
Computing and Informatics, Vol. 29, 2010, ??–31, V 2010-Sep-5

GRID RESOURCE MANAGEMENT AND SCHEDULING
FOR DATA STREAMING APPLICATIONS

Wen Zhang

Chongqing Military Delegate Bureau

General Armament Department of PLA, Chongqing 400060, P. R. China

This work was carried out when the author was with:

Department of Automation

Tsinghua University, Beijing 100084, P. R. China

Junwei Cao

Research Institute of Information Technology

Tsinghua National Laboratory for Information Science and Technology

Tsinghua University, Beijing 100084, P. R. China

e-mail: jcao@tsinghua.edu.cn

Yisheng Zhong

Department of Automation

Tsinghua University, Beijing 100084, P. R. China

Lianchen Liu

National CIMS Engineering Research Center

Tsinghua University, Beijing 100084, P. R. China

Cheng Wu

National CIMS Engineering Research Center

Tsinghua University, Beijing 100084, P. R. China

2 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

Abstract.

Data streaming applications bring new challenges to resource management and
scheduling for grid computing. Since real-time data streaming is required as data
processing is going on, integrated grid resource management becomes essential
among processing, storage and networking resources. Traditional scheduling ap-
proaches may not be sufficient for such applications, since usually only one aspect
of grid resource scheduling is focused. In this work, an integrated resource schedul-
ing approach is proposed and coordinated resource allocation of CPU cycles, storage
capability and network bandwidth is implemented. Resource allocation is performed
periodically with updated information on resources and applications and heuristic
search for optimal solutions is used to assign various resources for running appli-
cations simultaneously. Performance metrics considered in this work include data
throughput and utilization of processors, storage, and bandwidth, which are actually
tightly coupled with each other when applied for grid data streaming applications.
Experimental results show dramatic improvement of performance and scalability
using our implementation.

Keywords: Grid Computing, Data Streaming, Resource Management, Genetic

Algorithm
Mathematics Subject Classification 2000: 65K10, Secondary 90C59

1 INTRODUCTION

Data streaming applications are becoming more popular recently, such as astro-
nomical observations, large-scale simulation and sensor networks, which brings new
challenges to grid resource management. Characteristics of such applications include
that (1) they are continuous and long running in nature; (2) they require efficient
data transfers from distributed data sources; (3) it is often not feasible to store all
the data in entirety for later processing because of limited storage and high volumes
of data to be processed; (4) they need to make efficient use of high performance
computing (HPC) resources to carry out computation-intensive tasks in a timely
manner. Grid computing [1] paves a new way to enable such applications with
cross-domain resource sharing and service integration supports.

When there is a shortage of CPU processing capability located at data sources,
there is a requirement that data have to be streamed to computational resources
for processing. For example, LIGO (Laser Interferometer Gravitational-wave Ob-
servatory) [2][3] is generating 1TB scientific data per day and trying to benefit from
processing capabilities provided by the Open Science Grid (OSG) [4]. Since most
OSG sites are CPU-rich but storage-limited with no LIGO data available, data
streaming supports are required in order to utilize OSG CPU resources. In such
a data streaming scenario, data should be pulled rather than pushed to the com-
putational system in the form of streams of tuples, and processing is continuously
executed over these streams as if data were always available from local storage.

Grid Resource Management and Scheduling for Data Streaming Applications 3

What’s more, data arrival rates must be controlled to match the processing speeds
to avoid waste of computational capacity or data overflow. Meanwhile, processed
data have to be cleaned up to save space for the subsequently coming data.

Grid enabled data streaming applications require management of various grid
resources, e.g. CPU cycles, storage capability and network bandwidth. In this paper,
an integrated resource management and scheduling system for grid data streaming
applications is developed to improve data throughput, processor utilization, storage
usage and bandwidth utilization in a coordinated way. When a new application
arrives, admission control is invoked to decide whether to start or queue it. Accepted
applications are allocated with appropriate resources at the end of each scheduling
period, together with running ones. A heuristic approach, genetic algorithm (GA)
[5] is applied to find satisfactory resource allocation scheme in the given scheduling
period with updated information of resources and applications. Scheduling evolves
periodically with updated status of resources and applications since the grid is a
shared environment where resources are not dedicated. Based on the Globus toolkit
[6], the system is able to discover and manage resources geographically distributed
and belonging to different management domains in a transparent and secure way.
Evaluation results show excellent performance and scalability of this system.

The rest of this paper is organized as follows: Section 2 provides a formal rep-
resentation of the optimization issue with predefined performance metrics; corre-
sponding algorithms are elaborated in Section 3; performance evaluation results
are illustrated in Section 4; related work are discussed in Section 5; and Section 6
concludes the paper.

2 GRID DATA STREAMING – PROBLEM STATEMENT

As mentioned above, an integrated resource management and corresponding schedul-
ing algorithms are required to make full resource utilization while keeping optimal
performance of each data streaming application. The approach tries to accommodate
as many applications as possible simultaneously to make the best use of resources in
preconditions that requirements of each application can also be met. In this section,
the schedule issue is described in a formal way and performance metrics are defined.

2.1 Formal Representation

A resource pool R described in this work include processors (P), storage (S) and
network bandwidth (B) that have to be allocated to data streaming applications in
an integrated manner. Suppose n is the total number of processors P in the resource
pool and there are m applications (A) for data streaming and processing.

R = {P, S, B}

P = {pi|i = 1, 2,, n}

4 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

A = {aj |j = 1, 2,, m}

Let s and b be the total storage space S and network bandwidth B, respec-
tively. In general, the sum of processors, storage and bandwidth allocated to each
application cannot exceed the total available resources.

m
∑

j=1

nj ≤ n

m
∑

j=1

sj ≤ s

m
∑

j=1

bj ≤ b

For each application aj , there is a corresponding minimum requirement of re-
sources that has to be met for the application to be executed.

Rreq
j = {nreq

j , sreq
j , breq

j }

nreq
j ≤ nj ≤ n, j = 1, 2,, m

sreq
j ≤ sj ≤ s, j = 1, 2,, m

breq
j ≤ bj ≤ min(b, bmax

j), j = 1, 2,, m

All of above constraints have to be met during resource scheduling and allo-
cation for data streaming applications. Note that the bandwidth allocated to the
application aj is constrained by both available bandwidths locally b and remotely
at the data source end bmax

j . The major challenge is that the three different types
of resources are correlated to each other inherently in deciding the performance of a
scheduling and allocation scheme. In the next section, major performance metrics
considered in this work are described.

2.2 Performance Metrics

There are many aspects of performance criteria when evaluating resource allocation
schemes. Specifically, for data streaming applications, data throughput, the amount

Grid Resource Management and Scheduling for Data Streaming Applications 5

of data streamed and processed during a given period of time, is the most important.
Other performance metrics that have to be considered simultaneously are resource
utilization and scheduling scalability.

Suppose an evaluation period includes l time units. A time unit t is a predefined
minimum time period, based on which all resource scheduling and allocation are
carried out. Let busg

jk (j=1,2,.m;k=1,2,. l) be the bandwidth usage of the

application aj during the kth time unit and susg
jk (j=1,2,.m;k=1,2,. l) be

the storage usage at the beginning of the kth time unit. Note that actual resource
usage of an application is usually different from corresponding resources allocated
to an application. We can calculate the total data throughput TP as follows:

TPjk = busg
jk t + susg

jk − susg
j(k+1)(j = 1, 2,, m; k = 1, 2,, l)

TPj =
l

∑

k=1

TPjk =
l

∑

k=1

busg
jk t + susg

j1 − susg
j(l+1)(j = 1, 2,, m)

TP =
m

∑

j=1

TPj =
m

∑

j=1

l
∑

k=1

busg
jk t +

m
∑

j=1

(susg
j1 − susg

j(l+1))

The total data processing throughput is the difference of storage usage plus
all data streamed into the system during the given period. This is based on the
assumption that just-in-time data cleanup is enabled and all processed data are
cleaned up from storage at the end of each time unit. If the evaluation period
covers all the makespan of an application, it is obvious that susg

j1 and susg

j(l+1) are
both zero and the total data processing throughput for a given application can be
represented purely via bandwidth usage. To simplify the problem, we assume that
data throughput of each application TP j are comparable with each other, so that
a sum up of all TP j can be used to represent the overall data throughput. If this
is not the case in a real environment, some normalization has to be performed to
weight data throughputs of different applications in terms of data throughput.

Resource utilization is another concern when enabling data streaming applica-
tions. It is straightforward to calculate storage and bandwidth usage percents of the
kth time unit as follows:

USjk =
susg

jk

s
(j = 1, 2,, m; k = 1, 2,, l)

USk =

m
∑

j=1
susg

jk

s
≤ 1(k = 1, 2,, l)

6 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

US =

l
∑

k=1

m
∑

j=1
susg

jk

ls
≤ 1

UBjk =
busg
jk

b
(j = 1, 2,, m; k = 1, 2,, l)

UBk =

m
∑

j=1
busg
jk

b
≤ 1(k = 1, 2,, l)

UB =

l
∑

k=1

m
∑

j=1
busg
jk

lb
≤ 1

The utilization of CPU cycles can be calculated indirectly via storage usage,
since for data streaming applications, it can be assumed the allocated processor is
busy when there are available data in local storage, and idle when no data available
locally. Suppose that Pjk is the set of processors that are allocated to the application
aj during the kth time unit. Let Mik be a 2D array to identify if the processor pi is
busy or idle at the kth time unit.

Mik =

{

1 if ∀j pi ∈ Pjk and susg
jk > 0

0 if ∃j pi /∈ Pjk or susg
jk = 0

(i = 1, 2, ..., n; k = 1, 2, ..., l)

The processor usage percent is calculated as follows:

UPi =

l
∑

k=1
Mik

l
≤ 1(i = 1, 2,, n)

UP =

n
∑

i=1

l
∑

k=1
Mik

nl
≤ 1

The resource management and scheduling issue for grid data streaming applica-
tions can be transformed into an optimization problem:

P

max TP

max UP

Grid Resource Management and Scheduling for Data Streaming Applications 7

minUB

s.t.

UPi ≤ 1(i = 1, 2,, n)

USk ≤ 1(k = 1, 2,, l)

UBk ≤ 1(k = 1, 2,, l)

where first two goals are to process more data and match data processing and
streaming capability as much as possible while the third one is to utilize bandwidth
in an economic way to avoid congestion. These three goals conflict in nature, and
some tradeoffs have to be made. Currently, we focus more on the overall data
throughput. Algorithms provided in the next section is processing-, storage-, and
congestion-aware, so the last two goals can be maintained in most cases. Note
that storage usage is not included in optimization goals because storage usage does
not affect the ultimate throughput, but adequate storage will indeed increase the
robustness of data processing. Available processors, storage and bandwidth are
considered as constraints.

3 RESOURCE SCHEDULING AND ALLOCATION

– KEY ALGORITHMS

There are two steps for resource scheduling: admission control is performed to de-
cide whether a new application is started, according to its resource requirement and
current status of available resources in the computing pool; the GA is performed
periodically to improve resource utilization and meet requirements of active applica-
tions in an evolving way. Resource allocation is performed iteratively together with
periodical scheduling of key parameters.

In this section, key components of this resource management and scheduling
scheme are described in details. The overall flow chart for such a scheduling process
is illustrated in Figure 1.

A coming application has to specify explicitly its requirements of resources, Rreq.
Available resources R in the resource pool are monitored in real-time. Both Rreq and
R are input to the admission control module to decide whether or not the coming
application should be accepted and put to the active application set. Resource
scheduling only works on active application set periodically to produce scheduling
parameters. In this work, the GA is adopted as an evolving method to absorb
dynamically changing resource and application status. Resource allocation takes
scheduling parameters as inputs and generates final allocation schemes. Resource

8 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

Fig. 1. The Flow Chart of Resource Scheduling and Allocation for Data Streaming Appli-
cations

allocation occurs iteratively with a much higher frequency than resource scheduling
to improve the overall system performance. These are described in details below.

3.1 Admission Control

It is obvious that the resource pool in general cannot support infinite applications
simultaneously, and too many applications will lead to fierce resource competition
which may decrease overall processing efficiency as a whole. The mechanism of
admission control plays an essential role in our system for resource management.

When a new task is submitted, the admission control decides to accept it in-
stantly or just keep it in a waiting queue and resubmit it in future. This decision is
made according to the usage status of resources and application requirements. Each
task can specify its minimum requirement of resources, e.g. it needs some processors
of certain types, minimum bandwidth and storage. An XML schema is developed
for application requirement specification.

Applications can specify CPU type, bandwidth and storage requirement. The
system checks up current available resources. For example, an application compiled
on X86 64 cannot run on I386 processors, so not every processor is suitable for the
application. Suppose that the number of those available X86 64 processors is larger
than nreq

j , and unallocated storage and bandwidth are both larger than sreq
j and breq

j ,
respectively, the task can be immediately put to be active for execution. If any of
resources is not available, the task would just be kept in the waiting queue.

Applications in the queue are called new eligible applications (NEAs) NEAs can
have different priorities for resource scheduling and allocation. NEAs are classified
into different groups according to different priorities, and in each group, the first-
come-first-serve (FCFS) strategy is applied.

3.2 Resource Scheduling

As CPU, bandwidth and storage are integrated as a whole in data streaming appli-
cations, there must be a so-called optimal operation point (OOP) to make balance
among resource usage. The OOP defines the expected bandwidth, computing power,
and granularity of data streaming (storage usage) which simultaneously maximizes

Grid Resource Management and Scheduling for Data Streaming Applications 9

uses of bandwidth and CPU power. Our scheduler benefits greatly from using an op-
timal combination of resources, instead of making independent scheduling schemes
for each type of resources.

Essentially, integrated scheduling of resources for applications is a NP-Complete
problem, and in this work the GA is adopted to find satisfactory, not necessarily
optimal, solutions in a relatively short time. The GA is required to recalculate
scheduling parameters in each scheduling period, with updated status information
of resources and applications.

Using the GA, a single chromosome is composed with three parts of scheduling
parameters, leading to an allocation scheme of processors, storage and bandwidth,
respectively. The gth generation of chromosome can be represented as follows:

CHROMg = {pjg, sjg, αg, βg, ρg, µjg|j = 1, 2,, m}

Similar to definitions in Section 2.2, suppose that Pjg is the set of processors
that are allocated to the application aj during the gth generation of GA evolving. To
simplify the problem, each application just needs one processor, so pjg is used above
instead of Pjg. For an application, it is expected to run on a fixed processor till it is
finished, or put it another way, no migration from one processor to another occurs
during task execution. Only parts of pjg for new applications are involved in the GA
evolving and previously assigned processors are fixed to be allocated to its current
application. sjg represents the maximum storage allocated to the application aj . For
a certain application, its lower limit of storage has to be larger than sreq

j and can be
set to be a proportion of sjg. Details are included in the next section on resource
allocation. Similarly, scheduling parameters above, α β, ρ and µj (j=1,2,.m)
are corresponding to bandwidth allocation. How these parameters are associated
with a bandwidth allocation scheme is also described in details in the next section.
Three parts of a chromosome evolve independently with their own rules, decreasing
computational complexity and avoiding meaningless heuristic searches.

The evaluation index, or fitness, of each chromosome is set to be data through-
put, i.e., the amount of data processed in a scheduling interval. As mentioned
before, we consider all the data for different applications equally. In calculating its
throughput, information on applications and resources has to be updated and per-
formance prediction is enabled using historical information. Given a chromosome
with scheduling parameters, with historical performance information and some pri-
ori of resources and applications, data throughput in a scheduling interval can be
calculated using formulations in Section 2.2. In a scheduling period, scheduling pa-
rameters are initiated from its direct foregoing period. During the evolution, two
chromosomes are crossed to generate two new ones for the next generation, and
genetic mutation happens in some chromosomes with a given probability. The chro-
mosome that leads to the highest data throughput value can be achieved and corre-
sponding scheduling parameters are used to generate a resource allocation scheme
in a scheduling period.

Although it is hard to find the global OOP since applications and resources are

10 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

varying constantly and it is not easy to define expected processors, bandwidth and
storage precisely, evolving searching capability of the GA guarantees a satisfactory
solution for each scheduling period. Allocation algorithms for processors, storage
and bandwidth are given below.

3.3 Resource Allocation

Given a set of correlated scheduling parameters generated by the GA described
above, resource allocation schemes can be achieved using the method given in this
section. While scheduling parameters are fixed within each scheduling period, re-
source allocation schemes can still change, for instance, bandwidth allocation is an
iterative process.

3.3.1 Processor Allocation

As mentioned above, processor assignment is a match making process. Both applica-
tions and resources can specify their own requirements. Processors can be classified
into several groups according to their architectures. Similar processors in the same
group may also have different frequencies that may lead to different data process-
ing performance. NEAs can also be organized into several groups with different
priorities. In each group, the selecting principle is FCFS.

Matchmaking is carried out to find appropriate processors for applications. The
processors whose characteristics do not conflict with the application requirements
form a candidate set. Then applications with higher priorities find their matched
processors first. In a CHROM, pj is the number of the assigned processor for each ap-
plication. In different generations of evolving in a given scheduling period, processor
assignments of chromosomes in successive generations are independent to guarantee
all possible assignments can be covered. As we have mentioned, no migration of
applications exist, so in each scheduling period, the algorithm is only required to
allocate processors for the NEAs.

3.3.2 Storage Allocation

The overall principle for storage allocation is to make full usage of storage to increase
robustness while getting ready for new coming applications. If there are only a few
applications running in the resource pool, the storage allocated for each application
can be set to a high value. While the number of applications increases, allocated
storage for each application may be decreased. So quotas for each application can
be scalable accordingly, and there must be some margin of storage for potentially
new-coming applications.

Step 1: Initialization. As supposed, there are m applications in the pool, to
generate m random numbers, rj ∈(, 1), j=1,2,. m. Calculate each quota, qj as
follows:

Grid Resource Management and Scheduling for Data Streaming Applications 11

qj =
rj

∑

rj

(j = 1, 2,, m)

Step 2: If sj = qjs ≥ sreq
j , reserve these numbers for initially allocated storage

for the application aj. Otherwise, repeat step 1 until sj ≥ sreq
j (j=1,2,.m)

becomes true, where sreq
j is the minimal required storage of application aj as defined

in Section 2.1.
Step 3: Repeat steps 1 and 2 until all the storage allocation schemes are set

for the chromosomes in a population, and these would be initial values for the first
generation.

Step 4: Chromosome crossing. Two chromosomes cross to generate new ones
for the next generation as follows:

εjgsjg + (1 − εjg) sj′g = sj(g+1)

(1 − εjg) sjg + εjgsj′g = sj′(g+1)

where 0<εjg<1 is a random number evenly distributed in (0,1), and the other chro-
mosome, j ′, is selected at random.

Step 5: Repeat step 4 until all generations are covered.
A storage allocation scheme includes both the upper and lower limit values. As

mentioned in Section 3.2, the lower limit of storage has to be larger than sreq
j and

can be set to be a proportion of sjg. Lower and upper limits are mainly used as
thresholds to control start and end times of data streaming: when data amount
scratches the lower limit, more data should be transferred until the amount reaches
the upper limit. Since there are also data cleanups involved, data amount keeps
changing and varies between lower and upper limits.

The upper limit for each application is used to guarantee that the overall amount
of data in local storage does not exceed available storage space. The lower limit is
used to guarantee that data processing can survive network collapse when no data
can be streamed from sources to local storage for a certain period of time, which
improves system robustness and increases CPU resource utilization.

3.3.3 Bandwidth Allocation

Bandwidth allocation plays an important role in the whole resource allocation
scheme, for appropriate bandwidth is indispensable to guarantee data streaming
for applications to make them run constantly. Different from traditional bandwidth
allocation, our scheme is storage aware, i.e., data streaming may be intermittent
rather than continuous to avoid data overflow, for allocated storage for each appli-
cation is limited. When the storage is full of data, streaming is halted for a while
until some data have been processed and cleaned up so that storage is released for

12 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

more data. At any moment, the amount of data in storage for each application is
determined by both data streaming and cleanup processes.

A utility function is introduced Uj(bj) when its data is streamed with allocated
bandwidth bj. Uj(bj) should be concave, continuous, bounded and increasing in the
interval [breq

j , b]. Note that it is not necessary that identical utility functions are
chosen for all applications. We try to maximize the sum of the utilities of all the
applications, maintaining fairness among them.

Due to the usage status of storage and repertory policy with lower and upper
limits of storage allocation, there are two possible states for each application aj at
any time, i.e., active and inactive, which indicates if a data streaming is on or off.
Let sjk and λsjk be the upper and lower limits of storage allocation. λ is a predefined
fixed proportion of storage allocation between 0 and 1. Let Ajk be the state identity
for the application aj at the kth step. Ajk can be initialed as active (1) and evolves
as follows:

Aj(k+1) =



















1 if Ajk = 1 and susg
jk < sjk

0 if susg
jk ≥ sjk

0 if Ajk = 0 and susg
jk > λsjk

1 if susg
jk ≤ λsjk

An iterative optimization algorithm is proposed in [7] and its convergence is
analyzed, but it is required to be congestion-aware, which is hard to be satisfied
in the wide-area Internet. According to our situation, we make some modification
upon it as follows:

bj(k+1) =























[

bjk + αkU
′

(bjk)
]

j
if Ajk = 1 and

∑

Ajk=1
bjk ≤ ρkb

[βkbjk]j if Ajk = 1 and
∑

Ajk=1
bjk > ρkb

0 if Ajk = 0

Here, bjk is the bandwidth allocation for the application aj at the kth step of
iterations. Note that there are many small iterations during a scheduling period.
αk, βk and ρk are all positive sequences. ρk is the so-called safety coefficient to avoid
bandwidth excess, where ρk ∈(0, 1), i.e., there is some margin from the full use of
total bandwidth for flexibility and robustness. For the sake of convenience, they are
usually substituted as a fixed value within multiple iterations of a scheduling period
and only evolve when GA is applied to generate new scheduling parameters when a
new scheduling period starts, as described in Section 3.2. [·]j denotes a projection
on the application aj and can be calculated as:

[x]j = min
(

b, bmax
j , max

(

breq
j , x

))

U ′(.) is the sub gradient of

Grid Resource Management and Scheduling for Data Streaming Applications 13

U (·) =
M
∑

j=1

Uj (bjk)

and

U
′

(bjk) =
∂U (·)

∂bjk

A popular utility function can be expressed as:

Uj (bjk) = µjk ln (1 + bjk) , j = 1, 2,m

where µj stand for applications’ coefficient. As we can see, given allocation schemes
of processors and storage as mentioned above, with settled parameters such as α,
β, ρ and µj, a bandwidth allocation scheme can be obtained, and performance
metrics, e.g. data throughput and resource usage, can be calculated. For bandwidth
allocation, it is transformed to finding the optimal set of such parameters, which is
performed at the beginning of each scheduling period, as described in Section 3.2.

Essentially, the bandwidth allocation approach proposed in our work is a type of
additive increase multiplicative decrease (AIMD) algorithm that is usually used in
TCP congestion avoidance. Main feature of our approach is storage awareness, since
data streaming is stopped if allocated storage is nearly full such that data overflow
is avoid. The approach is also processing-aware, because the processing capacity
can be reflected via storage usage. Our bandwidth allocation leads to on-demand
data streaming, which is also congestion aware.

Bandwidth allocation is finally implemented in our system using GridFTP [8]
through controlling start and end times of data transfers and tuning parallelism for
each application. System implementation and experimental results are given below.

4 SYSTEM IMPLEMENTATION AND PERFORMANCE

EVALUATION

In order to verify our approach proposed above, a grid environment is established
at Tsinghua University (Beijing, China). The Globus Toolkit 4.0.1 is deployed to
provide common grid services and a simple Certificate Authority is setup to sign
certificates for hosts and users which are used to establish a secure and transparent
environment for data streaming applications. Detailed information on our system
implementation and experimental results on our resource scheduling approach is
included in this section.

14 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

4.1 System Implementation

Key components in the architecture of our resource management and scheduling
system include a client tool for job submission, a management engine for admission
control, a scheduler, a dispatcher and application wrappers.

• Client Tool

This tool is an interface for users to submit their applications with requirement
specification in XML format, including the executable, processor number and archi-
tecture, minimum bandwidth and storage requirements, data sources, etc. It is also
capable of monitoring status of submitted applications and resources, halting and
canceling submitted jobs.

• Management Engine

The management engine accepts users’ submissions and put them into the queue,
which can be accessed by the scheduler. Its main function is to provide grid supports
for streaming applications, such as security, resource discovery and management.
The components of Globus toolkit used here include GSI (Globus Security Infras-
tructure) and MDS (Monitoring and Discovery Service). The management engine
is responsible for admission control.

• Scheduler

This is the core component in the whole architecture and its key algorithms are
discussed in details in Section 3. It is responsible to generate scheduling parameters.
Its instruction will be executed by the dispatcher.

• Dispatcher

The dispatcher is in charge of resource allocation, sending executables with their
description files to appropriate processors and invoking. This component interacts
with services provided by grid middleware, such as Globus GRAM.

• Application Wrappers

This component parses the description file according to the XML schemas, ini-
tializes execution of executables, and starts data streaming to specified storage with
allocated bandwidth. Also, results are sent back through the dispatcher.

Besides allocation of computational resources as most traditional grid resource
management and scheduling systems do, our system also deals with allocation of
bandwidth and storage to support real-time data transfer which is required by data
streaming applications. Management and scheduling of processors, bandwidth and
storage are carried out in an integrated rather than independent way.

Grid Resource Management and Scheduling for Data Streaming Applications 15

4.2 Experiment Design

As shown in Figure 2, a case study for LIGO data analysis is taken as a typical
data streaming application. Two streams of data from two observatories (H1 and
L1), represented using two file lists, are inputs of the program, rmon. The program
calculates the r-Statistic of two data sets to measure signal similarity. A signal has
more possibility to be a gravitational wave candidate if it occurs at two observato-
ries simultaneously. Once the program rmon is launched, an option file is used to
define data stride and channels for each step of calculation. Data can be used in
a streaming way since data are organized in time series and become obsolete after
being processed. Note that this is a simplified example of LIGO data analysis since
in a real world scenario there are also pre- and post- steps and a complete data
analysis is usually carried out in a formal of pipelines.

Fig. 2. Experiment Design - LIGO Data Analysis Case Study

The grid environment established on campus is connected to Internet with lim-
ited bandwidth, and a network file system (NFS) is configured to which all data
streams are directed. Each application is given a unique number to identify its di-
rectory in the NFS where its data is streamed so that applications can access data
as if data were always available locally. In a local area network of the same campus,
NSF does not introduce heavy overhead for data access. Tasks are submitted at
moments complying with negative exponential distribution law, and their require-

16 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

ments of resources are also explicitly expressed. Experiments are carried out using
parameter values listed in Table 1.

Parameters Values

m 30

n 16(5+4+7)

s 140MB

b 30Mbps

n
req
j , j=1,2,. m 1

s
req
j , j=1,2,. m 8 9 40 10 8 5 5 6 10 6 9 6 10 7 6 6 8 7 7 9 8 8 10 6 9 9 7 8

5 5

b
req
j , j=1,2,. m 1 3 2 1 1 2 3 3 1 3 3 2 3 1 3 3 3 3 2 1 3 3 3 3 1 2 2 1 3 1

bmax
j , j=1,2,. m 7 7 6 5 4 6 6 5 7 7 6 4 4 5 7 4 6 7 5 5 5 7 6 4 5 5 6 6 7 4

µj, j=1,2,. m 15

l 10000

t 1s

λ 0.8

Table 1. Experiment Design - Parameter Values

Totally 30 applications are submitted to a grid node with 16 processors, 140MB
disk space, and 30Mbps bandwidth. Processors are divided into 3 groups, each
with a different architecture. Each application requires one processor with different
storage and bandwidth requirements. The experiment last for 10000 seconds with
1 second per time unit. Resource scheduling is carried out once per 200 time units
with updated resource and application information.

4.3 Experimental Results

Figures 3-5 illustrate detailed resource usage information of the experiment. Since
processors are divided into 3 groups. Each group has a separate resource scheduling
scenario. While utilization of processors cannot be 100% since processors can become
idle if no data are available for processing, these idle CPU time cannot be reused
by other applications once allocated. Different from processor usage, storage and
bandwidth usage can adapt to application requirements quickly.

4.4 Performance Evaluation

In the last section, raw data on resource usage of processors, storage and bandwidth
are visualized. In this section, our approach described in Section 3 is evaluated using
performance metrics described in Section 2.2.

Grid Resource Management and Scheduling for Data Streaming Applications 17

(a) Processor Usage in Group 1

(b) Processor Usage in Group 2

(c) Processor Usage in Group 3

Fig. 3. Experiment Results – Processor Usage

18 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

Fig. 4. Experiment Results – Storage Usage

4.4.1 Admission Control

In our experiment, as grid resources are limited compared with data streaming
application requirements, it can be inferred that too many applications accepted
by the grid without admission control would lead to low processing performance,
measured using data throughput in our case. This is verified by further experimental
results included in Figure 6.

As shown in Figure 6(c), higher data throughput is achieved in the scenario with
admission control than that without admission control. Note that in the latter sce-
nario, since no admission control mechanism is applied, all applications are started
to run immediately once submitted and one processor may have to deal with more
than one application at the same time. Inadequate data provision for each appli-
cation and competition of computational power among applications lead to a lower
data processing performance as a whole.

Figures 6(a) and 6(b) also provide an overall picture of application status in both
scenarios, where red bars with the character P stand for pending applications and
pink bars with the character R mean the corresponding application is running. The
makespan of 30 applications is different in two scenarios. The numbers of completed
applications are 29 and 25 respectively. It is obvious that the total makespan is
longer in the situation when no admission control is applied.

Grid Resource Management and Scheduling for Data Streaming Applications 19

Fig. 5. Experiment Results – Bandwidth Usage

4.4.2 Processor Utilization

As shown in Figure 3, processors are allocated to applications, one for a single
application exclusively. Groups 1 and 2 deal with more applications while they
include less processors than Group 3, so average workload of processors are higher
than that of Group 3. Because some applications may not be able to be executed on
the processors in Group 3, they cannot be transferred to Group 3 for load balancing.

Once an application is started to run on a certain processor, it does not mean
that the processor is busy all the time. Since all applications are dependent on
data streaming supports, the processor of an application could be idle if no data is
available at local storage. Higher processor utilization is always required for a better
system performance.

In this section, an additional experiment is carried out with a scheduling scheme
that allocation of computing, bandwidth and storage resources is made indepen-
dently. As shown in Figure 7, compared with the integrated approach proposed in
this work, the independent scheme results in lower processor utilization for most of
applications. Higher processor utilization is achieved using our integrated scheduling
scheme.

20 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

(a) With Admission Control

(b) Without Admission Control

(c) Comparison of Data Throughput

Fig. 6. Performance Evaluation – Admission Control

Grid Resource Management and Scheduling for Data Streaming Applications 21

Fig. 7. Performance Evaluation – Processor Utilization

4.4.3 Storage Awareness

Another feature of our approach is that data streaming is storage-aware, i.e., data
transfers are controlled by the usage of allocated storage, rather than spontaneously.
The principle here is that just-enough is ok, not the-more-the-better. Data streaming
can be intermittent, not always continuous. In this way high volume of data can
be processed with reasonable storage usage, as shown in Figure 8(a). Storage usage
varies in a reasonable scope during the experiment. If data streaming is continuous
and available storage space is large enough, storage usage can be of high volume,
as illustrated in Figure 8(b). Small storage can achieve high throughput for data
streaming applications with well-controlled data streaming and processing scheme.

4.4.4 Iterative Bandwidth Allocation

Bandwidth is allocated to each running application to guarantee their data provision.
Parameters for bandwidth allocation are obtained using the GA (as described in
Section 3.2) and applied in each scheduling period. As described in Section 3.3.3,
bandwidth allocation is an iterative process that is adaptive to the total available
bandwidth and requirements of running applications.

22 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

(a) Storage-Aware Data Streaming

(b) Non-Storage-Aware Data Streaming

Fig. 8. Performance Evaluation – Storage Aware Data Streaming

To justify our iterative bandwidth allocation algorithm, additional experiments
are carried out using an even bandwidth allocation method, where bandwidth is
allocated to the running applications equally. As shown in Figure 9(a), since total
available bandwidth is relatively low (b=30Mbps), with even bandwidth allocation,
only 25 applications are finished in 10000 time units. In Figure 9(b), available
bandwidth is increased to 40Mbps. In this case, each application can get enough
data with the even allocation scheme. These results can be compared with Figure

Grid Resource Management and Scheduling for Data Streaming Applications 23

6(a). Using our iterative approach, a better performance can be achieved with
relatively low available bandwidth.

Comparison of data throughput using iterative and even bandwidth allocation is
illustrated in Figure 9(c). It is obvious that higher data throughput can be achieved
using our iterative bandwidth allocation, though only relatively low available band-
width is available. This is because that our approach is storage- and processing-
aware. Using the even allocation method, some applications may starve for data
while others may be allocated redundant bandwidth, which reduces data processing
efficiency and results in lower data throughput.

5 RELATED WORK

Stream processing used to be the focus of database research [9][10][11][12] in recent
years, and some tools and techniques have been developed to cope with efficient
handling of continuous queries on data streams, while our work focus on scheduling
streaming applications on grid resources.

Grid scheduling has primarily focused on providing supports for batch-oriented
jobs [13]. Most resource management infrastructures available for grid computing,
such as Legion [14], Nimrod/G [15], Condor [16] and [17], are largely geared to
support batch-oriented applications rather than streaming ones. Attention has also
been paid to scheduling of interactive job in grid environments [18][19][20]. There are
several existing efforts that are focused on grid resource management and scheduling
for data streaming applications

• GATE

A middleware system, called GATES [21][22][23] (Grid-based AdapTive Execu-
tion on Streams), is developed for those applications involving high-volume data
streams and requiring distributed processing of data arising from a distributed set
of sources A resource allocation algorithm based on minimal spanning tree (MST)
is developed, whose target is to create a deployment configuration, including (1)
the number of data sources and their location; (2) the destination, i.e. the node
where the final results are needed; (3) the number of stages in the application; (4)
the number of instances of each stage; (5) how the instances connect to each other
and (6) the node at which each stage is assigned. Given a streaming application
composed of several stages, the first three components of a deployment configuration
are determined, and the emphasis of this resource allocation algorithm is to decide
the last three components to give the applications the best chance to achieve best
performance. Once a deployment configuration is finished, the launcher program
can be called to automatically launch the application.

• Streamline

Streamline [24][25] as a scheduling heuristic, is designed specially to adapt to
the dynamic nature of grid environment and varying demands of a streaming ap-
plication. It expects to maximize throughput of the application by assigning best

24 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

(a) With Even Bandwidth Allocation (b=30)

(b) With Even Bandwidth Allocation (b=40)

(c) Comparison of Data Throughput

Fig. 9. Performance Evaluation – Bandwidth Allocation

Grid Resource Management and Scheduling for Data Streaming Applications 25

resources to the neediest stage in terms of computation and communication re-
quirements, belonging to a general class of list scheduling algorithms. Stages are
prioritized according to their estimated computation and communication costs, and
the resources leading to minimal costs will be assigned to the stages. In this al-
gorithm, the precise estimation of computation and communication costs must be
provided, which is not easy to be implemented.

• Pegasus

Pegasus [26][27] is aimed to address the problem of automatically generating
job workflows for the grid, which helps map an abstract workflow defined in terms
of application-level components to the set of available grid resources. It handles
data transfers, job processing and data cleanups in a workflow manner, not in an
integrated and cooperative way. In our approach for grid data streaming applica-
tions, data streaming, processing and cleanups have to be processed simultaneously
instead of in a workflow manner.

The above projects mainly focus on management and scheduling of computa-
tional and data resources for grid applications, where network resources are not con-
sidered. The following two projects provide co-allocation of various grid resources
but they are not targeting data streaming applications.

• EnLIGHTened

As best-effort networks always introduce bottleneck for high-end applications,
EnLIGHTened computing [28] project is aimed to co-allocate any type of Grid re-
source: computers, storage, instruments, and deterministic, high-bandwidth net-
work paths, including lightpaths, in advance or on-demand. Then external networks,
especially dedicated optical networks, can be used as first class resources within gird
environments, which will guarantee large data transfers associated with executions
on remote resources. Its idea is similar with our integrated resource scheduling pro-
posed in this paper, but we implement more fine-grained resource allocation to cope
with specific requirements for data streaming applications, e.g. storage awareness.

• G-lambda

G-lambda [29] project is to define a standard web service interface (GNS-WSI)
between a grid resource manager and a network resource service from a network
resource manager provided by commercial network operators. One grid schedul-
ing system is developed to co-allocate computing and network resources with ad-
vance reservations through web service interfaces using the Grid Resource Scheduler
(GRS), the Network Resource Management System (NRM), which is capable of
GMPLS network resource management. This is a general framework for resource
co-allocation, which does not pay enough attention to characteristics of data stream-
ing applications, such as sustaining and controlled data provision.

26 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

6 CONCLUSIONS AND FUTURE WORK

Data streaming applications bring new challenges to grid resource management and
scheduling, such as requiring real-time data provision and integrated resource alloca-
tion schemes. Different from existing resource management and scheduling schemes
that only focus on computational resources, the system proposed in this paper takes
computational, storage and network resources into account simultaneously and make
integrated management and scheduling schemes, which are proved to be feasible with
improved performance and scalability.

The work described in this paper is mainly focused on resource utilization and
overall data throughput of the system. Future work will address quality of service
(QoS) issues required by data streaming applications. Scheduling for data streaming
pipelines will also be considered, which is more complicated with requirement of
balancing among multiple stages and appropriate data provision. Ongoing work
also includes scheduling data sharing among multiple data streaming applications
to further improve system performance.

7 ACKNOWLEDGEMENT

This work is supported by National Science Foundation of China (grant No. 60803
017) and Ministry of Science and Technology of China under National 973 Basic Re-
search Program (grants No. 2011CB302505 and No. 2011CB302805) and National
863 High-tech R&D Program (grants No. 2008AA01Z118 and No. 2008BAH32B03).

Junwei Cao would like to express his gratitude to Professor Erik Katsavounidis
of LIGO (Laser Interferometer Gravitational-wave Observatory) Laboratory at Mas-
sachusetts Institute of Technology for his support on LIGO Scientific Collaboration.

REFERENCES

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Francisco, 1998.

[2] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearlman, K. Blackburn, P.
Ehrens, A. Lazzarini, R. Williams, and S. Koranda, “GriPhyN and LIGO, Building
a Virtual Data Grid for Gravitational Wave Scientists”, Proc. 11 th IEEE Int. Symp.
on High Performance Distributed Computing, pp. 225-234, 2002.

[3] J. Cao, E. Katsavounidis, and J. Zweizig, “Grid Enabled LIGO Data Monitoring”
Proc. IEEE/ACM Supercomputing Conf., Seattle, WA, USA, 2005.

[4] R. Pordes for the Open Science Grid Consortium, “The Open Science Grid”, Proc.
Computing in High Energy and Nuclear Physics Conf., Interlaken, Switzerland, 2004.

[5] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

[6] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit”, Int. J. Supercomputer Applications, Vol. 11, No. 2, pp. 115-128, 1997.

Grid Resource Management and Scheduling for Data Streaming Applications 27

[7] K. Kar, S. Sarkar, L. Tassiulas, “A Simple Rate Control Algorithm for Maximizing

Total User Utility”, Proc INFOCOM 2001.

[8] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S.
Meder, V. Nefedova, D. Quesnal, and S. Tuecke, “Data Management and Transfer in
High Performance Computational Grid Environments”, Parallel Computing, Vol. 28,
No. 5, pp. 749-771, 2002.

[9] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A New Model and
Architecture for Data Stream Management” VLDB Journal vol. 12, No. 2, pp. 120-
139, 2003.

[10] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Contract-based Load Man-
agement in Federated Distributed Systems”, Proc. 1 st Sym. on Networked Systems
Design and Implementation (NSDI) San Francisco, CA, March 2004.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M.
A. Shah, “TelegraphCQ: Continuous Dataflow Processing”, Proc. ACM SIGMOD
Int. Conf. on Management of Data (SIGMOD’03), 2003.

[12] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
and S. Zdonik, “Scalable Distributed Stream Processing”, Proc. 1 st Biennial Conf.
on Innovative Data Systems Research (CIDR’03), Asilomar, CA, January 2003

[13] J. Nabrzyski, J. M. Schopf, and J. Weglarz, Grid Resource Management: State of the
Art and Future Trends, Kluwer Academic Publishers, Sep 2003.

[14] S. J. Chapin, D. Katramatos, J. Karpovich and A. S. Grimshaw, “The Legion
Resource Management System”, Job Scheduling Strategies for Parallel Processing,

Springer Verlag, pp.162-178, 1999.

[15] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An Architecture for a
Resource Management and Scheduling System in a Global Computational Grid”,
Proc. High Performance Computing ASIA, 2000.

[16] M. Litzkow, M. Livny, and M. Mutka, “Condor – A Hunter of Idle Workstations”,
Proc. 8 th Int. Conf. on Distributed Computing Systems, pp. 104-111, 1988.

[17] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R. Nudd, “ARMS:
an Agent-based Resource Management System for Grid Computing”, Scientific Pro-

gramming, Special Issue on Grid Computing, Vol. 10, No. 2, pp. 135-148, 2002.

[18] S. Basu, V. Talwar, B. Agarwalla, and R. Kumar, “I-GASP: Interactive
Grid Environment Provided by Application Service Providers”, Proc. 1 st Int. Conf.
on Web Services (ICWS’03), Las Vegas, USA, 2003.

[19] V Talwar, B Agarwalla, S Basu, and R Kumar, “Architecture for Resource Alloca-
tion Services Supporting Remote Desktop Sessions in Utility Grids” Proc. 2nd Int
Workshop on Middleware for Grid Computing (MGC 2004), Toronto, Canada, Oct.
2004.

[20] J. Cao and F. Zimmermann, “Queue Scheduling and Advance Reservations with
COSY’, Proc. 18 th IEEE Int. Parallel & Distributed Processing Symp., Santa Fe,
NM, USA, pp. 63, 2004.

28 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

[21] L. Chen, K. Reddy, and G. Agrawal. “GATES: A Grid Based Middleware for

Processing Distributed Data Streams”. Proc. 13 th IEEE Int’l. Sym. on High Perfor-
mance Distributed Computing (HPDC-13), Honolulu, Hawaii USA, June 4-6 2004.

[22] L. Chen and G. Agrawal, “Resource Allocation in a Middleware for Streaming Data”
Proc. 2nd Workshop on Middleware for Grid Computing (MGC’04), Toronto, Canada,
Oct 18 2004.

[23] L. Chen and G. Agrawal, “A Static Resource Allocation Framework for Grid-based
Streaming Applications”, Concurrency and Computation: Practice and Experience,
Vol. 18, pp. 653–666, 2006.

[24] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran, “Stream-
line: a Scheduling Heuristic for Streaming Applications on the Grid”, in Proc. SPIE
Multimedia Computing and Networking, Vol. 6071, 2006.

[25] B. Agarwalla, N. Ahmed, D. Hilley, and U. Ramachandran, “Stream-
line: Scheduling Streaming Applications in a Wide Area Environment”, Multimedia
Systems, Vol. 13, No. 1, pp. 69-85, 2007.

[26] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, et. al., “Mapping
Abstract Complex Workflows onto Grid Environments”, J. Grid Computing, Vol. 1,

No. 1, pp. 25-39, 2003.

[27] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K.
Blackburn, D. Meyers, and M. Samidi, “Scheduling Data-intensive Workflow onto
Storage-Constrained Distributed Resources”, Proc. 7 thIEEE Int. Symp. on Cluster
Computing and the Grid, Rio de Janeiro, Brazil, pp. 401-409, 2007.

[28] L. Battestilli, et al.: An Architecture for Co-allocating Network, Compute, and
other Grid Resources for High-End Applications” Proc. Int. Symp. on High Capacity
Optical Networks and Enabling Technologies, pp. 1-8, 2007.

[29] A. Takefusa, et al.: Coordination of a Grid Scheduler and Lambda Path Service
over GMPLS” Future Generation Computer Systems, Vol 22, No. 8, pp. 868-875,
October 2006.

Grid Resource Management and Scheduling for Data Streaming Applications 29

Wen Zhang works in Chongqing Military Delegate Bureau, General Armament Depart-

ment of PLA. He received his PhD in Control Engineering and Applications from Depart-
ment of Automation, Tsinghua University, in 2010. His research was focused on grid data
streaming.

Junwei Cao is currently a Professor and Assistant Dean, Research Institute of Informa-
tion Technology, Tsinghua University, China. He was a Research Scientist at MIT LIGO
Laboratory and NEC Laboratories Europe. He received the PhD in Computer Science
from University of Warwick, UK, in 2001. He is a Senior Member of the IEEE Computer
Society and a Member of the ACM and CCF.

30 Wen Zhang, Junwei Cao, Yisheng Zhong, Lianchen Liu, Cheng Wu

Yisheng Zhong is currently a Professor of Department of Automation, Tsinghua Uni-

versity, China. He reeived the PhD in Electrical Engineering from Hokkaido University,
Japan, in 1988. His research interests include control theory, complexity, etc.

Lianchen Liu is currently an Associate Professor of Department of Automation, Tsinghua
University, China. He received the Ph.D. from NanKai University, China. His research
interests include large scale scientific resource sharing, distributed computing, etc.

Grid Resource Management and Scheduling for Data Streaming Applications 31

Cheng Wu is a Professor of Department of Automation, Tsinghua University, China,

Director of National CIMS Engineering Research Center, and Member of Chinese Academy
of Engineering. He received his B.S. and M.S. from Department of automation, Tsinghua
Univ. in 1962 and 1966 respectively. His research interests include complex manufacturing
system scheduling, grid/cloud applications, etc.

