strict convex or smooth.

[147]

A cooperative RL algorithm. [153]

Smart grid
PI frequency controller and neural network-based frequency controllers are employed
to implement distributed economic dispatch control.

[154]

Multiple energy carrier systems A novel multi-agent bargaining learning algorithm. [158]

Demand response

Smart grid

A genetic algorithm-based solution. [162]

A novel deep transfer Q-learning method associated with a virtual leader-follower
pattern.

[165]

Stand-alone microgrid Multi-agent cooperation system based on Fuzzy Q-learning. [166]

Microgrid Distributed energy and load management approach based on RL. [167]

For the distributed energy hub economic dispatch of the multi-
ple energy carrier systems, the use of the multi-agent bargaining
learning method can significantly reduce energy loss while ensuring
the minimum total cost [158]. In order to avoid the shortcomings
of slow convergence, curse of dimensionality and weak disposal
ability to deal with continuously controllable variables in previous
research [159–161], Q-learning with associative memory is adopted
for the learning process of each agent. In addition, non-uniform
mutation operators are used to process continuous control variables.
This combination has the advantages of fast convergence speed and
strong global search ability. It has strong competitiveness compared
with other distributed heuristic optimization algorithms.

4.2.2 Demand Response: Solving the demand response prob-
lem needs to consider the supply and demand relationship between
customers and suppliers. In order to reduce or shift the power load
within a certain period of time and respond to the power sup-
ply, a reasonable energy management plan can be formulated by
combining the energy consumption and load distribution of EI.

In [162], Mosaddegh et al. propose a distributed computing archi-
tecture based on smart grid communication middleware system. This
architecture is used to solve the distribution optimal power flow
model of the distribution network. To achieve voltage and reactive
power control of large-scale systems based on the network model
and reduce the computation cost, previous works have proposed
neural networks and heuristic algorithms that decompose the prob-
lem into sub-problems. Although the methods introduced by [163]
and [164] reduce the complexity of the distribution optimal power
flow model and the amount of calculation, the solution obtained
might be suboptimal. Accordingly, Mosaddegh et al. [162] adopt
a GA-based method to solve the distribution optimal power flow
model. The distributed computing method is applied to the smart
grid communication middleware system, which reduces the calcula-
tion time and obtains the optimal solution of controllable distributed
feeder devices.

For the supply-demand Stackelberg game in the smart grid, a
novel deep transfer Q-learning algorithm based on a virtual leader-
follower model is proposed in [165]. Its goal is to maximize the
total revenue of all agents on the premise of satisfying the power
balance between supply and demand. Compared with traditional
gradient-based optimization methods, such as Newton’s method,
quadratic programming method and interior point method, deep
transfer Q-learning can better achieve global search and avoid falling
into local optima. In addition, compared with centralized meta-
heuristic optimization algorithms, deep transfer Q-learning has a
faster convergence speed, stronger online learning capabilities, and
can effectively protect users’ private information.

To conduct energy management for stand-alone microgrid, Kofi-
nas et al. [166] also propose a cooperative multi-agent system. This
method takes into account the uncertainty of user demands, and

can ensure the power supply of the independent microgrid while
maintaining the stability of the entire system. The learning method
utilizes local rewards and state information related to each agent. As
a result, the state space is reduced and the learning mechanism is
enhanced. In addition, fuzzy Q-learning is introduced in each agent
to deal with the continuous state space and action space. Compared
with previous works, the algorithm in [166] can obtain the man-
agement strategy faster. Therefore, this technology can be applied to
more complex EI scenarios in the future, for example, the EI systems
with wind turbines or hybrid electric vehicles.

There are also some research results on the issue of electric-
ity market transactions. Foruzan et al. [167] design a distributed
energy and load management method based on multi-agent strate-
gies. Through reinforcement learning, agents can adapt to compet-
itive and random markets, and optimize the utility of both supply
and demand in the hourly market based on microgrid auctions. The
model-free Q-learning algorithm ensures that each agent can find the
optimal strategy, thereby maximizing its own profit. Different from
most research work based on multiagent systems, [167] models the
energy supply and demand sides of the microgrid as a single unified
agent to further study the interaction and demand of both sides. In
addition, the distributed design in [167] can effectively reduce the
volume of information exchange and improve the response speed.

5 Conclusion

This paper reviews the distributed EI control methods based on AI
in recent years. Compared with centralized control methods, the tra-
ditional distributed control method has made great progress, with
fast calculation speed, low communication cost and high security.
However, there are still some limitations in solving non-convex and
nonlinear problems. The rapid development of computer hardware
makes AI technology widely used in electronic information systems,
and provides effective solutions to problems that traditional methods
are difficult to solve. AI-based distributed control methods not only
maintain the advantages of distributed control itself, but also have
good adaptability to the characteristics of non-linearity, strong uncer-
tainty, strong coupling, and multivariables of EI system. In addition,
flexibility has a positive effect on improving the stability, operating
efficiency, and intelligence of electronic information systems.

There are not many research results in this area currently, but it
will become a research direction with great potential. Future work
can try this combination more, or try to add more constraints in
previous studies. At present, some existing projects have been com-
pleted under ideal conditions. Although they provide good ideas,
they are still far away from practical applications, so it is recom-
mended that future works consider situations that are more in line
with actual conditions.

IET Research Journals, pp. 1–13
© The Institution of Engineering and Technology 2015 9



The concept of EI covers low-voltage, medium-voltage, and high-
voltage energy systems. Most existing researches on the combination
of AI technology and distributed control focus on the low voltage
side, while the research on the high-voltage side is rare. In the future,
the combination of AI technology and distributed control on the
high-voltage side will also become a direction of great potential.
In addition, some existing projects are too slow to achieve real-
time control. Therefore, optimizing the time cost of solving control
problems is another important goal for future research.
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Reviewer 2

Comments to the Author:

Unfortunately, the revised paper does not differ much from the original submission, so I stand by
my initial assessment.

Again, the main criticism is that the scope of the review is too broad to allow a meaningful review.
As a result, the paper merely provides a list of papers dealing with different aspects of energy
internet giving a short summary of each paper but fails to *review* the existing solutions in the
context of the problem at hand. In other words, a meaningful review should do more than just
saying [A] did X, [B] did Y and [C] did Z. Instead, a proper review should critically *review* why
X works better than Y (or whatever), or under what circumstances X is sufficient, etc. This is why
a review should be based on a problem definition.

The authors seem to (implicitly) agree with the above assessment by saying: "Due to the great
differences in these solutions and methods, it is difficult for us to systematically summarize the
existing research results and give a mathematical model of a specific problem and then discuss the
effective solutions."

Response:
Thank you very much for your comments. The distributed control method based on AI

studied in this paper is only a very small field in the Energy Internet. The research of this area is
still in its infancy. As a result, how to combine AI with distributed control and what problems are
suitable for this combination to solve should be further studied. Although there are many problems
studied in existing works, there are relatively few studies on each of these problems. In addition,
when solving specific problems, it is sometimes necessary to use AI methods in the modeling
stage, the solving stage, and the optimization stage. Specific AI methods used in different works
are also diverse. Therefore, it is difficult for us to define a particular problem and then conduct a
review with great details. We believe that a broad summary is more significant than an in-depth
analysis of the current research progress. Current review papers should show readers a variety of
research ideas as much as possible, which is covered in this paper.

As you have pointed out, the review of this paper in some chapters was only a summary,
without useful review and comparison. Therefore, we immediately supplemented corresponding
content where necessary. Currently, it not only summarizes existing works, but also compares
them with prior works, points out the advantages of the combination of AI and distributed control,
and speculates on the future application of some work. The modifications are as follows:

[58] partition the entire energy network into areas and conduct control to multiple areas.
Compared with the previous work in [59], the distributed design in [58] effectively reduces

the communication cost and computation workload.
[68]：The algorithm is robust to communication failures due to the distributed control method.

Moreover, it is adaptive to communication topology changes. Future research on this issue should
focus more on improving distributed solutions, such as introducing energy storage system
constraints.



Nevertheless, the method in [71] fails to consider network constraints, which can be a future
research direction.

Compared with some previous research works, the method in [64] is more robust and has a
smaller computational load. Further studies could extend the method under more constraints, e.g,
transmission line loss, power flow, and transmission line flow constraints.

The improvement of [77] lies in integrating multiple tiers, such as flexible consumption and
congestion management, into one model, which is more in line with practical application
requirements.

However, the microgrid model in [130] does not conform to the real situation because the
authors fail to address the delay and interference of communication links. It would be more
sensible if future research can be conducted in a more realistic microgrid model.

Compared with the previous work in [132], the controller proposed in [131] is simpler and
requires less information. Future studies can explore how the controller of [131] can keep running
in the presence of system failures.

The frequency controller in [132] has lower communication costs, higher flexibility, and
better effectiveness.

Furthermore, the algorithm proposed in [145] is implemented in a distributed manner, which
significantly reduces the workload in computing and communication. Although [146] also
proposes an online optimization algorithm for single microgrid based on regret minimization, the
underlying physical power network is ignored in the algorithm design. When designing online
energy management, [145] considers both the underlying grid and the networked microgrid, so the
method in [145] is more complicated.

Compared with previous works, the algorithm in [166] can obtain the management strategy
faster. Therefore, this technology can be applied to more complex EI scenarios in the future, for
example, the EI systems with wind turbines or hybrid electric vehicles.

Different from most research work based on multiagent systems, [167] models the energy
supply and demand sides of the microgrid as a single unified agent to further study the interaction
and demand of both sides. In addition, the distributed design in [167] can effectively reduce the
volume of information exchange and improve the response speed.
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PV Photovoltaic
RL Reinforcement Learning

1 Introduction

1.1 Energy Internet

Nowadays, the rapid development of human society has led to the
massive consumption of fossil energy, forcing mankind to face many
challenges such as energy crisis, environmental pollution, and global
warming. Therefore, people began to pay attention to the production
and utilization of renewable energy [1, 2]. According to statistics
in [3], the annual growth of the world’s total wind and solar power
generation since 2000 is 22% and 40%, respectively. It is esti-
mated that by 2050, renewable energy will account for 80% of the
total power generation in the United States [4]. However, the tradi-
tional power grid cannot adapt to the large-scale access of renewable
energy due to their disadvantages of intermittence and randomic-
ity [5], which limits the use of clean energy. Taking wind power as
an example, China’s wind power curtailment in 2016 was as high as

4.97×1010kW·h, accounting for 17% of China’s total wind power
generation [6].

The continuous development of modern information technology
and renewable energy technology provides feasible methods to solve
these problems. The concept of EI emerges as the times require to
realize a distributed and open sharing network based on renewable
energy [7]. Resembling the functions of the routers in a mod-
ern information Internet, energy routers are usually added in the
EI’s architecture to achieve the energy and information exchange
between power generation systems, energy storage devices, and
loads [8, 10]

:::::
[9, 10]. Based on the existing energy supply network, EI

combines renewable energy power generation technology, advanced
information technology, and energy storage technology to achieve
large-scale utilization of distributed energy resource [11, 12]. In
addition, low-carbon renewable energy, such as wind, solar, and
nuclear energy, can be delivered to different types of users through
EI [13], thereby alleviating the aforementioned problems.

According to Jiang et al. [14], EI has the following features:
• It replaces non-renewable energy such as fossil energy with
renewable energy such as solar and wind energy;
• Energy is generated, stored, and consumed at the same time to
achieve efficient system operation;
• Energy flows in both directions, and users can be both energy
producers and energy consumers;
• Cold, heat, electricity, and gas networks interconnect with each
other to accomplish the conversion between different forms of
energy;
• A large-capacity energy storage system is required to ensure a
stable output of energy;
• The energy flow and the information flow circulate in both
directions.
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The implementation of EI requires a large number of advanced
supportive technologies, such as control technology [15–17]

::::::
[15–18]

, energy storage technology [19, 20], power grid security technol-
ogy [21], and renewable energy based power generation technol-
ogy [22],

::::
and

:::
big

::::
data

::::::::
technology

::::
[23]. It is worth mentioning

that EI is currently not only at the level of theoretical research.
Many demonstrative projects have also implemented EI’s theoreti-
cal techniques and achieved relatively satisfactory results, providing
valuable experience for EI’s research and development. For exam-
ple, Beijing Yanqing Energy Internet Comprehensive Demonstration
Zone in China, Shanghai Chongming Energy Internet Comprehen-
sive Demonstration Project, France’s Greenlys Project, Sweden’s
Stockholm Royal Sea Port Project, and the US Irvine SG Demon-
stration Project [24].

1.2 Distributed Control Technology in Energy Internet

This paper mainly focuses on the control technology of EI. In
recent years, the research on EI control and energy management
strategies has yielded many results. For example, Hua et al. [25]
describe the energy management problem as a stochastic optimiza-
tion problem, which can be solved using dynamic programming.
The modeling process combines the recurrent neural network with
Ornstein-Uhlenbeck process to obtain the accurate power model of
the photovoltaic (PV) panel and load. The proposed control method
can not only effectively prolong the service life of energy storage
equipment, but also realize the reasonable use of microturbines and
avoid the situation of overcontrol. In [26], a short-term wind power
forecasting algorithm based on noncoopertative game theory and
deep learning is proposed in microgrid energy management. The
algorithm uses a stacked automatic-encoder to extract features from
the training data, back-propagation algorithm to calculate the weight
of the overall neural network, and genetic algorithm to optimize the
learning speed of the entire process. Their experiments show that
accurate wind power prediction results are helpful for the design of
management schemes. Kumrai et al. [27] propose a fitness-based
modified game particle swarm optimization algorithm to minimize
the operating costs of microgrid and multi-microgrid systems while
minimizing pollutant emissions.

Energy management and control problems are usually solved
as optimization problems. Most existing solutions can be divided
into two categories, namely centralized methods and distributed
methods [28, 30]. A large number of existing projects use central-
ized methods to solve management and control problems. However,
as more and more power devices are deployed in the distribution
network, the centralized approach faces many challenges.

Centralized methods usually require the establishment of a cen-
tral controller to monitor the system and make decisions [31, 32].
As the number of distributed generation devices increases, central-
ized methods may become increasingly difficult to operate. The main
reasons are listed as follows [28, 33]

:::::::::
[28, 29, 33]:

• Lack of specialized management units;
• Large amount of computing;
• Difficulty in timely communication due to large geographical
span;
• Complicated to redesign, even replacing only one unit will affect
the central controller;
• Lack of data sharing;
• Reliability and security issues of the central controller.

In contrast, distributed control technology fully considers the
interaction between units, and assigns control tasks to different units
according to the control objectives of different periods [33]. All
smart devices work together to reach a collective decision based on
the set goals. Each controller only needs to communicate with neigh-
boring nodes. Global information about the network (i.e., the status
of all nodes) is not required to make control decisions [34].

Compared with centralized control, distributed control has many
advantages. First, distributed control algorithms are robust to the
failure of a single controller node [35]. Moreover, only limited
information is shared between each pair of nodes, which not only

improves the security of the network, but also reduces the construc-
tion cost of the basic communication facilities [36]. Since parallel
computing is enabled, the computing speed and the scalability of
the system can be superior to the centralized algorithm [37]

:::
[38]. In

addition, distributed algorithms can protect privacy well, which is of
great significance in future practical applications. Therefore, more
and more studies focus on distributed control in recent years.

1.3 Artificial Intelligence-Based Control

With the development of AI technology and computer hardware,
using AI to solve complicated problems has become a research
hotspot in recent years. In the studies of renewable energy power
generation and load forecasting, traditional physical methods usu-
ally require a large amount of computing and are extremely sensitive
to initial conditions. It is difficult to improve their prediction accu-
racy at the current level. Deep neural network can fuse massive data
information through the association of feature variables to improve
the accuracy of prediction and early warning [39, 40].

In the field of control, taking stability research as an example,
the randomness of renewable energy power generation makes it dif-
ficult to determine the operation mode of the power grid, and the
complexity of control continues to increase. Outdated offline control
strategies may not match actual working conditions. The comprehen-
sive guarantee technology based on AI, such as machine learning,
fuzzy set theory, or multi-agent, can effectively improve the stability
of EI. For example, machine learning can continuously monitor the
operating status of the system [41], automatically determine abnor-
mal conditions, early warning of possible risks [42], and reduce
the risk of misoperation and refusal of relay protection. The use of
reinforcement learning (RL) can improve the degree of matching
of emergency control strategies with real working conditions [43].
Data-driven response technology can cope with small probability
accidents and prevent system crashes.

AI is an effective tool for solving complicated situations such as
nonlinear problems [44]

:::
[45]. Modeling errors in traditional methods

can also be reduced by AI-based methods. Besides, traditional con-
trol methods may sometimes be difficult to achieve the desired con-
trol effect when the practical system’s operating state deviates unex-
pectedly from the theoretical assumptions or models. In contrast,
AI-based control methods can be more proficient in continuously
tracking the changes of the system, adjusting control strategies,
and improving the ability to deal with uncertainty [46]. AI-based
methods also have unique advantages in terms of computing speed,
modeling of complicated problems, and system automation degree.

1.4 The Difference between Microgrid, Smart Grid, and
Energy Internet

In particular, EI mentioned in this paper is a broad concept, includ-
ing smart grid and microgrid. A microgrid is a small energy system
composed of distributed power generation devices, energy storage
devices, energy conversion devices, loads, and related control and
protection devices [47]. It can accomplish self-control and self-
management due to its capability of operating either in parallel
with the external grid or in isolation [48]. Compared with micro-
grid, smart grid considers various problems in the energy system
based on the overall situation of regional power grid. It uses sensors
to monitor critical devices for power generation, transmission, and
power supply in the energy network in real-time and further inte-
grates and analyzes the acquired data [49]. Smart grid can achieve
optimal management in a more extensive energy network according
to the analysis results. EI, in contrast, further expands and deepens
the concept of smart grid. It differs with smart grid in the following
ways [50–52]:
• The physical entity of an EI is composed of electricity, natural
gas, and transportation systems, while the physical entity of smart
grid is mainly the power system;
• The energy in an EI can be transformed into various forms, such
as electric energy and thermal energy. In contrast, the energy in smart
grid is only transmitted and used in the form of electric energy;
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• There are more participants in an EI. In addition, its energy
consumption forms include both local consumption and wide-area
coordination. In smart grid, energy consumption is mainly local;

Due to the lack of existing research work on the combination of
AI and distributed control in high-voltage energy systems, the tech-
nologies discussed in this paper mainly focus on the low-voltage
part. Therefore, the term “EI” in this paper refers to the low-voltage
type, a local energy system composed of microgrids or smart grids.

1.5 Contributions of This Paper

Today, more and more projects choose AI-based methods to solve
specific problems in energy management and control [53–56]. This
paper mainly focuses on the distributed control based on AI tech-
nologies rather than the application of AI technology in distributed
systems. This paper does not attempt to list traditional distributed
control methods and AI-based distributed control methods. Instead,
this paper first describes the development trend from centralized con-
trol to distributed control and then to distributed control based on
AI, and then analyzes the contingency and inevitability of this trend
combined with the development direction of energy system. So far,
although there is not much research work on the combination of dis-
tributed control and AI, this is a meaningful research direction. This
paper summarizes and analyzes some existing work to show readers
a variety of research methods and ideas in related fields and provides
specific reference value for scholars engaged in EI control research.

The rest of this paper is organized as follows: Section 2 briefly
describes traditional distributed control methods in EI; Section 3
briefly introduces the AI technology; Section 4 summarizes the
research work of the combination of AI and distributed control in
the study of EI; Section 5 concludes this paper and provides outlook
for future work. The architecture of this paper is shown in Fig. 1.

2 Traditional Distributed Control Methods in
Energy Internet

This section briefly introduces traditional distributed control meth-
ods in EI and outlines some existing research works. These works do
not use AI methods in modeling or problem solving.

2.1 Distributed Control Technology in Energy Internet

The distributed control technology in EI needs to fully consider the
interaction between units. According to different control objectives
with respect to different time periods, tasks are assigned to different
units. Each unit retains sufficient autonomy. When there are enough
units, one way to perform coordination strategies is to establish a

control hierarchy. Depending on the required time frame, the con-
trol hierarchy can be divided into primary control, secondary control
(also called energy management system), and tertiary control [33].
Primary control is the fastest and responds to system dynamics in
real time. It is often used to ensure that the voltage and frequency are
within controllable ranges. The use of secondary control can allevi-
ate long-term voltage and frequency deviations while coordinating
units to achieve other goals, such as power quality optimization or
loss reduction. Tertiary control is the most advanced control and is
responsible for managing multiple microgrids.

As summarized in [33], distributed control technologies com-
monly used in EI include distributed model predictive control-based
techniques [57], consensus-based techniques [58], agent-based tech-
niques [59], and decomposition-based techniques [60]. In the current
research of EI control systems, distributed control has been widely
used in economic dispatch, frequency conversion speed regulation,
voltage control, and many other fields.

2.2 Applications of Traditional Distributed Control in Energy
Internet

The studies reviewed in this section use traditional distributed
control without involving AI methods in modeling and solving.

2.2.1 Traditional Distributed Control for System Stability:
The stability of EI refers to the ability of the EI system to resist
disturbances. The massive access to renewable energy increases the
disturbances that the entire power system may face. In the absence
of an effective control scheme, voltage and frequency fluctuations in
a wide range caused by disturbances may interrupt the entire power
system and cause significant losses. How to ensure the long-term
stable operation of the system is a problem that scholars are more
concerned about.

Energy Storage: Energy storage system is an important device in
EI, which can be used to maintain the stability of the system.
Askarzadeh et al. [61] use a decentralized adaptive model with
battery energy storage systems for real-time power grid control.
Its control objectives include voltage control and congestion man-
agement.

::::::::
Reference

::::
[61]

::::::
partition

:::
the

:::::
entire

::::::
energy

::::::
network

::::
into

::::
areas

:::
and

::::::
conduct

::::::
control

::
to
:::::::

multiple
:::::
areas. Voltage regulation in

real-time network control is achieved by considering the accurate
dynamic model of battery energy storage systems.

:::::::
Compared

::::
with

::
the

:::::::
previous

::::
work

::
in

::::
[62],

:::
the

::::::::
distributed

:::::
design

::
in

::::
[61]

::::::::
effectively

:::::
reduces

:::
the

::::::::::::
communication

:::
cost

:::
and

:::::::::
computation

::::::::
workload. In order

to coordinate energy storage units, PV panels and controllable load
units in single-phase low-voltage microgrids, Golsorkhi et al. [63]
propose a novel distributed cooperative control framework to regu-
late the voltage, and coordinate the charge and power state between
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each energy storage unit. In addition, measures to limit PV power
are also configured in the system to avoid overcharging or overdis-
charging of energy storage units. The distributed method proposed
can avoid the disadvantages of single point failure or high commu-
nication cost that may occur in the centralized method. It achieves
better performance by avoiding power quality degradation due to
frequency and voltage deviations.

Reactive Power Optimization: Reactive power optimization is a
measure of reactive power adjustment that optimizes one or more
performance indicators of the system under given structural param-
eters and load conditions. It aims to maintain the voltage level by
reasonably allocating reactive power flow. Therefore, reactive power
optimization is an important means to maintain grid stability.

In [64], an optimal reactive control scheme based on a fully
distributed multi-agent system is established. Compared with pre-
vious centralized and semi-distributed control methods, this fully
distributed control scheme can effectively reduce the probability of
single point of failure. In addition, it can not only respond to envi-
ronmental changes in a timely manner to ensure the stability of the
system, but also has scalability for systems of different sizes and
topologies. Similarly, Shafiee et al. [65] propose a fully distributed
control methodology for secondary control of AC microgrids. This
method guarantees global voltage and frequency adjustment as well
as accurate active/reactive power sharing in droop-based microgrids.
Each power supply participates in reactive power support according
to its predetermined rated power. The method also uses active power
measurements to successfully synchronize the frequencies among
multiple microgrids, so the controller no longer requires additional
measurement equipment, thereby reducing costs.

Active Power Sharing: There are also some other works that study
active power sharing between microgrids. Considering the more
practical situation where multiple microgrids are intercontected,
an event-based distributed consensus-based control approach is
designed in [66]. The advantage of adopting the event-based method
is that the communication between agents is greatly reduced, and
the flexibility and stability of the entire system are improved. The
use of distributed methods also enables the plug-and-play function
of the system, which can still maintain the effectiveness in the case
of islands and communication link loss.

2.2.2 Traditional Distributed Control for Optimal Energy
Management: Optimal energy management is also an important
research direction of EI. The measures proposed in the studies of
this area can minimize the cost of power generation [67], maxi-
mize social welfare [68, 69], and achieve economic dispatch, thereby
making EI operate more rationally and efficiently.

Social Welfare Maximization: Social welfare maximization is a goal
to reduce the total production cost of all power generators as much as
possible, while maximizing the total utility of all users [70]. On this
issue, Xu et al. [71] propose a distributed optimal control algorithm.
The construction of the objective function takes into account both the
generator and the load user. Each unit uses a consensus algorithm
to find the common incremental cost by minimizing the incre-
mental difference between adjacent units. The adjustment rate is
then controlled to optimize the power generation or load change
process. Therefore, the proposed control method can achieve the
dynamic minimization of adjustment costs while ensuring the bal-
ance of smart grid power generation demand.

:::
The

::::::::
algorithm

:
is
:::::
robust

:
to
::::::::::::

communication
:::::::

failures
:::
due

::
to

:::
the

::::::::
distributed

::::::
control

:::::::
method.

:::::::
Moreover,

::
it
:
is
:::::::
adaptive

::
to

:::::::::::
communication

:::::::
topology

:::::::
changes.

:::::
Future

::::::
research

::
on

::::
this

::::
issue

:::::
should

:::::
focus

::::
more

:::
on

::::::::
improving

::::::::
distributed

:::::::
solutions,

::::
such

::
as

::::::::
introducing

::::::
energy

:::::
storage

::::::
system

:::::::::
constraints.

The Social Welfare Maximization energy management problem
in smart grid is also studied in [72]. The study aims to maximize the
overall social welfare that balances power generation costs, user-side
payments, and transmission costs. Through continuous information
exchange, the distributed projected control algorithm can obtain the

global optimal solution asymptotically. In order to save communica-
tion resources, the event-triggered condition of each generator and
each load is employed to determine when its related states should be
sampled and transmitted to adjacent loads.

Demand Response: Demand response research can promote the
development of the power industry towards higher efficiency. To
achieve optimal energy management scheduling between users and
utility companies, a distributed real-time scheduling algorithm is
designed in [73]. The algorithm uses dual decomposition technology
to decompose the original problem into several independent sub-
problems, which overcomes the obstacles caused by spatial coupling
constraints.

Since a noncoordinated response of customers may lead to severe
peak rebounds at periods with lower prices, it is sometimes necessary
to coordinate demand to avoid peak rebounds.

Safdarian et al. [74] propose a system-wide demand response
management model to coordinate the demand response of residen-
tial customers. The model is first described as a bi-level optimization
problem. Then the problem is converted into an equivalent single-
level problem, which is finally solved by an iterative distributed
algorithm so that the impact to total load curve by user demand
is minimized.

::::::::::
Nevertheless,

:::
the

::::::
method

::
in

:::::
[74]

:::
fails

::
to

:::::::
consider

::::::
network

:::::::::
constraints,

::::
which

:::
can

:::
be

:
a
:::::
future

::::::
research

:::::::
direction.

:
On the other hand, Diekerhof et al. [75] propose a hierarchical

robust distributed optimization method suitable for day-ahead and
intra-day scheduling of flexible devices (electric-thermal units) in
urban areas. The optimization is based on direction alternating of
multipliers, which can prioritize each individual customer and its
own private objective, and fully consider the needs of customers in
the scheduling process.

There are some other works focusing on minimizing the total
power generation cost while satisfying the total demand and the
power generation limit of a single generator. The distributed
algorithm provided in [67] is based on the results of [76, 77] and
incorporates the robust control methods in [78, 79]. This algorithm
can be used to solve optimal coordination of distributed energy
resources in communication networks with packet loss.

::::::::
Compared

:::
with

:::::
some

:::::::
previous

::::::
research

::::::
works,

:::
the

::::::
method

::
in
:::::

[67]
:
is
:::::

more
::::
robust

::::
and

:::
has

:
a
::::::
smaller

:::::::::::
computational

::::
load.

::::::
Further

:::::
studies

:::::
could

:::::
extend

:::
the

::::::
method

:::::
under

::::
more

:::::::::
constraints,

::::
e.g,

:::::::::
transmission

::::
line

:::
loss,

:::::
power

::::
flow,

:::
and

::::::::::
transmission

:::
line

:::
flow

:::::::::
constraints.

:
For the problem of inaccurate prediction, Nguyen et al. [80]

develop a distributed controller based on the work of [81]. A dis-
tributed model predictive controller is embedded in the universal
smart energy framework. There is also an aggregator layer above
the prosumer layer. These two layers are coupled by an objective
function to form a three-tier structure, which balances the responsi-
ble party, aggregators and prosumers. The flexibility of the system
is quantified in order to distribute the day-ahead planning to various
integrators, and then a model predictive controller is developed to
minimize the imbalance between grid forecast and actual supply and
demand.

::
The

::::::::::
improvement

::
of
:::::

[80]
::
lies

::
in

::::::::
integrating

:::::::
multiple

::::
tiers,

:::
such

::
as
::::::
flexible

::::::::::
consumption

:::
and

::::::::
congestion

:::::::::::
management,

:::
into

:::
one

:::::
model,

:::::
which

:
is
::::
more

::
in

:::
line

::::
with

::::::
practical

:::::::::
application

::::::::::
requirements.

In [82], the real-time scheduling problem of energy hub under
dynamic pricing market is studied. The interaction between energy
hubs is modeled as a potential game, given the accurate poten-
tial function of the energy center game. The authors prove that the
only Nash equilibrium corresponds to the global maximum of the
potential function. The Nash equilibrium is then determined by a
distributed energy scheduling algorithm. This scheduling algorithm
can be executed by the energy management system of each energy
hub in real time to determine the profit maximization strategy of the
user’s electrical and thermal devices.

2.3 From Traditional Methods to Artificial Intelligence

Nowadays, advanced AI algorithms are becoming more and more
consummate, and the functions of computer hardware are constantly
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Limitations of traditional methods Advantages of AI methods

· Unable to build an concrete model.

· Difficult to solve the non-convex problem.

· Difficult to improve the prediction accuracy.

· Difficult to handle uncertain events.

· Unable to effectively use a large amount of data in EI.

· Unable to realize intelligent and automatic scheduling.

·  Able to improve the accuracy of the model and reduce 

the difficulty of modeling.

·  Able to solve non-convex problems well.

·  High prediction accuracy.

·  Highly intelligent and able to assist or replace artificial 

decision-making.

·  Proficient in feature analysis of big data.

· A large amount of renewable energy accessed.

· Different types of energy terminals coupled with each 

other.

· Significantly increased amount of data.

· Complex data and ultra-high dimension.

· The increase in uncertainty.

· Strong coupling and nonlinear.

…

Current situation and problems of EI The development of AI and computer 

hardware

·  The enhancing performance and decreasing cost of 

computer hardware.

·  Efficient artificial intelligence algorithms.

·  Big data.

·  Smart Sensing.

…

Fig. 2: From Traditional Methods to Artificial Intelligence

improving. Although the massive data generated by EI devices
increase the complexity of system control, they provide possibility
and feasibility for the practical application of AI technologies at the
same time.

In controlling and retrieving massive data streams, traditional
methods usually require a local infrastructure to access each device.
This not only leads to increased costs, but also limits the size of
the data being processed. Therefore, adaptive algorithms and AI-
based coordination mechanisms are needed to achieve flexibility and
distributed data management [83]

::::::
[84–86].

In addition, big data in the power grid conceal a lot of valu-
able information. Through the analysis and utilization of these data,
AI technology can realize the automation and intelligence of the
EI control system, thereby completing more precise and intelligent
control and scheduling. Traditional methods may have overlooked
the value behind these data. Therefore, adaptive algorithms and
AI coordination mechanisms are needed to achieve flexibility and
distributed data management [83]. A detailed comparison between
traditional methods and AI methods is shown in Fig. 2.

On the prediction problem, AI methods can effectively improve
prediction accuracy and break through the bottleneck of traditional
methods. For example, in electricity price prediction, existing tech-
nologies include statistical models, time series methods, and AI-
based methods. Compared with the high volatility of independent
and dependent variables in statistical models, AI-based methods
have significant advantages in terms of estimation accuracy [87]. In
addition, AI technology can also deal well with nonlinear problems
related to short-term electricity price forecasting [88].

AI technology is also widely used in the prediction of renew-
able energy power generation [25]. Wind speed, light intensity,
and other factors that may affect the power generation of renew-
able energy could bring strong nonlinearity and great uncertainty
to the control problem, which makes it rather difficult to solve the
problem by traditional power generation forecasting methods. AI
methods such as neural networks and genetic algorithms, however,
are important means to solve nonlinear problems [89]

:::
[90]. These

methods can discover pattern from a large amount of historical
data and improve prediction accuracy. For example, extreme learn-
ing machines and direct quantile regression can be combined to
achieve non-parametric probability prediction of wind power gen-
eration [91]. In addition, the hybrid of integrated deep learning
framework and an attention mechanism can be implemented to pre-
dict PV power output. This high-precision prediction of the power
generation equipment is indispensable in future EI systems.

In terms of EI system control, traditional modeling methods
inevitably have errors, and sometimes they have difficulties achiev-
ing the ideal control effect. For some complicated problems, tradi-
tional physical modeling is even infeasible. In contrast, AI-based
modeling methods can not only improve the accuracy of the model,
but also reduce the difficulty of modeling complicated problems. For
instance, reinforcement learning methods have the unique features
of “no model” and “no prior information required”. In addition, the
input and output data dimensions of EI are very high at present, and
the data are usually interrelated. Traditional control methods are dif-
ficult to obtain comprehensive control and optimization strategies,
while AI methods such as deep learning, reinforcement learning and
transfer learning are effective ways to solve these problems [92, 93].

In other aspects of EI, AI is also a good auxiliary tool. In power
grid stability analysis, an AI-based method can significantly improve
the efficiency of analyzing large-scale power grid data [94]. More-
over, the online load modeling method based on big data not only
improves the accuracy of the model, but also increases the process-
ing speed while reducing the repetitive workload of the staff. In the
grid dispatching problem, the method based on AI can transform
dispatching method from empirical to intelliget, and complete better
adjustment under more constraints [95]. In the field of power grid
protection and control, emergency control schemes based on rein-
forcement learning can quickly provide real-time control schemes
based on the operating state of the power grid, helping the grid
resume normal operation faster [96].

The operation and management of future EI will develop in the
direction of becoming more and more intelligent. Massive data has
been difficult to process with the experience of the staff, and human
participation in the operation of the power grid needs to be reduced.
AI is an effective way to realize this concept. Similarly, as one of
the important control methods in recent years, the combination of
distributed control technology and AI will be a promising direction.
The combined use of these two technologies can not only solve some
non-convex, nonlinear and other complicated problems, but also has
the advantages of fast calculation speed, low calculation cost, and
good privacy.

3 Overview of Artificial Intelligence Technology
in Energy Internet

AI technology can be generally divided into four areas, namely
expert systems, fuzzy logic, artificial neural networks (ANNs), and
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genetic algorithms or generalized evolutionary computation [97].
This section will briefly introduce some commonly used AI methods
in EI, including ANNs, reinforcement learning, genetic algorithms
and expert systems, and the application of these methods in EI.

3.1 Artificial Neural Networks

An ANN is an operation model composed of a large number of
interconnected nodes, also called neurons. Neurons can handle the
complicated behavior of the system by the connections between neu-
rons and weight parameters [98]. Perceptron is a commonly used
model of neuron. It accepts multiple different inputs, sums them with
specified weights, and then gets the output through the activation
function [99]. In general, multiple parallel perceptrons form a layer,
and the layers are serializedly connected. The output of the previ-
ous layer is used as the input of the next layer, forming a multi-layer
network architecture as a whole. ANNs can solve problems through
massive data training. The main training modes are supervised mode
and unsupervised mode. The advantages of ANN include adaptive
learning, self-organization, fault tolerance, and easy integration with
existing technologies [100].

In the EI system, ANN can discover the nonlinear relationship
between variables in complex environments through good learning
ability [100]. As a consequence, ANN has a significant effect in
solving prediction problems such as the output power prediction
of PV systems [101, 102], household energy consumption fore-
casting [103, 104] and power system state prediction [105]. In the
research of demand response, the use of ANN can complete the
modeling of controllable loads under complicated constraints. This
modeling method is simpler than traditional modeling methods,
and the resulting model is more accurate. For example, Mosad-
degh et al. [106] establish Bayesian regularization back-propagation
algorithm to obtain a neural network model of controllable loads
based on the history of load data and achieve optimal energy man-
agement. In addition, ANNs have also been widely applied to
EI energy management [107, 108], fault detection [109], network
security [110] and many other research topics.

3.2 Reinforcement Learning and Deep Reinforcement
Learning

Reinforcement learning (RL) is an important group of machine
learning algorithms. In RL, the agent learns in a “trial-and-error”
manner, and the action taken for each “trial-and-error” is random.
Agents guide their subsequent actions based on the reward and pun-
ishment obtained from actions taken in the current environment. The
ultimate goal of the training is to enable agents to obtain the maxi-
mum reward, so that the external environment can best evaluate the
learning system in a certain sense.

RL has a wide range of applications in EI since it is profi-
cient in solving decision problems under uncertain conditions. At
the cybersecurity level of the grid, the online anomaly detection
can be described as a partially observable Markov decision process
problem, and the model-free RL framework of partially observable
Markov decision process problems can be utilized in establishing a
general robust online detection algorithm [111]. The algorithm can
detect network attacks against the power grid in time, which is con-
venient for the system to take reasonable countermeasures before
any damage is caused by the attacks, ensuring the network security
of the system. In addition, RL is a common solution in the fields
of energy trading [112], dynamic pricing and energy consumption
scheduling [113], and demand response [114].

At present, the combination of RL and deep learning has also
brought a new field, deep reinforcement learning (DRL). Some
works have begun to use DRL in solving many complicated prob-
lems. For example, Wan et al. [115] describe the real-time charging
scheduling of electric vehicles as a Markov decision process with
unknown transition probabilities, and propose a model-free opti-
mal scheduling method using DRL to obtain charge and discharge
scheduling. Mocanu et al. [116] use the deep policy gradient method
as part of the DRL method to perform online optimization of energy

management system scheduling. An et al. [117] propose a DRL-
based scheme to detect integrity attacks in AC power grid. In [118]
the DRL method is used to obtain an optimal energy management
strategy, such that the operation cost of the considered EI scenario
can be minimized.

3.3 Meta-Heuristic Algorigthms

Meta-heuristic algorithms mainly refer to a general type of heuristic
algorithms. They are the product of the combination of radomized
algorithms and local search algorithms, such as genetic algorithm,
simulated annealing algorithm and ant colony optimization. These
algorithms have great similarity in the optimization process, and they
all have “neighborhood search” structure. A typical meta-heuristic
algorithm starts with a set of initial solutions. Under the control of
the key parameters of the algorithm, the neighborhood function gen-
erates multiple neighborhood solutions, and continuously updates
the key parameters and states until the convergence criteria are sat-
isfied. The optimization mechanism does not depend too much on
the organizational structure information of the algorithm, and can
well solve combinatorial optimization and function calculation. This
paper mainly introduces genetic algorithms commonly used in EI.

Genetic algorithm (GA) is a randomized search method that bor-
rows from the evolutionary laws of the biological world (such as
survival of the fittest). Through the genetic operations of replication,
crossover and mutation, the group of “chromosomes” represented by
the problem code can “evolve” from generation to generation. When
the result eventually converges to the most suitable group, it can be
considered that the optimal or satisfactory solution to the problem
is found. GA has the advantages of simple principle and operation,
strong versatility, unlimited constraints, and parallelism and global
searching capabilities. At the same time, as a stochastic optimization
method, GA considers probabilistic factors in the algorithm, which
helps it escape from the local optimum and find the global optimal
solution [119]

::::
[120].

There have been some studies using GA to solve problems in EI.
The method proposed in [121] accomplishes a two-step forecast-
ing of electricity prices: in the first step, a set of relevance vector
machines (RVM) is adopted, and each relevance vector machine is
used to make individual advance price predictions; the second step is
to integrate relevance vector machines prediction into multiple lin-
ear regression ensemble, and use GA to get regression coefficients.
In order to achieve route optimization of electric vehicles, a learnable
partheno-genetic algorithm combining GA with a knowledge model
can be utilized to solve the optimal path model [122]. Acquiring
useful expert knowledge from these dynamically updated solutions
helps guide the subsequent searching process to quickly discover a
more accurate electric vehicles route.

In EI, the application of GA can handle some optimization prob-
lems pretty well. However, GA also has the problem of premature
convergence, especially when the problem is nonlinear and there
are multiple local minima. This defect can be solved by making
appropriate improvements to GA. In [123], a memory-based genetic
algorithm can automatically and optimally fairly share power gen-
eration tasks among the distributed energy resources in microgrid.
It is further pointed out that it is beneficial to improve the perfor-
mance of GA by using memory schemes to reuse the stored useful
information.

3.4 Expert System

Expert system (ES) is an intelligent computer program based on
Boolean logic, which covers massive knowledge or experience in a
specific field and can be utilized to solve problems in this field. The
core components of ES mainly include the knowledge base and the
inference engine. The knowledge base is composed of knowledge,
data, facts and sentences that support these knowledge, which is the
basis of reasoning. The inference engine is used to control and coor-
dinate the entire system. It relies on the knowledge in the database
to obtain the results of the problem through algorithms.
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In EI systems, ES has a wide range of applications. In terms of
improving power quality, Moreira et al. [124] propose an ES to
select the most suitable compensator through k-nearest neighbor pat-
tern recognition algorithm and the knowledge base, thereby reducing
losses and increasing power quality. Compared with the technology
based on decision trees or neural networks, the classification system
based on ES has higher classification accuracy in such problems. On
the issue of energy management, ES can be combined with a vari-
ety of learning algorithms to enhance the classification function to
achieve energy saving and management of smart homes [125]. In
addition, ES can also be applied to problems like power grid fault
recovery [126].

4 Distributed Control Based on Artificial
Intelligence in Energy Internet

By deeply integrating energy systems and the Internet, EI empha-
sizes the characteristics of energy equivalence, openness, intelli-
gence and timely response. Traditional technologies generally have
difficulties in establishing accurate models, obtaining results in a
short time, and meeting the requirements of high intelligence [127].
On the other hand, intelligence-enabled modeling, control, and opti-
mization methods can quickly adapt to the environment and have
dynamic predictability, strong fault tolerance, and robustness to
disturbances [128]

:::
[129]. That is why AI-based distributed control

and management methods are more and more favorable in solving
complicated problems.

4.1 Distributed control based on Artificial Intelligence for
System Stability

The stability of the power system has always been regarded as
an important guarantee for the safe and efficient operation of EI.
Stability refers to the ability of the power grid to withstand dis-
turbances [130, 131]. With the large-scale access to distributed
energy and the integration of information technology, the smart grid
::
EI

:
faces disturbances from both the physical layer and the net-

work layer. Therefore, maintaining system stability becomes more
challenging [132].

Optimization studies with system stability as the research goal,
such as transient voltage stability, are of great significance for main-
taining the effective and safe operation of power systems [133].
Among many system control methods, distributed control can give
consideration to remote data and minimize the requirements of
communication. At the same time, distributed controllers are more
reliable in terms of network security [132]. In view of the advantages
of AI technology, research on AI-based distributed control methods
with respect to system stability has achieved some results, which is
summarized in Table 1.

4.1.1 Voltage Control: Voltage instability is one of the most
common causes of power quality degradation of the system. In
extreme cases, a voltage collapse will cause the entire system to
power off [134]. It is a basic idea to keep the voltage stable within
a controllable range and avoid large fluctuations during operation.
AI approaches such as neural networks and machine learning can
be well combined with distributed methods to provide effective
solutions for voltage control.

For example, Karim et al. [135] bring up a distributed sec-
ondary control method for maintaining rated voltage in an inde-
pendent microgrid. This method trains a distributed machine learn-
ing algorithm based on different voltage stability conditions. The
algorithm first takes available wind energy, available solar energy,
controllable load and load mutation as input attributes, and takes a
binary class representing system stability or instability as the target
attribute. It then uses a set of bagged decision trees to prepare for
the classification process. If the classifier predicts possible instabil-
ity, an appropriate neural network will be selected based on cluster
values corresponding to the specific events prepared in advance. The
selected neural network will then make necessary modifications to

the main controller in a single cluster. Elmitwally et al. also pro-
pose a control scheme without energy storage that uses pulse width
modulation to track the maximum power of the PV array [136]. In
addition, a fuzzy logic-based diesel generator speed control scheme
is designed for the same research problem. This method is suf-
ficiently effective for diesel PV power generation systems, but it
fails to suit microgrids based on wind PV, which indicates the
meaningfulness of [135].

There are other research ideas about distributed secondary voltage
control methods, like the distributed collaborative control strategy
adopted in [137]. In more detail, it combines radial basis function
neural network with sliding mode control to stabilize the system
in a short time. The radial basis function neural network is used to
adjust the switching gain of the sliding mode control in real time to
reduce chattering, where the sliding mode control is used to restore
the microgrid voltage.

:::::::
However,

:::
the

::::::::
microgrid

::::
model

::
in
::::::

[137]
:::
does

::
not

:::::::
conform

::
to

:::
the

:::
real

::::::
situation

:::::::
because

::
the

::::::
authors

:::
fail

::
to

::::::
address

::
the

:::::
delay

:::
and

::::::::
interference

::
of
::::::::::::
communication

::::
links.

::
It

:::::
would

::
be

::::
more

::::::
sensible

::
if

:::::
future

:::::::
research

:::
can

:::
be

::::::::
conducted

::
in

::
a
::::
more

:::::::
realistic

:::::::
microgrid

:::::
model.

:
On the other hand, Amoateng et al. [138] design an interter-based

distributed voltage controller based on ANN and collaborative con-
trol theory under the multi-microgrid structure. In their study, the
model-based controllers are first designed using Lyapunov theory
and the dynamics of the distributed generation system. Then ANN
is used to approximate these dynamics and minimize the coopera-
tive tracking error function, thus obtaining a smart controller that
does not require much prior information. The proposed controller
achieves good active and reactive power sharing in distributed multi-
ple microgrids, and it has strong robustness to power system distur-
bances.

:::::::
Compared

::::
with

:::
the

:::::::
previous

::::
work

::
in

:::::
[140]

:
,
::
the

::::::::
controller

:::::::
proposed

::
in

:::::
[138]

:
is
::::::
simpler

:::
and

:::::::
requires

:::
less

::::::::::
information.

:::::
Future

:::::
studies

:::
can

::::::
explore

:::
how

:::
the

:::::::
controller

::
of
::::::

[138]
::
can

::::
keep

::::::
running

::
in

::
the

:::::::
presence

::
of

:::::
system

:::::::
failures.

4.1.2 Frequency Control: In the EI system, distributed power
generation has great uncertainty. Some power system components
also have nonlinear characteristics, so they are prone to frequency
fluctuation issue, which affects the stability of the power grid [139]
::::
[141]. Frequency control is also an important means to ensure the
stable operation of the power grid.

Regarding the imbalance between power generation and load,
the traditional centralized load frequency control structure is not
convenient for exchanging information in large scale. In addition,
the increasing calculation and storage costs make this structure
more and more difficult in practical implementation. To solve this
problem, Singh et al. [142] propose a distributed controller that
combines RL and multi-agent systems.

:::
The

:::::::
frequency

::::::::
controller

::
in

::::
[142]

:::
has

::::
lower

::::::::::::
communication

:::::
costs,

:::::
higher

::::::::
flexibility,

:::
and

:::::
better

::::::::::
effectiveness.

:
It is used to implement load frequency control in

a smart grid environment where the communication topology can
change dynamically. Using the event-triggered control method, the
proposed solution improves the dynamic system performance and
reduces the burden of network communication.

Similarly, Sun et al. propose an actor-critic neural network that
integrates a distributed RL control scheme to compensate for the
frequency regulation of the power grid [143]. The online learning
algorithm of this neural network is derived from the constructed
error function. The purpose of the learning process is to reduce the
error between the actual value and the estimated value of the radial
basis, so as to approximate the strategic utility function and optimize
the control output. The network structure also establishes the rela-
tionship between control output and performance estimation, which
further improves the efficiency of energy utilization. Compared with
previous methods of separating actors and critics in [144, 145], this
combination of actor and critic neural network yields two advan-
tages. First, the relationship between the strategic utility function
estimation and the expected control output estimation is established
to improve the long-term performance. Second, the stability and the
bound of performance can be obtained through theocratical analysis.
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Table 1 Distributed Control Methods for System Stability

Control Problem Scenario Methodology Reference

Voltage control

Wind-PV-based isolated microgrid Distributed secondary control based on machine learning. [135]

Inverter-based islanded microgrid
Secondary controller using radial basis function neural network sliding mode control
algorithm.

[137]

Multi-microgrid structure
Adaptive voltage control using distributed cooperative control and adaptive neural
networks.

[138]

Frequency control Smart grid
An intelligent controller with communication topology changes using multi-agent RL. [142]

An actor-critic neural network that integrates a distributed RL control scheme. [143]
Power grid monitoring

and fault recovery
Stand-alone microgrid Feature selection-based distributed machine learning approach. [146]

4.1.3 Power Grid Monitoring and Fault Recovery: Real-time
monitoring during power grid operation and timely recovery when a
fault occurs can further improve the stability of grid operation and
the resilience to small faults. In order to achieve the above purpose,
Karim et al. [146] integrates the concepts in [147, 148] and pro-
pose a novel algorithm that detects dynamic events from distributed
generator data in a sectionalized way. Its purpose is to facilitate the
decision-making process after a fault occurs, so that the indepen-
dent microgrid can resume normal operation without intervention
from the central station. As for data preparation that requires a lot
of time and resources, the algorithm considers an alternative method
to avoid real-time feature selection by implementing a set of pre-
processed input features. In dynamic event detection algorithms and
fault recovery mechanisms, machine learning methods are used to
improve their performance. Compared with traditional methods, this
method reduces the calculation cost and is suitable for practical
applications.

4.2 Distributed control based on Artificial Intelligence for
Optimal Energy Management

In addition to stability-oriented control and management strategies,
there are also many works that aim to optimize energy use by min-
imizing costs or maximizing benefits, extending the life of energy
storage systems, or minimizing energy utilization cost. This paper
summarizes the two main research directions of optimal energy man-
agement, namely the demand response problem and the economic
dispatch problem that does not consider demand response. Note that
some existing studies adopt distributed approaches, others use cen-
tralized approaches. This paper mainly focuses on distributed control
methods based on AI since distributed methods have many advan-
tages in the optimal operation problem over centralized methods
[149].

4.2.1 Economic Dispatch: The goal of the economic dispatch
problem is to establish a reasonable dispatch plan based on predicted
energy production and consumption conditions, in order to minimize
the total operating cost and achieve the economic operation of the
system

::
EI.

In [150], a fully distributed algorithm based on neural network
is designed to reduce the total cost. The essential feature of the
proposed neurodynamic optimization method is its inherent paral-
lel computation and theoretically guaranteed optimality that can be
obtained in real time without specific initialization. This algorithm
can solve the problem when the objective function is not neces-
sarily strictly convex and smooth, with the existence of multiple
coupling constraints. Compared with previous methods in [151, 152]
that only consider local constraints, their results have a wider range
of applications.

From the perspective of the operator, the authors in [153]
design the energy management algorithm for networked microgrids
using the registration minimization and online alternating direc-
tion method of multiplier (ADMM) in machine learning. Standard
ADMM requires forecast data, and inaccurate forecast results may
increase the cost of power generation. What is more, when the
standard ADMM uses robust optimization formulation, it may lead

to conservative results. Combining ADMM with machine learn-
ing and registry minimization can make up for these defects.
This method is more consummate compared with the work of
Narayanaswamy et al. [154] where the underlying physical grid
is neglected when designing the online optimization algorihtm of
a

:::::::::
Furthermore,

:::
the

::::::::
algorithm

::::::::
proposed

::
in

:::::
[153]

::
is

::::::::::
implemented

:
in
::

a
::::::::
distributed

:::::::
manner,

:::::
which

:::::::::
significantly

:::::::
reduces

::
the

::::::::
workload

:
in
:::::::::

computing
:::
and

:::::::::::::
communication.

::::::::
Although

:::::
[154]

:::
also

:::::::
proposes

::
an

:::::
online

::::::::::
optimization

::::::::
algorithm

:::
for

:
single microgrid based on

regimen minimization.
::::
regret

:::::::::::
minimization,

::
the

::::::::
underlying

:::::::
physical

::::
power

:::::::
network

::
is

::::::
ignored

::
in

::
the

::::::::
algorithm

::::::
design.

::::
When

::::::::
designing

:::::
online

::::::
energy

:::::::::::
management,

:::::
[153]

:::::::
considers

::::
both

:::
the

:::::::::
underlying

:::
grid

:::
and

:::
the

::::::::
networked

::::::::
microgrid,

:::
so

::
the

::::::
method

::
in
:::::

[153]
::
is

::::
more

:::::::::
complicated.

:
In economic dispatch, existing control methods not only consid-

ers the operating cost, but also considers other constraints such as
the combination of cost-effectiveness and system stability, so that
the proposed control method can simultaneously optimize multiple
problems.

Kohn et al. [155] propose a new distributed intelligent control and
management architecture based on hybrid systems. The uniqueness
of this architecture is that it includes a distributed inductive engine
in learning local dynamics of generators and loads in the micro-
grid. Aiming at solving the problem of insufficient accuracy of the
load model in traditional methods, an optimization method based
on machine learning is adopted, and the load prediction can reflect
the dynamic change of the load in real time. In addition, the control
method has good scalability, meaning that the calculation amount of
each node remains unchanged as the number of nodes increases.

Although some existing research works can achieve optimal eco-
nomic dispatch [156–158], the acquisition of accurate a priori
statistical information of all distributed generator sets and loads in
the microgrid is not simple, which limits the practical application
of these methods. In order to avoid establishing a random model in
advance, when trying to use RL-based methods, the studies in other
aspects, such as household energy management [159] and power
generation control [160], have achieved good results. However, in
the distributed economic dispatch of microgrids, the state space and
decision variables are continuous. Classical RL faces the problem of
“curse of dimensionality”, and the fuzzy Q-learning algorithm that
solves this problem has a slow convergence rate.

Based on this, a collaborative RL algorithm is designed in [161]
for microgrid economic dispatch. This algorithm not only minimizes
the operating cost of the microgrid, but also keeps the voltage stabil-
ity of the entire system. A coordination mechanism is introduced
in the RL algroithm with function approximation to make up for
the deficiencies mentioned above. In this distributed collaboration
mechanism, each controller makes action decisions based not only
on its own state, but also on the state of neighboring controllers. The
algorithm uses “trial-and-error” interaction with the dynamic envi-
ronment to find the optimal decision sequence to minimize operating
costs. Future work may as well consider designing a hierarchical RL
structure to achieve coordination between multiple microgrids, or
adding more constraints.

When studying multi-objective optimization problems, some
research works consider reducing the energy loss of the system in
the process of economic dispatch. By embedding frequency control
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Table 2 Distributed Control Methods for Optimal Energy Management

Control Problem Scenario Methodology Reference

Economic dispatch

Energy internet
A fully distributed algorithm based on neural networks, applicable for nonsmooth and
general convex objective functions.

[150]

Networked microgrids
A distributed algorithm for energy management based on online alternating direction
method of multipliers and machine learning.

[153]

Microgrid

A fully distributed algorithm based on neural networks, capable of solving convex
optimization where objective function is not necessarily strict convex or smooth.

[155]

A cooperative RL algorithm. [161]

Smart grid
PI frequency controller and neural network-based frequency controllers are employed
to implement distributed economic dispatch control.

[162]

Multiple energy carrier systems A novel multi-agent bargaining learning algorithm. [166]

Demand response

Smart grid

A genetic algorithm-based solution. [170]

A novel deep transfer Q-learning method associated with a virtual leader-follower
pattern.

[173]

Stand-alone microgrid Multi-agent cooperation system based on Fuzzy Q-learning. [174]

Microgrid Distributed energy and load management approach based on RL. [175]

into a distributed economic dispatch method based on consensus,
the scheme developed by Li et al. [162] can overcome the shortcom-
ings of previous works, such as relying on a centralized information
center to calculate the initial value of mismatch and strong assump-
tions about the availability of power mismatch [164, 165]

::::::::
[163–165]

. In addition, Li et al. also show an idea of combining a consensus
protocol with a control algorithm, which can be generalized in the
future.

For the distributed energy hub economic dispatch of the multi-
ple energy carrier systems, the use of the multi-agent bargaining
learning method can significantly reduce energy loss while ensuring
the minimum total cost [166]. In order to avoid the shortcomings
of slow convergence, curse of dimensionality and weak disposal
ability to deal with continuously controllable variables in previous
research [167–169], Q-learning with associative memory is adopted
for the learning process of each agent. In addition, non-uniform
mutation operators are used to process continuous control variables.
This combination has the advantages of fast convergence speed and
strong global search ability. It has strong competitiveness compared
with other distributed heuristic optimization algorithms.

4.2.2 Demand Response: Solving the demand response prob-
lem needs to consider the supply and demand relationship between
customers and suppliers. In order to reduce or shift the power load
within a certain period of time and respond to the power supply,
a reasonable energy management plan can be formulated by com-
bining the energy consumption and load distribution of the power
grid

::
EI.

In [170], Mosaddegh et al. propose a distributed computing archi-
tecture based on smart grid communication middleware system. This
architecture is used to solve the distribution optimal power flow
model of the distribution network. To achieve voltage and reactive
power control of large-scale systems based on the network model
and reduce the computation cost, previous works have proposed
neural networks and heuristic algorithms that decompose the prob-
lem into sub-problems. Although the methods introduced by [171]
and [172] reduce the complexity of the distribution optimal power
flow model and the amount of calculation, the solution obtained
might be suboptimal. Accordingly, Mosaddegh et al. [170] adopt
a GA-based method to solve the distribution optimal power flow
model. The distributed computing method is applied to the smart
grid communication middleware system, which reduces the calcula-
tion time and obtains the optimal solution of controllable distributed
feeder devices.

For the supply-demand Stackelberg game in the smart grid, a
novel deep transfer Q-learning algorithm based on a virtual leader-
follower model is proposed in [173]. Its goal is to maximize the
total revenue of all agents on the premise of satisfying the power
balance between supply and demand. Compared with traditional
gradient-based optimization methods, such as Newton’s method,

quadratic programming method and interior point method, deep
transfer Q-learning can better achieve global search and avoid falling
into local optima. In addition, compared with centralized meta-
heuristic optimization algorithms, deep transfer Q-learning has a
faster convergence speed, stronger online learning capabilities, and
can effectively protect users’ private information.

To conduct energy management for stand-alone microgrid, Kofi-
nas et al. [174] also propose a cooperative multi-agent system. This
method takes into account the uncertainty of user demands, and
can ensure the power supply of the independent microgrid while
maintaining the stability of the entire system. The learning method
utilizes local rewards and state information related to each agent.
As a result, the state space is reduced and the learning mecha-
nism is enhanced. In addition, fuzzy Q-learning is introduced in
each agent to deal with the continuous state space and action space.
Simulation results show that the algorithm can quickly find a suitable
solution strategy .

::::::::
Compared

::::
with

:::::::
previous

:::::
works,

:::
the

::::::::
algorithm

:
in
::::::

[174]
::
can

:::::
obtain

:::
the

::::::::::
management

::::::
strategy

:::::
faster.

::::::::
Therefore,

:::
this

::::::::
technology

:::
can

:::
be

::::::
applied

::
to

:::::
more

:::::::
complex

::
EI

::::::::
scenarios

::
in

:::
the

:::::
future,

:::
for

:::::::
example,

:::
the

::
EI

:::::::
systems

:::
with

:::::
wind

::::::
turbines

:::
or

:::::
hybrid

:::::
electric

:::::::
vehicles.

:
There are also some research results on the issue of electricity

market transactions. Foruzan et al. [175] design a distributed energy
and load management method based on multi-agent strategies.
Through reinforcement learning, agents can adapt to competitive and
random markets, and optimize the utility of both supply and demand
in the hourly market based on microgrid auctions. The model-free
Q-learning algorithm ensures that each agent can find the optimal
strategy, thereby maximizing its own profit. Similarly,

::::::
Different

::::
from

::::
most

::::::
research

::::
work

:::::
based

::
on

::::::::
multiagent

:::::::
systems,

:::::
[175]

:::::
models

:::
the

:::::
energy

:::::
supply

:::
and

::::::
demand

::::
sides

::
of
:::
the

::::::::
microgrid

:
as
::

a
::::
single

::::::
unified

::::
agent

::
to

:::::
further

:::::
study

:::
the

::::::::
interaction

:::
and

::::::
demand

::
of
::::

both
:::::
sides.

::
In

::::::
addition,

:::
the

::::::::
distributed

::::::
design

::
in

:::::
[175]

:::
can

::::::::
effectively

:::::
reduce

:::
the

:::::
volume

::
of
:::::::::
information

::::::::
exchange

:::
and

::::::
improve the distributed design

reduces the number of communications and improves the response
speed.

5 Conclusion

This paper reviews the distributed EI control methods based on AI
in recent years. Compared with centralized control methods, the tra-
ditional distributed control method has made great progress, with
fast calculation speed, low communication cost and high security.
However, there are still some limitations in solving non-convex and
nonlinear problems. The rapid development of computer hardware
makes AI technology widely used in electronic information systems,
and provides effective solutions to problems that traditional methods
are difficult to solve. AI-based distributed control methods not only
maintain the advantages of distributed control itself, but also have
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good adaptability to the characteristics of non-linearity, strong uncer-
tainty, strong coupling, and multivariables of EI system. In addition,
flexibility has a positive effect on improving the stability, operating
efficiency, and intelligence of electronic information systems.

There are not many research results in this area currently, but it
will become a research direction with great potential. Future work
can try this combination more, or try to add more constraints in
previous studies. At present, some existing projects have been com-
pleted under ideal conditions. Although they provide good ideas,
they are still far away from practical applications, so it is recom-
mended that future works consider situations that are more in line
with actual conditions.

The concept of EI covers low-voltage, medium-voltage, and high-
voltage energy systems. Most existing researches on the combination
of AI technology and distributed control focus on the low voltage
side, while the research on the high-voltage side is rare. In the future,
the combination of AI technology and distributed control on the
high-voltage side will also become a direction of great potential.
In addition, some existing projects are too slow to achieve real-
time control. Therefore, optimizing the time cost of solving control
problems is another important goal for future research.
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Şerban,

::::
A.C.,

::::
Lytras,

::::
M.D.:

:::::
‘Artificial

:::::::
Intelligence

::
for
::::

Smart
:::::::
Renewable

::::
Energy

::::
Sector

:
in
::::::::::

Europe—Smart
:::::
Energy

::::::::
Infrastructures

:::
for

:::
Next

:::::::
Generation

::::
Smart

IET Research Journals, pp. 1–13
10 © The Institution of Engineering and Technology 2015



::::
Cities’, Chen, S.: ‘The Application of Artificial Intelligence Technology in
Energy Internet’. Proc. 2018 2nd IEEE Conf. Energy Internet and Energy
System Integration, Beijing, China, Oct. 2018

:::
IEEE

::::
Access

:
,
::::
2020,

:
8, pp. 1–5

::::::::
77364–77377

46 Bevrani, H., Habibi, F., Babahajyani, P., Watanabe, M., Mitani, Y.: ‘Intelli-
gent Frequency Control in an AC Microgrid: Online PSO-Based Fuzzy Tuning
Approach’, IEEE Transactions on Smart Grid, 2012, 3, (4), pp. 1935–1944

47 Olivares, D.E., Mehrizi-Sani A., Etemadi, A.H., et al.: ‘Trends in Microgrid
Control’, IEEE Transactions on Smart Grid, 2014, 5, (4), pp. 1905–1919

48 Harmon, E., Ozgur U., Cintuglu M.H., et al.: ‘The Internet of Microgrids: A
Cloud-Based Framework for Wide Area Networked Microgrids’, IEEE Transac-
tions on Industrial Informatics, 2018, 14, (3), pp. 1262–1274

49 Fang, X., Misra, S., Xue, G., Yang, D.: ‘Smart Grid — The New and Improved
Power Grid: A Survey’, IEEE Communications Surveys & Tutorials , 2012, 14,
(4), pp. 944–980

50 Pourbabak, H., Chen, T., Su, W.: ‘Centralized, decentralized, and distributed
control for Energy Internet’, The Energy Internet, 2019,

:
in
:::

Su,
::
W.,

:::::
Huang,

::::::
A.Q.(Eds.):

:::
‘The

:::::
Energy

:::::
Internet’

:::::::
(Woodhead

::::::
Publishing,

::::
2019) pp. 3–19

51 Dong Z.Y., Zhao J.H., Wen F.S. Xue Y.S.: ‘From Smart Grid to Energy Inter-
net:Basic Concept and Research Framework’, Automation of Electric Power
Systems, 2014, 38, (15), pp. 1–11

52 Tian S.M., Luan W.P., Zhang D.X., Liang C.H., Sun Y.J.: ‘Technical Forms and
Key Technologies on Energy Internet’, Proceedings of the CSEE, 2015, 35, (14),
pp. 3482–3494

53 Chettibi, N., Mellit, A., Sulligoi, G., Pavan, A.M.: ‘Adaptive Neural Network-
Based Control of a Hybrid AC/DC Microgrid’, IEEE Transactions on Smart Grid,
2018, 9, (3), pp. 1667–1679

54 Zeng, P., Li, H., He, H., Li, S.: ‘Dynamic Energy Management of a Microgrid
Using Approximate Dynamic Programming and Deep Recurrent Neural Network
Learning’, IEEE Transactions on Smart Grid, 2019, 10, (4), pp. 4435–4445

55 Venayagamoorthy, G.K., Sharma, R.K., Gautam, P.K., Ahmadi, A.: ‘Dynamic
Energy Management System for a Smart Microgrid’, IEEE Transactions on
Neural Networks and Learning Systems, 2016, 27, (8), pp. 1643–1656

56 Chaouachi, A., Kamel, R.M., Andoulsi, R., Nagasaka, K.: ‘Multiobjective Intel-
ligent Energy Management for a Microgrid’, IEEE Transactions on Industrial
Electronics , 2013, 60, (4), pp. 1688–1699

57 Tan, K.T., So, P.L., Chu, Y.C., Chen, M.Z.Q.: ‘Coordinated Control and Energy
Management of Distributed Generation Inverters in a Microgrid’, IEEE Transac-
tions on Power Delivery, 2013, 28, (2), pp. 704–713

58 Xu, Y., Liu, W.: ‘Novel Multiagent Based Load Restoration Algorithm for
Microgrids’, IEEE Transactions on Smart Grid, 2011, 2, (1), pp. 152–161

59 Dou, C., Liu, B.: ‘Multi-Agent Based Hierarchical Hybrid Control for Smart
Microgrid’, IEEE Transactions on Smart Grid, 2013, 4, (2), pp. 771–778

60 Nedic, A., Ozdaglar, A., Parrilo, P.A.: ‘Constrained Consensus and Optimization
in Multi-Agent Networks’, IEEE Transactions on Automatic Control, 2010, 55,
(4), pp. 922–938

61 Bahramipanah, M., Torregrossa, D., Cherkaoui, R., Paolone, M.: ‘A Decentral-
ized Adaptive Model-Based Real-Time Control for Active Distribution Networks
Using Battery Energy Storage Systems’, IEEE Transactions on Smart Grid, 2018,
9, (4), pp. 3406–3418

62
::::::
Christakou,

:::
K.,

:::::
Tomozei,

::::
D.-C.,

:::::::::
Bahramipanah,

:::
M.,

::
Le

:::::
Boudec,

:::
J.-Y.,

:::::
Paolone,

::
M.:

:::::
‘Primary

:::::
voltage

::::
control

:
in
::::
active

:::::::
distribution

:::::
networks

::
via

::::::
broadcast

::::
signals:

::
The

:::
case

::
of

::::::
distributed

:::::
storage’,

:::
IEEE

::::::::
Transactions

::
on

::::
Smart

:::
Grid,

:::
2014,

::
5,
::
(5),

::
pp.

::::::
2314–2325

:
63 Golsorkhi, M.S., Shafiee, Q., Lu, D.D., Guerrero, J.M.: ‘A Distributed Con-

trol Framework for Integrated Photovoltaic-Battery-Based Islanded Microgrids’,
IEEE Transactions on Smart Grid, 2017, 8, (6), pp. 2837–2848

64 Zhang, W., Liu, W., Wang, X., Liu, L., Ferrese, F.: ‘Distributed Multiple Agent
System Based Online Optimal Reactive Power Control for Smart Grids’, IEEE
Transactions on Smart Grid, 2014, 5, (5), pp. 2421–2431

65 Shafiee, Q., Nasirian, V., Vasquez, J.C., Guerrero, J.M., Davoudi, A.: ‘A Multi-
Functional Fully Distributed Control Framework for AC Microgrids’, IEEE
Transactions on Smart Grid, 2018, 9, (4), pp. 3247–3258

66 Zhou, J., Zhang, H., Sun, Q., Ma, D., Huang, B.: ‘Event-Based Distributed
Active Power Sharing Control for Interconnected AC and DC Microgrids’, IEEE
Transactions on Smart Grid, 2018, 9, (6), pp. 6815–6828

67 Wu, J., Yang, T., Wu, D., Kalsi, K., Johansson, K.H.: ‘Distributed Optimal Dis-
patch of Distributed Energy Resources Over Lossy Communication Networks’,
IEEE Transactions on Smart Grid, 2017, 8, (6), pp. 3125–3137

68 Xu, Y., Li, Z.: ‘Distributed Optimal Resource Management Based on the Con-
sensus Algorithm in a Microgrid’, IEEE Transactions on Industrial Electronics,
2015, 62, (4), pp. 2584–2592

69 Rahbari-Asr, N., Ojha, U., Zhang, Z., Chow, M.: ‘Incremental Welfare Consensus
Algorithm for Cooperative Distributed Generation/Demand Response in Smart
Grid’, IEEE Transactions on Smart Grid, 2014, 5, (6), pp. 2836–2845

70 Gong, C., Wang, X., Xu, W., Tajer, A.: ‘Distributed Real-Time Energy Scheduling
in Smart Grid: Stochastic Model and Fast Optimization’, IEEE Transactions on
Smart Grid, 2013, 4, (3), pp. 1476–1489

71 Xu, Y., Yang, Z., Gu, W., Li, M., Deng, Z.: ‘Robust Real-Time Distributed Opti-
mal Control Based Energy Management in a Smart Grid’, IEEE Transactions on
Smart Grid, 2017, 8, (4), pp. 1568–1579

72 Ding, L., Wang, L., Yin, G.Y., Zheng, W., Han, Q.: ‘Distributed Energy Manage-
ment for Smart Grids With an Event-Triggered Communication Scheme’, IEEE
Transactions on Control Systems Technology, 2019, 27, (5), pp. 1950–1961

73 Hu, M., Xiao, J., Cui, S., Wang, Y.: ‘Distributed real-time demand response for
energy management scheduling in smart grid’, International Journal of Electrical
Power and Energy Systems, 2018, 99, pp. 233–245

74 Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘A Distributed Algorithm for
Managing Residential Demand Response in Smart Grids’, IEEE Transactions on

Industrial Informatics, 2014, 10, (4), pp. 2385–2393
75 Diekerhof, M., Peterssen, F., Monti, A.: ‘Hierarchical Distributed Robust Opti-

mization for Demand Response Services’, IEEE Transactions on Smart Grid,
2018, 9, (6), pp. 6018–6029

76 Yang, T., Lu, J., Wu, D., et al.: ‘A Distributed Algorithm for Economic Dis-
patch Over Time-Varying Directed Networks With Delays’, IEEE Transactions
on Industrial Electronics, 2017, 64, (6), pp. 5095–5106
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