

1 Article

2 A Class of Control Strategies for Energy Internet

3 Considering System Robustness and Operation Cost

4 **Optimization**

5 Haochen Hua¹, Chuantong Hao¹, Yuchao Qin¹, and Junwei Cao^{1,*}

6 ¹ Research Institute of Information Technology, Tsinghua University, Beijing, P. R. China;

7 * Correspondence: jcao@tsinghua.edu.cn; Tel.: +86-010-627-72260

8 Received: date; Accepted: date; Published: date

9 **Abstract:** Aiming at restructuring the conventional energy delivery infrastructure, the concept of 10 energy Internet (EI) has been popular in recent years. Outstanding benefits from an EI include 11 openness, robustness and reliability. Most of the existing literatures focus on the conceptual design 12 of EI, lack of theoretical investigation on developing specific control strategies for the operation of 13 EI. In this paper, a class of control strategies for EI considering system robustness and operation cost 14 optimization is investigated. Focusing on the EI system robustness issue, system parameter 15 uncertainty, external disturbance and tracking error are taken into consideration, and we formulate 16 such robust control issue as a structure specified mixed H_2/H_{∞} control problem. When formulating 17 the operation cost optimization problem, three aspects are considered: realizing the bottom-up 18 energy management principle, reducing the purchasing cost of electricity from power grid (PG), 19 and avoiding the situation of over-control. We highlight that this is the very first time that the above 20 targets are considered simultaneously in the field of EI. The integrated control issue is considered 21 in frequency domain and is solved by particle swarm optimization (PSO) algorithm. Simulation 22 results show that our proposed method achieves the integrated control targets.

- 23 **Keywords:** energy Internet; microgrids; mixed H_2/H_{∞} control; optimal control; robust control;
- 24

25 1. Introduction

26 Over the last few decades, global warming, energy crisis and ecological issues have promoted 27 the research of renewable power generation and distributed energy networks [1,2]. For the 28 integration of a variety of distributed energy resources (DERs), microgrids (MGs) play an important 29 role [3,4]. In MGs, the produced power by renewable energy sources (RESs) including photovoltaic 30 (PV) units and wind turbine generators (WTGs) has disadvantages such as low inertia, uncertainty, 31 and dynamic complexity [5,6]. Besides, the output power of electrical loads depends on residents' 32 power usage customs and varies stochastically [7]. In MGs, to alleviate power imbalance, and to 33 regulate voltage/frequency oscillation, the control of MGs is a subject of both practical and theoretical 34 importance [8].

35 Following the principle of smart grid specializing in informatization and intellectualization of 36 the existing power systems [9], and to solve the aforementioned challenges within the scenario of 37 multiple interconnected MGs, the new concept of energy Internet (EI) is proposed [10] and is 38 considered to be an upgraded version of smart grid [11]. Inspired by cores of Internet, the EI solves 39 energy related problems by integrating bi-directional flows of information and power [12]. In an EI 40 scenario, multiple MGs are interconnected via energy routers (ERs) [13] which are also known as 41 energy hubs [14], or power routers [15]. Different from the top-down mode in the existing power 42 systems, bottom-up is a fundamental energy management principle in EI [11]. To achieve such target, 43 each individual MG in EI shall be able to regulate the power deviation with its local energy storage,

- 44 generation and consumption devices with priority. If power balance in any MG is hard to be achieved
- 45 autonomously, other MGs can send/absorb electrical energy to/from it via ERs, helping achieve its
- local power balance [11]. Significant benefits from an EI include openness, robustness and reliability[12].
- 48 In the field of EI, when multiple MGs are interconnected, the related energy management and 49 control issues are more complicated than the ones in MGs. Optimal control problems regarding 50 energy management have been popular. For example, coordinated optimal control algorithm for 51 smart distribution management system in multiple MGs is investigated in [16]. Applying multi-52 objective stochastic optimization approach to solve the optimal energy management issues in MGs 53 has been reported in [17]. To achieve an optimized operation of an off-grid MG, nonlinear droop 54 relations are implemented [18]. In [19], optimal control strategy for MG under both off-grid and grid-55 connected mode has been studied. Distributed control and optimization in DC MGs is investigated 56 in [20].
- 57 On the other hand, robust control problems in the field of MG and EI has received much 58 attention in the past few years. For instance, in [21], both H_{∞} and μ -synthesis approaches are utilized 59 to regulate AC bus frequency deviations in an off-grid MG. The stochastic H_{∞} control theory is 60 applied to solve the coordinated frequency control problem within an EI scenario in [22]. In [23], the 61 issue of voltage control in an EI scenario is formulated as a non-fragile robust H_{∞} control problem 62 regarding an uncertain stochastic nonlinear system, and it is solved via linear matrix inequality 63 approach. Robust H_{∞} load frequency control in hybrid distributed generation system has been 64 studied in [24].
- 65 When both optimal and robust control problems are considered simultaneously, the application 66 of mixed H_2/H_{∞} control theory for MGs has attracted much attention, and significant advances on 67 this topic have been made. For an islanded AC MG, the problems of operation cost optimization and 68 frequency regulation are formulated as a mixed H_2/H_{∞} control problem in deterministic and 69 stochastic systems in [25] and [26], respectively. It has been shown that the fixed structure mixed 70 H_2/H_{∞} control technique can be used to obtain a coordinated vehicle-to-grid control and frequency 71 controller for robust load-frequency control (LFC) in a smart grid [27]. A robust mixed H_2/H_{∞} based 72 LFC of a deregulated power system including superconducting magnetic energy storage has been 73 proposed in [28]. For other works regarding the application of mixed H_2/H_{∞} control into MGs, 74 readers can refer to [29,30], etc. It is notable that although mixed H_2/H_{∞} control technique has been 75 widely used in conventional power systems, there has been few working applying such control 76 schemes into the field of EI.
- 77 When multiple MGs are interconnected via ERs, no matter they are grid-connected or not, there 78 are a variety of optimal and robust control problems worth considering. In this paper, we are 79 concerned with the problems of controller design for EI considering system robustness and operation 80 cost optimization. A series-shaped EI is studied in this article. Within the considered EI scenario, 81 three MGs are interconnected successively and one MG has access to the main power grid (PG). In 82 MGs, we assume that there exist the following elements: PV units, WTGs, fuel cells (FCs), hydrogen 83 tanks (HTs), electrolyzer (ES), micro-turbines (MTs), heat pump (HPs), plug-in hybrid electric vehicle 84 (PHEVs), diesel engine generators (DEGs), battery energy storage (BES) devices, flywheel energy 85 storage (FES) devices, ERs and normal loads. The system of EI is formulated via frequency domain 86 approach. When the above robust and optimal control targets are considered simultaneously, 87 proportional integral (PI) controllers are utilized in ESs, MTs, HPs, PHEV, DEGs, and the 88 transmission line between MG_1 and MG_2 and the transmission line between MG_2 and MG_3 . Then, 89 we solve such control problem via particle swarm optimization (PSO) algorithm [31]. Next, 90 simulations demonstrate the usefulness and effectiveness of our proposed controller.
- The importance and contribution of this work can be outlined as follows. As is mentioned above, some existing works only investigates either robustness or operation cost optimization of the EI systems. In this paper, this is the very first time that both two aspects are considered *simultaneously* in the field of EI, rather than in conventional energy systems. Our work can be viewed as an extension as well as a generalized version for the ones focusing on single islanded or grid-connected MG.

96 Compare this paper with some existing ones adopting time domain approach (e.g., [7,22,23,25,26]), 97 our work formulated in frequency domain has the advantage that it is convenient to be implemented 98 in actual dynamic situations. With the proposed controller, the following targets are achieved 99 simultaneously. 1) The system robustness against parameter uncertainty and external disturbance is 100 achieved. 2) The tracking error is controller to a relative low level. 3) The bottom-up energy 101 management principle is achieved, such that an autonomous power balance in each MG is achieved 102 with priority. 4) The effect of electricity market price is considered, and the purchasing cost of 103 electricity from PG is restricted. 5) The controllable devices in MGs is utilized rationally, and the 104 situation of over-control is avoided. 6) Considering different preferences of the system manager, the 105 importance of each control target can be adjusted by changing the size of its corresponding weighting 106 coefficient. 7) In simulation results, it is shown that the proposed controller performs better than the 107 conventional ones do. It is highlighted that our work is of both theoretical and practical importance. 108 The rest of the paper is organized as follows: Section 2 introduces the system modelling. The 109 control problem is formulated and solved in Section 3. Section 4 presents some simulations. Finally, 110 some conclusions are drawn in Section 5.

111 2. System Modelling

112 In this section, we focus on a series-shaped EI system with three ERs. Every component of the 113 system is modeled with first order transfer function in frequency domain. Then, an explicit 114 mathematical control system is obtained.

115 2.1. The Scenario of an EI

116 A series-shaped EI is studied in this article. MG_1 , MG_2 and MG_3 are connected successively. 117 Besides, we assume that MG_1 is connected to PG. All the ERs are designed to be based on AC bus 118 lines. Figure 1 shows the topology of the studied EI system.

120 **Figure 1.** The studied series-shaped EI system.

119

121 In MG₁, PV units, WTGs, loads, FCs, MTs, HTs and ESs are connected to ER₁ via converters. 122 The main power supply in MG_1 is assumed to reply on power output by PV units and WTGs. If the 123 power generation by PV units and WTGs is not enough for power consumption in MG1, highly 124 controllable power generators such as MTs and FCs are utilized to fill the power supply-demand gap. 125 Whenever there exists superfluous energy in MG_1 , ESs are used to covert electric energy into 126 hydrogen which is stored in HTs. Hydrogen can be used to generate power by FCs. Normal loads 127 such as housings or factories have access to ER_1 , as well. Besides, MG_1 is designed to have 128 connection to PG and ER₂.

129 MG_2 is designed to have access to different components in MG_1 , except for the requisite local 130 loads. WTGs are utilized as the major power generators in MG_2 . We assume that in residential 131 communities and cluster charging stations, large amounts of highly controllable HPs and PHEVs are 132 connected to ER_2 . When the power generation is larger than consumption in MG_2 , the access of HPs 133 and PHEVs shall be able to ensure the power balance of MG_2 . Whenever MG_2 is lack of electricity, 134 power can be transmitted from MG_1 and MG_3 via ER_1 and ER_2 , respectively.

We assume that MG_3 is only connected with MG_2 and these two MGs are far away from each other. Thus, the dynamic response of power transmission line is slower than that of local devices in MG_3 . Assuming that MG_3 is sensitive to power deviation, responsive energy storage devices such as BES and FES are essential to keep its power balance. Besides, another kind of highly controllable power generators, DEGs, have connection with MG_3 . PV units and loads are also included in MG_3 .

140 2.2. Linearized Block Diagram

141 First, let us introduce the following notations. The frequency deviations of MG_1 , MG_2 and MG_3 142 are denoted as Δf_1 , Δf_2 and Δf_3 , respectively. The power deviations of AC buses in MG₁, MG₂ and 143 MG₃ are denoted as ΔP_1 , ΔP_2 and ΔP_3 , respectively. Output power of PVs, WTGs, FCs and MTs in 144 MG₁ are denoted as P_{PV1}, P_{WTG1}, P_{FC} and P_{MT}, respectively. Output power of WTGs in MG₂ and 145 PVs in MG₃ are denoted as P_{WTG2} and P_{PV3} , respectively. Power consumption of loads in MG₁, MG₂ 146 and MG₃ are denoted as P_{LOAD1}, P_{LOAD2} and P_{LOAD3}, respectively. The output power of ESs, FCs, 147 MTs, HPs, PHEVs and DEGs are denoted as P_{ES} , P_{FC} , P_{MT} , P_{HP} , P_{PHEV} and P_{DEG} , respectively. 148 Exchange power of BES and FES devices are denoted as P_{BES} and P_{FES}, respectively. P_{PG}, P_{ER12} and 149 P_{ER23} represent the power transmission between PG and MG₁, between MG₁ and MG₂ and 150 between MG₂ and MG₃, respectively.

151 Power balance equation of MG_1 , MG_2 and MG_3 can be expressed in (1), (2) and (3), respectively:

152 $\Delta P_1 = P_{PV1} + P_{WTG1} + P_{FC} + P_{MT} + P_{PG} - (P_{ES} + P_{ER12} + P_{LOAD1}),$ (1)

153
$$\Delta P_2 = P_{WTG2} + P_{ER12} - (P_{PHEV} + P_{HP} + P_{ER23} + P_{LOAD2}), \qquad (2)$$

154
$$\Delta P_3 = P_{PV3} + P_{DEG} + P_{ER23} - P_{LOAD3} \pm (P_{BES} + P_{FES}).$$
(3)

155 The change of P_{FC} , P_{MT} and P_{ES} are denoted as ΔP_{FC} , ΔP_{MT} and ΔP_{ES} , respectively. The gain 156 of ESs, FCs, MTs, HPs and PHEVs are denoted as K_{ES}, K_{FC}, K_{MT}, K_{HP} and K_{PHEV}, respectively. The 157 time constants of ESs, FCs, HPs, PHEVs, BES devices, FES devices and DEGs are denoted as T_{ES} , T_{FC} , 158 T_{HP} , T_{PHEV} , T_{BES} , T_{FES} and T_{DEG} , respectively. ΔP_{ESC} , ΔP_{MTC} , U_{HP} , U_{PHEV} and U_{DEG} stand for the 159 control outputs of ESs, MTs, HPs, PHEVs and DEGs. Damping coefficients and inertia constants in 160 MG_1 , MG_2 and MG_3 are denoted as are denoted as D_1 and M_1 , D_2 and M_2 , D_3 and M_3 , 161 respectively. K_{MTC}, K_{ESC}, K_{HPC}, K_{PHEVC} and K_{DEGC} represent for the PI controllers of MTs, ESs, HPs, 162 PHEVs and DEGs, respectively. Moreover, T_{ER12} , U_{ER12} and K_{ER12C} stand for time constant, control 163 output and PI controller of transmission line between MG1 and MG2, while TER23, UER23 and 164 K_{ER23C} stand for time constant, control output and PI controller of transmission line between MG₂ 165 and MG₃. The values of b_{ER12} and b_{ER23} depend on real engineering scenarios and can be measured 166 by parameter estimation methods [32].

167 In this paper, ΔP_{ES} and ΔP_{FC} are approximated by a first order transfer function [33], as is 168 shown in (4) and (5):

169
$$\Delta P_{ES} = \frac{K_{ES}}{1 + T_{ES}s} \Delta f_1, \tag{4}$$

170
$$\Delta P_{FC} = \frac{K_{FC}}{1 + T_{FC}s} \Delta f_1.$$
(5)

171 Considering the linear power versus frequency droop characteristics, ΔP_{MT} is obtained by (6):

$$\Delta P_{MT} = -\frac{1}{K_{MT}} \Delta f_1. \tag{6}$$

173 Relative phase angle [rad] between PG and ER₁ is obtained by (7):

174
$$\theta = 2\pi f_0 \int \Delta f_1 dt. \tag{7}$$

175 Let us denote θ as the relative phase angle and X_{PG} as line reactance. Consequently, P_{PG} is given 176 by (8):

177
$$P_{PG} = \frac{\sin\theta}{X_{PG}}.$$
 (8)

Based on previous studies [23,34], P_{HP} , P_{PHEV} and P_{ER12} are obtained by the following equations:

179
$$P_{HP} = \frac{K_{HP}}{1 + T_{HP}s} K_{HPC} \Delta f_2, \tag{9}$$

180
$$P_{PHEV} = \frac{K_{PHEV}}{1 + T_{PHEVS}} K_{PHEVC} \Delta f_2, \tag{10}$$

181
$$P_{ER12} = \frac{b_{ER12}}{1 + T_{ER12}s} K_{ER12C} \Delta f_2.$$
(11)

182 We assume that BES and FES devices are equipped with internal controllers and respond to the AC 183 bus frequency deviation [21]. P_{BES} and P_{FES} can be obtained by:

184
$$P_{BES} = \frac{1}{1 + T_{BES}s} \Delta f_3, \tag{12}$$

185
$$P_{FES} = \frac{1}{1 + T_{FES}s} \Delta f_3.$$
(13)

186 P_{DEG} and P_{ER23} are obtained by equations (14) and (15):

187
$$P_{DEG} = \frac{1}{1 + T_{DEG}s} K_{DEGC} \Delta f_3,$$
(14)

188
$$P_{ER12} = \frac{b_{ER23}}{1 + T_{ER23}s} K_{ER23C} \Delta f_3.$$
(15)

189 Rapid or oversized power deviation may lead to instability of the AC bus frequency oscillation 190 in MGs. With desired control strategies in MG_1 , MG_2 and MG_3 , power balance in these MGs can be 191 achieved, and instability of Δf_1 , Δf_2 and Δf_3 can be avoided. In this paper, PI controllers are 192 utilized on ESs, MTs, HPs, PHEV, DEGs, and the transmission line between MG_1 and MG_2 and the 193 transmission line between MG_2 and MG_3 . Then, we have:

194
$$\begin{cases} \Delta P_{ESC} = K_{ESC}(s) \cdot P_{PG}, \\ \Delta P_{MTC} = K_{MTC}(s) \cdot P_{PG}, \\ U_{ER12} = K_{ER12C}(s) \cdot \Delta f_2, \\ U_{HP} = K_{HPC}(s) \cdot \Delta f_2, \\ U_{PHEV} = K_{PHEVC}(s) \cdot \Delta f_2, \\ U_{DEG} = K_{DEGC}(s) \cdot \Delta f_3, \\ U_{ER23} = K_{ER23C}(s) \cdot \Delta f_3. \end{cases}$$
(16)

195 where

196
$$\begin{cases} K_{ESC}(s) = K_{PES} + K_{IES}/S, \\ K_{MTC}(s) = K_{PMT} + K_{I_{MT}}/S, \\ K_{ER12C}(s) = K_{PER12} + K_{I_{ER12}}/S, \\ K_{HPC}(s) = K_{P_{HP}} + K_{I_{HP}}/S, \\ K_{PHEVC}(s) = K_{P_{PHEV}} + K_{I_{PHEV}}/S, \\ K_{DEGC}(s) = K_{P_{DEG}} + K_{I_{DEG}}/S, \\ K_{ER23C}(s) = K_{PEP22} + K_{I_{EP22}}/S. \end{cases}$$

- According to (1), (4)-(8) and (16), the linearized block diagram of MG_1 is illustrated in Figure 2.
- According to (2), (9)-(11) and (16), the linearized block diagram of MG_2 is illustrated in Figure 3.

According to
$$(3)$$
, (12) - (15) and (16) , the linearized block diagram of MG₃ is illustrated in Figure 4.

Figure 2. The linearized block diagram of MG₁.

202 203

Figure 3. The linearized block diagram of MG_2 .

2

Figure 4. The linearized block diagram of MG₃.

Based on inverse Laplace transformation and the frequency-domain block diagram in Figure 2,
 Figure 3 and Figure 4, we are able to transform the studied EI system from (1) to (16) into an explicit
 mathematical control system:

209
$$\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx + Du, \end{cases}$$
(17)

210 where
$$x$$
 is state vector, y is output vector and u is control output, expressed as:

211
$$x = [\Delta P_{ES} \quad P_{PG} \quad \Delta f_1 \quad P_{HP} \quad P_{PHEV} \quad P_{ER12} \quad \Delta f_2 \quad P_{DEG} \quad P_{ER23} \quad \Delta f_3]$$

212
$$y = [\Delta f_1 \quad \Delta f_2 \quad \Delta f_3]',$$

13
$$u = [\Delta P_{MTC} \quad \Delta P_{ESC} \quad U_{ER12} \quad U_{HP} \quad U_{PHEV} \quad U_{DEG} \quad U_{ER23}]'$$

The EI system (16) is a multi-input-multi-output (MIMO) control system with the nominal plant *G* and the controller *K*.

In [22], it is pointed out that various topologies of EI (e.g., series-shaped, annular-shaped, starshaped, etc.) can be formulated into mathematical systems in forms of (17). Hence, we emphasis that the investigation to series-shaped EI and the obtained results can be extended and applied into generalized EI scenarios.

220 **3. Problem Formulation and Solution**

In this section, the EI system robustness issue is formulated as the structure specified mixed H_2/H_{∞} control problem, whereas the operation cost management issue in EI is formulated as a multiobjective optimization problem. We consider such mixed robust and optimal control targets simultaneously, and we solve this control problem via PSO algorithm [31].

225 3.1. Robust Control for EI

For a practical system, parameter measurement error and various power oscillation are inevitable, which brings system uncertainties [25] [26]. Besides, power generated by PVs depends heavily on the condition of light intensity and power generated by WTGs depends heavily on the condition of wind power. Moreover, varieties of power consumption devices can change the dissipation of power. Thus, external disturbance to the system shall be taken into consideration when designing robust controllers.

Consider a MIMO control system with external disturbances and system uncertainties, nominal plant of the studied EI is denoted as *G*, and *K* represents the proposed controller. r(t), e(t), u(t), d(t) and y(t) stand for reference input, tracking error, control output, external disturbance and

- 236 to model system uncertainties. System robustness and tracking performance are formulated as H_{∞}
- and H_2 performance, respectively. The structure specified mixed H_2/H_{∞} control system is shown in
- 238 Figure 5.

240 **Figure 5.** The control system of the studied EI with external disturbance and system uncertainties.

241 Based on the small gain theorem [36], a system with multiplicative uncertainties is stable if and 242 only if (18) holds:

243 $\|\Delta \cdot (I + GK)^{-1}\|_{\infty} < 1, \tag{18}$

244 where $\|\cdot\|_{\infty}$ refers to the usual $\mathcal{L}_{\infty}[0,\infty)$ norm. So, we have

245
$$\|\Delta\|_{\infty} < \frac{1}{\|(I+GK)^{-1}\|_{\infty}}.$$
 (19)

Base on (19), the size of the system uncertainties is obtained by $1/\|(I + GK)^{-1}\|_{\infty'}$ which also implies the robust stability margin against the system uncertainties. Hence, the controlled system's robust stability is maximized when $\|(I + GK)^{-1}\|_{\infty}$ is minimized. The robust H_{∞} control objective function is formulated as J_{∞} :

250 $J_{\infty} = \|(I + GK)^{-1}\|_{\infty}.$ (20)

In addition to robust stability and disturbance attenuation, tracking performance should be optimized as well [37]. The objective function of tracking error is formulated as the integral of the squared error:

254
$$J_e = \int_0^\infty e'(t)e(t)dt = \|E(s)\|_2^2.$$
 (21)

where $\|\cdot\|_2$ stands for the usual $\mathcal{L}_2[0,\infty)$ norm, and e(t) = r(t) - y(t) is the tracking error, figured out by the inverse Laplace transformation of E(s) with $\Delta = 0$ and d(t) = 0:

257
$$E(s) = (I + GK)^{-1}R(s).$$
(22)

Thereby, considering system robustness, the structure specified mixed H_2/H_{∞} control objective function is obtained by J_1 given as follows,

260 $J_1 = J_e + J_\infty.$ (23)

261 3.2. Operation Cost Optimization

The operation cost of the studied system includes varieties of aspects among which three objective functions are identified below.

The first objective is to regulate the power transmission between every two connected MGs to a relatively low level. According to the bottom-up principle for EI, the autonomous power balance in each MG shall be achieved preferably. Equivalently, power transmission P_{ER12} and P_{ER23} are expected to be kept within a relatively small amount. According to the linearized block diagrams of MG₂ and MG₃, the objective function can be formulated as J_{Trans} :

(27)

(29)

269
$$J_{Trans} = \left\| \frac{b_{ER12}}{1 + T_{ER12}s} K_{ER12C} \right\|_{2}^{2} + \left\| \frac{b_{ER23}}{1 + T_{ER23}s} K_{ER23C} \right\|_{2}^{2}.$$
 (24)

270 The second objective function is focused on reducing the purchasing cost of electricity from PG. 271 Normally, the pricing of electricity fluctuates according to a number of factors; see, e.g., [38]. To 272 illustrate, when the load power consumption is larger than power generation, the electricity price 273 goes up, and vice versa [39,40]. Customers usually spontaneously consume more electricity when the 274 price is at a relatively low level. If a MG relies heavily on power exchange with PG to maintain its 275 operation, it will not only violate the energy management principles of the EI, but also lead to 276 expensive electricity purchasing cost. Such cost is determined by the electricity price and the amount 277 of power transmitted from PG to MG. Normally, the electricity price varies over time by hours [41]. 278 In this article, we focus on a time slot no more than one hour. The electricity price is assumed to be 279 constant in the case studies. The objective function is formulated as the 2-norm square of the product 280 of electricity price and power transmitted from PG to MG₁:

281
$$J_{Cost} = \left\| Price_e \cdot \frac{\sin\left(\frac{2\pi f_0}{s}\right)}{X_{PG}} \right\|_2^2, \tag{25}$$

282 where $Price_e$ is the electricity price based on real-time electricity market.

283 The third objective function aims at reducing the additional cost involved by all the controllers 284 utilized in the studied EI system. Although a stronger controller may lead to better performance, the 285 probability of over-control is greatly increased. The situation of over-control will bring additional 286 cost for the operation of EI. The cost function J_{Ctl} is utilized to estimate the cost involved by the 287 controllers,

288
$$J_{Ctl} = \sum_{k \in \Omega} ||k||_2^2,$$
 (26)

289 where Ω is the set of all the controllers in the studied EI system. According to Section 2, we have 290 $\Omega = \{K_{ESC}, K_{MTC}, K_{HPC}, K_{PHEVC}, K_{DEGC}, K_{ER12C}, K_{ER23C}\}$. By minimizing J_{Ctl} , the situation of over-control 291 can be avoided effectively.

292 Taking three objective functions (24)-(26) and the preference of decision maker into 293 consideration, the system operation cost function is formulated by:

 $J_2 = \omega_1 J_{Trans} + \omega_2 J_{Cost} + \omega_3 J_{Ctl},$

294

295 where ω_1 , ω_2 and ω_3 are weighting coefficients.

296 3.3. The Mixed Control Objective

297 The mixed control target is described by the sum of the structure specified mixed H_2/H_{∞} control 298 objective function and the system cost optimization control objective, defined as

299

 $J = J_1 + J_2$.

300 In this paper, our control target is to minimize *J*, subject to:

$$\begin{cases} K_{P_{min}} < K_P < K_{P_{max}} \\ K_{I_{min}} < K_I < K_{I_{max}} \end{cases}$$
(30)

302 In (30), $K_P \in \Phi_P$ and $K_I \in \Phi_I$. Φ_P is the set of all the proportion parameters, and $\Phi_P =$ 303 $\{K_{P_{ES}}, K_{P_{MT}}, K_{P_{ER12}}, K_{P_{HP}}, K_{P_{PHEV}}, K_{P_{DEG}}, K_{P_{ER23}}\}$. Φ_I is the set of all the integral parameters, and $\Phi_I =$ $\{K_{I_{ES}}, K_{I_{MT}}, K_{I_{ER12}}, K_{I_{HP}}, K_{I_{PHEV}}, K_{I_{DEG}}, K_{I_{ER23}}\}$. $K_{P_{min}}$ and $K_{P_{max}}$ are the minimum and maximum 304 305 parameters of the proportion part of the controllers; $K_{I_{min}}$ and $K_{I_{max}}$ are the minimum and 306 maximum parameters of the integral part of the controllers.

307 3.4. Solution to the Studied Control Problem

- 308 It is notable that the control problem described in (29)-(30) can be solved by PSO algorithm [51].
- 309 The flowchart of PSO algorithm is shown in Figure 6. The simulation results are demonstrated in the
- 310 next section.

312 Figure 6. The flowchart of PSO algorithm.

313 4. Simulation Results and Analysis

314 In this section, some simulation results and analysis are given to verify the effectiveness of the 315 proposed controller compared with conventional ones.

316 4.1. Simulation Results under the Proposed Controller

317 According to real engineering practice, system parameters are given in Table 1. For tracking 318 performance, the reference input R(s) in (22) is chosen to be 1/(s+5). The parameters of PSO algorithm are: swarm size = 50; maximum iteration = 30; $c_1 = 0.2$; $c_2 = 0.2$; $w_{min} = 0.4$ and $w_{max} = 0.4$ 319 320 0.9. According to the simulation results in Figure 7, the optimized objective function value is 18.3267.

321 The proposed mixed H_2/H_{∞} controller is:

	$K_{ESC}(s) = 0.1246 + 0.2710/s,$
322	$K_{MTC}(s) = 0.3056 + 0.4100/s,$
	$K_{ER12C}(s) = 0.4206 + 0.2710/s,$
	$\begin{cases} K_{HPC}(s) = 0.6666 + 0.2571/s, \end{cases}$
	$K_{PHEVC}(s) = 0.3326 + 0.2948/s,$
	$K_{DEGC}(s) = 0.1000 + 0.1000/s,$
	$K_{FR23C}(s) = 0.7008 + 0.3066/s.$

323 As is shown in Figure 8, the power generation by PVs and WTGs as well as the power 324 consumption of loads in the studied EI system are assumed to be random in the investigated time 325 period.

326	Table 1. System parameters.							
	Parameters	Value	Parameters	Value	Parameters	Value	•	
	$M_1(pu/s)$	10	K_{ES}	100	K _{MT}	0.04		
	$D_1(pu/Hz)$	1	$T_{ES}(s)$	60	$T_{DEG}(s)$	2		
	$M_2(pu/s)$	15	b_{ER12}	10	b_{ER23}	10		
	$D_2(pu/Hz)$	2	$T_{ER12}(s)$	1.15	$T_{ER23}(s)$	1.15		

331 Figure 8. Local power generation and consumption. (a) Power generation of PVs and WTGs; (b) Power 332 consumption of loads.

334 The effect of the proposed method is compared with that of the conventional ones. Conventional 335 methods include using only robust control which minimizes J_1 in (23) subject to (30) and using only 336 optimal control which minimizes J_2 in (27) subject to (30).

337 4.2. Comparing the Proposed Controller with the Optimal Controller

338 First, let the conventional method be only using optimal control strategies which minimizes J_2 339 in (27) subject to (30).

340 The controlled frequency deviation of MG1 obtained by both the proposed method and the 341 conventional method are illustrated in Figure 9 including the following four situations: (a) without 342 external disturbance or system parameter uncertainties, (b) with external disturbance only, (c) with 343 system parameter uncertainties only, (d) with both external disturbance and system parameter 344 uncertainties. The frequency deviation of MG_1 is relatively small, and the difference of the control

345 effect of the proposed method and the conventional method is not obvious, which are due to the 346 connection of MG₁ to PG.

347 348 349

Figure 9. Frequency deviation of MG_1 : (a) Without disturbance or uncertainties; (b) With external disturbance; (c) With system parameter uncertainties; (d) With external disturbance and system parameter uncertainties.

Figure 10. Frequency deviation without disturbance or uncertainties: (**a**) MG₂; (**b**) MG₃.

Figure 11. Frequency deviation with external disturbance: (a) MG₂; (b) MG₃.

Figure 12. Frequency deviation with system parameter uncertainties: (**a**) MG₂; (**b**) MG₃.

Figure 13. Frequency deviation with external disturbance and system parameter uncertainties: (a)
 MG₂; (b) MG₃.

355 Frequency deviation of MG₂ and MG₃ without disturbance or uncertainties are illustrated in 356 Figure 10. Obviously, the proposed method can stabilize the frequency of AC bus in MG₂ and MG₃ 357 more efficiently. When the external disturbance is considered, according to Figure 11, the proposed 358 method has several advantages: the response speed is faster, the overshoot is smaller, and the 359 transition period is shorter than the conventional method. When the system parameters increase by 360 50%, the frequency deviations of MG_2 and MG_3 are illustrated in Figure 12. The results show the 361 effectiveness of the proposed controller. Moreover, under both external disturbance and system 362 uncertainties, the studied EI system shows better performance with the proposed method, as is 363 shown in Figure 13.

364 4.2. Comparing the Proposed Controller with the Robust Controller

Second, let the conventional method be only using robust control strategies J_1 in (23) subject to (30).

Figure 14 shows the power transmission between two adjacent MGs under the proposed controller and the conventional robust controller. Power transmission between PG and MG_1 is illustrated in Figure 15. It is obvious that using the proposed method, the transmission power between two adjacent MGs and that between PG and MG_1 can be reduced effectively.

371

Figure 14. Power transmission between two adjacent MGs. (**a**) Power transmission between MG_1 and MG_2 ; (**b**) Power transmission between MG_2 and MG_3 .

374

Figure 15. Power transmission between PG and MG₁.

376 5. Conclusions

In this paper, a class of novel robust and optimal controller design of dynamical series-shaped EI system has been presented. The robustness and operation cost optimization of the EI system are considered simultaneously. PSO algorithm is applied to optimize the parameters of the proposed controller. Simulations show the effectiveness of the proposed method. For our future research, EI system modelling shall be more authentic and complicated, and the system communication time

382 delay shall be taken into consideration.

383 Author Contributions: The work presented here was carried out through the cooperation of all authors. 384 Haochen Hua and Junwei Cao conceived the scope of the paper; Chuantong Hao and Yuchao Qin conceived the 385 analysis and performed the simulations; Haochen Hua and Chuantong Hao wrote the paper; Junwei Cao 386 acquired the funding and performed revisions before submission. All authors read and approved the manuscript.

Funding: This work was funded in part by National Natural Science Foundation of China (grant No. 61472200)
 and Beijing Municipal Science & Technology Commission (grant No. Z161100000416004).

389 **Conflicts of Interest:** The authors declare no conflict of interest.

390 References

- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption
 on economic growth: evidence from top 38 countries. *Appl. Energy* 2016, *162*, 733–741.
- Bilgen, S.; Kaygusuz, K.; Sari, A. Renewable energy for a clean and sustainable future. *Energy Sources* 2004, 26, 1119–1129.
- 395 3. Venkataramanan, G.; Marnay, C. A larger role for microgrids. *IEEE Power Energy Mag.* 2008, 6, 78–82.
- Kroposki, B.; Lasseter, R.; Ise, T.; Morozumi, S.; Papathanassiou, S.; Hatziargyriou, N. Making microgrids work. *IEEE Power and Energy Mag.* 2008, *6*, 40–53.
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B. *et al.*, Smart Energy
 Systems for coherent 100% renewable energy and transport solutions. *Appl. Energy* 2015, 145, 139–154.
- 400 6. Sreedharan, P.; Farbes, J.; Cutter, E.; Woo, C.; Wang, J. Microgrid and renewable generation integration:
 401 University of California, San Diego. *Appl. Energy* 2016, *169*, 709–20.
- 402 7. Odun-Ayo T.; Crow, M.L. Structure-preserved power system transient stability using stochastic energy
 403 functions. *IEEE Trans. Power Syst.* 2012, 27, 1450–1458.
- 404 8. Olivares, D.; Mehrizi-Sani, A.; Etemadi, A.; Canizares, C.; Iravani, R.; Kazerani, M.; *et al.*, Trends in microgrid control. *IEEE Trans. Smart Grid* 2014, *5*, 1905–1919.
- 406 9. Chakrabortty, A.; Ilić, M.D. Control and Optimization Methods for Electric Smart Grids, Springer US, 2012.
- 407 10. Rifkin, J. The Third Industrial Revolution: How Lateral Power Is Transforming Energy, The Economy, And The
 408 World, Palgrave Macmillan, New York, 2013; pp. 31–46.
- 409 11. Cao J.; Yang, M. Energy Internet towards smart grid 2.0. In Proceedings of Fourth International
 410 Conference on Networking & Distributed Computing, Los Angeles, USA, 2013, 105–110.
- 411 12. Tsoukalas L.H.; Gao, R. From smart grids to an energy Internet assumptions, architectures and
 412 requirements. *Smart Grid and Renew. Energy* 2009, *1*, 18–22.
- 413 13. Han, X.; Yang, F.; Bai, C.; Xie, G.; Ren, G.; Hua, H.; Cao, J. An open energy routing network for low-voltage
 414 distribution power grid. In Proceedings of 1st IEEE International Conference on Energy Internet, Beijing,
 415 China, 2017, 320–325.
- 416 14. Geidl, M.; Koeppel, G.; Favre-Perrod, P.; Klokl, B. Energy hubs for the futures. *IEEE Power & Energy Mag.*417 2007, 5, 24–30.
- 418 15. Boyd, J. An internet-inspired electricity grid. *IEEE Spectr.* **2013**, *50*, 12–14.
- 419 16. Wu, J.; Guan, X. Coordinated multi-microgrids optimal control algorithm for smart distribution
 420 management system. *IEEE Trans. Smart Grid* 2013, *4*, 2174–2181.
- 421 17. Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, M.R. An efficient scenario-based stochastic
 422 programming framework for multi-objective optimal micro-grid operation. *Appl. Energy* 2012, *99*, 455–470.
- 423 18. Elrayyah, A.; Cingoz, F.; Sozer, Y. Construction of nonlinear droop relations to optimize islanded microgrid
 424 operation. *IEEE Trans. Ind. Appl.* 2015, *51*, 3404–3413.
- 425 19. Zheng, X.; Li, Q.; Li, P.; Ding, D. Cooperative optimal control strategy for microgrid under grid-connected
 426 and islanded modes. *Int. J. Photoenergy* 2014, 2014, 1–11.

- 427 20. Zhao, J.; Dörfler, F. Distributed control and optimization in DC microgrids. *Automatica* 2015, *61*, 18–26.
- 428 21. Bevrani, H.; Feizi, M.R.; Ataee, S. Robust frequency control in an islanded microgrid: H_{∞} and μ -Synthesis 429 approaches. *IEEE Trans. Smart Grid* 2016, 7, 706–717.
- 430 22. Hua, H.; Qin, Y.; Cao, J. Coordinated frequency control for multiple microgrids: a stochastic H_{∞} approach, 431 In Proceedings of 2018 IEEE PES Innovative Smart Grid Technologies Asia, Singapore, 2018.
- 432 23. Hua, H.; Cao, J.; Yang, G.; Ren, G. Voltage control for uncertain stochastic nonlinear system with 433 application to energy Internet: non-fragile robust H_{∞} approach. J. Math. Anal. Appl. **2018**, 463, 93–110.
- 434 24. Singh, V.P.; Mohanty, S.R.; Kishor, N.; Ray, P.K. Robust H-infinity load frequency control in hybrid
 435 distributed generation system. *Int. J. Elect. Power Energy Syst.* 2013, 46, 294–305.
- 436 25. Hua, H.; Qin, Y.; Cao, J. A class of optimal and robust controller design for islanded microgrid. In
 437 Proceedings of IEEE 7th International Conference on Power and Energy Systems, Toronto, Canada,
 438 2017,111–116.
- 439 26. Hua, H.; Qin, Y.; Cao, J.; Wang, W.; Zhou, Q.; Jin, Y.; *et al.*, Stochastic optimal and robust control scheme
 440 for islanded AC microgrid. In Proceedings of 2018 IEEE International Conference on Probabilistic Methods
 441 Applied to Power Systems, Boise, Idaho, US, 2018
- 442 27. Vachirasricirikul, S.; Ngamroo, I. Robust LFC in a smart grid with wind power penetration by coordinated
 443 V2G control and frequency controller. *IEEE Trans. Smart Grid* 2014, *5*, 371–380.
- 444 28. Shayeghi, H.; Jalili, A.; Shayanfar, H.A. A robust mixed H_2/H_{∞} based LFC of a deregulated power system 445 including SMES. *Energy Convers. Manage.* **2008**, *49*, 2656–2668.
- 446 29. Ngamroo, I. Robust coordinated control of electrolyzer and PSS for stabilization of microgrid based on PID-447 based mixed H_2/H_{∞} control. *Renew. Energy* **2012**, 45, 16–23.
- 448 30. Farsangi, M.M.; Song, Y.H.; Tan, M. Multi-objective design of damping controllers of FACTS devices via 449 mixed H_2/H_{∞} with regional pole placement. *Int. J. Elect. Power and Energy Syst.* **2003**, *25*, 339–346.
- 450 31. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of IEEE International Conference on
 451 Neural Networks, Perth, Australia, 1995, 1942-1948.
- 452 32. Zarco, P.; Exposito, A.G. Power system parameter estimation: a survey. *IEEE Trans. Power Syst.* 2002, 15, 216-222.
- 454 33. Li, X.; Song, Y.J.; Han, S.B. Study on power quality control in multiple renewable energy hybrid microgrid
 455 system. In Proceedings of 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007, 2000-2005.
- 456 34. Vachirasricirikul, S.; Ngamroo, I. Robust controller design of heat pump and plug-in hybrid electric vehicle 457 for frequency control in a smart microgrid based on specified-structure mixed H_2/H_{∞} control technique. 458 *Appl. Energy* **2011**, *88*, 3860-3868.
- 459 35. Gu, D.W.; Petkov, P. H.; Konstantinov, M.M. Robust Control Design with MATLAB, Springer, New York,
 460 2005.
- 461 36. Jiang, Z.P.; Teel, A.R.; Praly, L. Small-gain theorem for ISS systems and applications. *Mathematics of Control*462 *Signals & Systems* 1994, 7, 95-120.
- 463 37. Ho, S.J.; Ho, S.Y.; Hung, M.H.; Shu, L.S.; Huang, H.L. Designing structure-specified mixed H_2/H_{∞} optimal 464 controllers using an intelligent genetic algorithm IGA. *IEEE Trans. Control Syst. Technol.* **2005**, *13*, 1119-1124.
- 465 38. Asafu-Adjaye J. The relationship between energy consumption, energy prices and economic growth: time
 466 series evidence from Asian developing countries. In Proceedings of Australian Agricultural and Resource
 467 Economics Society, 1999, 615-625.
- 468 39. Hang, L.; Tu, M. The impacts of energy prices on energy intensity: evidence from China. *Energy Policy* 2007, 35, 2978-2988.
- 470 40. Kirschen, D.S.; Strbac, G.; Cumperayot, P. Factoring the elasticity of demand in electricity prices. *IEEE Trans.*471 *Power Syst.* 2000, *15*, 612-617.
- 472 41. Carpinelli, G.; Mottola, F.; Proto, D. A multi-objective approach for microgrid scheduling. *IEEE Trans. Smart*473 *Grid* 2017, *8*, 2109-2118.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

476 (http://creativecommons.org/licenses/by/4.0/).

(i)

CC