
Future Generation Computer Systems 21 (2005) 135–149

Grid load balancing using intelligent agents

Junwei Caoa,∗,1, Daniel P. Spoonerb, Stephen A. Jarvisb, Graham R. Nuddb

a Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA
b Department of Computer Science, University of Warwick, Coventry, UK

Available online 28 October 2004

Abstract

Scalable management and scheduling of dynamic grid resources requires new technologies to build the next generation
intelligent grid environments. This work demonstrates that AI techniques can be utilised to achieve effective workload and
resource management. A combination of intelligent agents and multi-agent approaches is applied to both local grid resource
scheduling and global grid load balancing. Each agent is a representative of a local grid resource and utilises predictive application
performance data with iterative heuristic algorithms to engineer local load balancing across multiple hosts. At a higher level,
agents cooperate with each other to balance workload using a peer-to-peer service advertisement and discovery mechanism.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Load balancing; Grid computing; Intelligent agents; Genetic algorithm; Service discovery

1

i
t
f
i
g
b

t
g

s

ility.
re-

ime.
and
ge-
must
king

pow-
m-
n
ding
mic
le-
ment

g

0

. Introduction

Grid computing originated from a new comput-
ng infrastructure for scientific research and coopera-
ion [36,20]and is becoming a mainstream technology
or large-scale resource sharing and distributed system
ntegration[21]. Current efforts towards making the
lobal infrastructure a reality provide technologies on
oth grid services and application enabling[6].

Workload and resource management are essen-
ial functions provided at the service level of the
rid software infrastructure. Two main challenges that

∗ Corresponding author.
E-mail address:caoj@mit.edu (J. Cao).

1 This work was carried out when the author was with the Univer-
ity of Warwick.

must be addressed are scalability and adaptab
Grid resources are geographically distributed and
source performance can change quickly over t
Grid users submit tasks with different resource
quality of service (QoS) requirements. For mana
ment and scheduling to be effective, such systems
develop intelligent and autonomous decision-ma
techniques.

Software agents have been accepted to be a
erful high-level abstraction for modelling of co
plex software systems[26]. In our previous work, a
agent-based methodology is developed for buil
large-scale distributed systems with highly dyna
behaviours[9,10]. This has been used in the imp
mentation of an agent-based resource manage
system for metacomputing[11] and grid computin
[12–14].

167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2004.09.032

136 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

This work focuses on grid load-balancing issues
using a combination of both intelligent agents and
multi-agent approaches. Each agent is responsible for
resource scheduling and load balancing across multi-
ple hosts/processors in a local grid. The agent couples
application performance data with iterative heuristic al-
gorithms to dynamically minimise task makespan and
host idle time, while meeting the deadline requirements
for each task. The algorithm is based on an evolutionary
process and is therefore able to absorb system changes
such as the addition or deletion of tasks, or changes
in the number of hosts/processors available in a local
grid.

At the global grid level, each agent is a representa-
tive of a grid resource and acts as a service provider
of high performance computing power. Agents are or-
ganised into a hierarchy and cooperate with each other
to discover available grid resources for tasks using a
peer-to-peer mechanism for service advertisement and
discovery.

Agents are equipped with existing PACE applica-
tion performance prediction capabilities[8,32]. The
key features of the PACE toolkit include a good level of
predictive accuracy, rapid evaluation time and a method
for cross-platform comparison. These features enable
PACE performance data to be utilized in real-time for
agents to perform grid resource scheduling[15,16].

Several metrics are considered to measure the load-
balancing performance of grid agents. A case study is
included and corresponding results conclude that in-
t nce
p ice
d rall
r ppli-
c urce
u

2

lti-
a archy
a

2

age
h uling

incoming tasks to achieve local load balancing. Each
agent provides a high-level representation of a grid re-
source and therefore characterises these resources as
high performance computing service providers in a
wider grid environment. The layered structure of each
agent is explained below:

• Communication layer. Agents in the system must be
able to communicate with each other or with users
using common data models and communication pro-
tocols. The communication layer provides an agent
with an interface to heterogeneous networks and op-
erating systems.

• Coordination layer. The request an agent receives
from the communication layer should be explained
and submitted to the coordination layer, which de-
cides how the agent should act on the request accord-
ing to its own knowledge. For example, if an agent
receives a service discovery request, it must decide
whether it has related service information. This is
described in detail in Section4.

• Local management layer. This layer performs func-
tions of an agent for local grid load balancing.
Detailed scheduling algorithms are described in Sec-
tion 3. This layer is also responsible for submitting
local service information to the coordination layer
for agent decision making.

2.2. Agent hierarchy

vel
g r
i ina-
t odes
a

elligent agents, supported by application performa
rediction, iterative heuristic algorithms and serv
iscovery capabilities, are effective to achieve ove
esource scheduling and load balancing, improve a
ation execution performance and maximise reso
tilisation.

. Grid agents

This work combines intelligent agents and mu
gent approaches. The agent structure and hier
re described below.

.1. Agent structure

Each agent is implemented so it can man
osts/processors for a local grid resource, sched
Agents are organised hierarchically in a higher le
lobal grid environment, as shown inFig. 1. The broke

s an agent that heads the whole hierarchy. A coord
or is an agent that heads a sub-hierarchy. Leaf-n
re simply termedagentsin this model.

Fig. 1. Agent hierarchy.

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 137

Brokers, coordinators and agents are differentiated
by their position in the hierarchy but not by their func-
tionality. Each node has the same capabilities and prior-
ity for service and could perform services on behalf of
any other node. This homogeneous hierarchy provides
a high-level abstraction of a grid environment.

The agent hierarchy can represent an open and dy-
namic system. New agents can join the hierarchy or
existing agents can leave the hierarchy as appropriate.
The hierarchy exists only logically and each agent can
contact others as long as it has their identities.

The hierarchical model partly addresses the issues
of scalability. When the number of agents increases,
the hierarchy may lead to many system activities being
processed in a local domain. In this way the system may
scale well and does not need to rely on one or a few
central agents, which may otherwise become system
bottlenecks.

Service is another important concept. An agent pro-
vides a simple and uniform abstraction of the functions
(clients, services and go-betweens) in the grid manage-
ment system. The service information provided at each
local grid resource can be advertised throughout the
hierarchy and agents can cooperate with each other to
discover available resources. These are introduced in
detail in Section4.

2.3. Performance prediction

Performance prediction for parallel programs plays
a ling
a ting
P ies.

the
P the
P ted
i ro-
g ud-
i llel
p to
p ecu-
t lua-
t nce
d CE
t e of
P nd
g ec-
t

3. Local grid load balancing

In this section, a local grid resource is consid-
ered to be a cluster of workstations or a multipro-
cessor, which is abstracted uniformly as peer-to-peer
networked hosts. Two algorithms are considered in the
local management layer of each agent to perform local
grid load balancing.

3.1. First-come-first-served algorithm

Consider a grid resource withn hosts where each
hostHi has its own type tyi . A PACE resource model
can be used to describe the performance information
of this host.

Let m be the number of considered tasksT. The
arrival time of each taskTj is tj . A PACE applica-
tion model tmj can be used to describe the application
level performance information of each task. The user
requirement of deadline for the task execution is rep-
resented as trj . Each taskTj also has two scheduled
attributes – a start time tsj and an end time tej .
MTj is the set of hosts that are allocated to taskTj .

M then is a 2D array, which describes the mapping
relationships between hosts and tasks using Boolean
values.

M = {Mij|i = 1, 2, . . . , n; j = 1, 2, . . . , m} (1)

M

{
1, if Hi ∈ MTj

rfor-
m tion
m ub-
s
c sed as
f

∀

s to
fi lete,
a

t

key role for agents to perform resource schedu
nd load balancing. Agents are integrated with exis
ACE application performance prediction capabilit

The PACE evaluation engine is the kernel of
ACE toolkit. The evaluation engine combines
ACE resource model (including performance rela

nformation of the hardware on which the parallel p
ram will be executed) and application model (incl

ng all performance related information of the para
rogram, e.g. MPI or PVM programs) at run time
roduce evaluation results, e.g. estimation of ex

ion time. Agents are equipped with the PACE eva
ion engine and use predictive application performa
ata for scheduling. Detailed introduction to the PA

oolkit is out of the scope of this paper but the us
ACE performance prediction for both local grid a
lobal grid load balancing is described below in S

ions3 and 4, respectively.
ij =
0, if Hi /∈ MTj

(2)

The PACE evaluation engine can produce pe
ance prediction information based on the applica
odel tmj and resource models ty. An appropriate s

et of hostsH (note thatH cannot be an empty setΦ)
an be selected, and this is evaluated and expres
ollows:

H ⊆ H, H
= Φ, ty ⊆ ty, ty
= Φ,

texej = eval(ty, tmj) (3)

The function of the agent local management i
nd the earliest possible time for each task to comp
dhering to the sequence of the task arrivals.

ej = min
∀H⊆H,H
=Φ

(tej) (4)

138 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

A task has the possibility of being allocated to any
selection of hosts. The agent should consider all these
possibilities and choose the earliest task end time. In
any of these situations, the end time is equal to the ear-
liest possible start time plus the execution time, which
is described as follows:

tej = tsj + texej (5)

The earliest possible start time for the taskTj on
a selection of hosts is the latest free time of all the
selected hosts if there are still tasks running on the se-
lected hosts. If there is no task running on the selected
hosts when the taskTj arrives at timetj , Tj can be exe-
cuted on these hosts immediately. These are expressed
as follows:

tsj = max

(
tj, max

∀i,Hi ∈ H

(tdij)

)
(6)

where tdij is the latest free time of hostHi at the time
tj . This equals the maximum end times of tasks that are
allocated to the hostHi before the taskTj arrives:

tdij = max
∀p<j,Mip=1

(tep) (7)

In summary, tej can be calculated as follows:

tej = min
∀H⊆H,H
=Φ((()))

osts
t one
h er if
o other
h ome
l

er-
m s. It
i re-
s in-
c me-
fi task
a ring
t ther,

but will increase the algorithm complexity. This is ad-
dressed using an iterative heuristic algorithm described
below.

3.2. Genetic algorithm

When tasks can be reordered, the scheduling objec-
tive is also changed. Rather than looking for an earliest
completion time for each task individually, the schedul-
ing algorithm described in this section focuses on the
makespanω, which represents the latest completion
time when all the tasks are considered together and is
subsequently defined as:

ω = max
1≤j≤m

{tej} (9)

The goal is to minimise function(9), at the same time
∀j, tej ≤ trj should also be satisfied as far as possible.
In order to obtain near optimal solutions to this com-
binatorial optimisation problem, the approach taken in
this work is to find schedules that meet the above cri-
teria through the use of an iterative heuristic method
– in this case a genetic algorithm (GA). The process
involves building a set of schedules and identifying so-
lutions that have desirable characteristics. These are
then carried into the next generation.

The technique requires a coding scheme that can
represent all legitimate solutions to the optimisation
problem. Any possible solution is uniquely represented
b d in
v ear
o ro-
c ing
a e-
q led
t

rob-
l
s uted,
a o-
c es
i -
s

ers
m ard
t
s et
max tj, max
∀i,Hi ∈ H

max
∀p<j,Mip=1

(tep) + texej

(8)

It is not necessarily the case that scheduling all h
o a task will achieve higher performance. On the
and, the start time of task execution may be earli
nly a number of processors are selected; on the
and, with some tasks, execution time may bec

onger if too many hosts are allocated.
The complexity of the above algorithm is det

ined by the number of possible host selection
s clear that if the number of hosts of a grid
ource increases, the scheduling complexity will
rease exponentially. This is based on a first-co
rst-served policy that means the sequence of the
rrivals determines that of task executions. Reorde

he task set may optimise the task execution fur
y a particular string, and strings are manipulate
arious ways until the algorithm converges on a n
ptimal solution. In order for this manipulation to p
eed in the correct direction, a method of prescrib
quality value (orfitness) to each solution string is r
uired. The algorithm for providing this value is cal

he fitness functionfv.
The coding scheme we have developed for this p

em consists of two parts: an ordering partSk, which
pecifies the order in which the tasks are to be exec
nd a mapping partMijk , which specifies the host all
ation to each task. Letk be the number of schedul
n the scheduling set. The ordering ofMijk is commen
urate with the task order.

A combined cost function is used which consid
akespan, idle time and deadline. It is straightforw

o calculate the makespan,ωk, of the schedulek repre-
ented bySk andMijk . LetTjk be the reordered task s

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 139

according to the ordering part of the coding scheme,Sk.

tsjk = max
∀i,Mijk=1

(
max

∀p<j,Mipk=1
(tepk)

)
(10)

tejk = tsjk + texejk (11)

ωk = max
1≤j≤m

{tejk} (12)

The timing calculation described above is similar
to that given in the function(8). One difference is that
since all of the tasks are considered together, the or-
der is defined according toSk instead of the task arrival
timetj . So the consideration oftj is not necessary in(10)
as opposed to the function(6). Another aspect is that
the host selection is defined usingMijk and the PACE
evaluation result texejk is calculated directly using cor-
responding resource models, while in the function(8),
different possible host selectionsH have all to be con-
sidered and compared.

The nature of the idle time should also be taken into
account. This is represented using the average idle time
of all hostsϕk.

ϕk = max
1≤j≤m

{tejk} − min
1≤j≤m

{tsjk}

−
∑m

j=1
∑n

i=1Mijk(tejk − tsjk)

n
(13)

The contract penaltyθk is derived from the expected
deadline times tr and task completion time te.

θ

a act
p

f

ion
s lised
c r use
w nc-
t om
l egit-
i over
b ew
t ary)

crossover. The reordering is necessary to preserve the
node mapping associated with a particular task from
one generation to the next. The mutation stage is also
two-part, with a switching operator randomly applied
to the ordering parts, and a random bit-flip applied to
the mapping parts.

In the actual agent implementation using the above
algorithm, the system dynamism must be considered.
One advantage of the iterative algorithm described in
this section is that it is an evolutionary process and is
therefore able to absorb system changes such as the
addition or deletion of tasks, or changes in the number
of hosts available in the grid resource.

The two scheduling algorithms are both imple-
mented and can be switched from one to another in
the agent. The algorithms provide a fine-grained so-
lution to dynamic task scheduling and load balanc-
ing across multiple hosts of a local grid resource.
However, the same methodology cannot be applied
directly to a large-scale grid environment, since the
algorithms do not scale to thousands of hosts and
tasks. An additional mechanism is required for multi-
ple agents to work together and achieve global grid load
balancing.

4. Global grid load balancing

In this work, a grid is a collection of multiple local
grid resources that are distributed geographically in a
w ction
i vide
t rid-
s indi-
r tiple
g

4

f its
c vice
a is in-
f wl-
e sed
i an
c rd-
i ese
i

k =
∑m

j=1(tejk − trj)

m
(14)

The cost value for the schedulek, represented bySk
ndMijk , is derived from these metrics and their imp
redetermined by:

k
c = Wmωk + Wiϕk + Wcθk

Wm + Wi + Wc
(15)

The genetic algorithm utilises a fixed populat
ize and stochastic remainder selection. Specia
rossover and mutation functions are developed fo
ith the two-part coding scheme. The crossover fu

ion first splices the two ordering strings at a rand
ocation, and then reorders the pairs to produce l
mate solutions. The mapping parts are crossed
y first reordering them to be consistent with the n

ask order, and then performing a single-point (bin
ide area. The problem that is addressed in this se
s the discovery of available grid resources that pro
he optimum execution performance for globally g
ubmitted tasks. The service discovery process
ectly results in a load-balancing effect across mul
rid resources.

.1. Service advertisement and discovery

An agent takes its local grid resource as one o
apabilities. An agent can also receive many ser
dvertisements from nearby agents and store th

ormation in its coordination layer as its own kno
dge. All of the service information are organi

nto Agent Capability Tables (ACTs). An agent c
hoose to maintain different kinds of ACTs acco
ng to different sources of service information. Th
nclude:

140 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

• T ACT: In the coordination layer of each agent,
T ACT is used to record service information of the
local grid resource. The local management layer is
responsible for collecting this information and re-
porting it to the coordination layer.

• L ACT: Each agent can have one LACT to record
the service information received from its lower
agents in the hierarchy. The services recorded in
L ACT are provided by grid resources in its local
scope.

• G ACT: The GACT in an agent is actually a record
of the service information received from its up-
per agent in the hierarchy. The service information
recorded in GACT is provided by the agents, which
have the same upper agent as the agent itself.

There are basically two ways to maintain the con-
tents of ACTs in an agent: data-pull and data-push,
each of which has two approaches: periodic and event-
driven.

• Data-pull: An agent asks other agents for their ser-
vice information either periodically or when a re-
quest arrives.

• Data-push: An agent submits its service information
to other agents in the hierarchy periodically or when
the service information is changed.

Apart from service advertisement, another impor-
tant process among agents is service discovery. Discov-
ering available services is also a cooperative activity.
W cal
g can
b her-
w
i gent,
w urce
m e re-
q ad of
t still
n y.

dis-
c ad
b ined
l d to
a et the
a cess
d uest,
b ided

by a neighbouring agent. While this may decrease the
load-balancing effect, the trade-off is reasonable as grid
users prefers to find a satisfactory resource as fast and
as local as possible.

The advertisement and discovery mechanism also
allows possible system scalability. Most requests are
processed in a local domain and need not to be
submitted to a wider area. Both advertisement and
discovery requests are processed between neighbour-
ing agents and the system has no central structure,
which otherwise might act as a potential bottle-
neck.

4.2. System implementation

Agents are implemented using Java and data are rep-
resented in an XML format. An agent is responsible
for collecting service information of the local grid re-
source. An example of this service information can be
found below.
<agentgrid type=‘‘service’’>

<address>gem.dcs.warwick.ac.uk</address>

<port>1000</port>

<type>SunUltra10</type>

<nproc>16</nproc>

<environment>mpi</environment>

<environment>pvm</environment >

<environment>test</environment>

<freetime>Nov 1504:43:102001</freetime>

<

d he
h also
p this
c sim-
p rce
a n ex-
e rrent
a
m ibed
i lly
e mes
a latest
s x-
i ome
a bal-
a ithin
ithin each agent, its own service provided by the lo
rid resource is evaluated first. If the requirement
e met locally, the discovery ends successfully. Ot
ise service information in both LACT and GACT

s evaluated and the request dispatched to the a
hich is able to provide the best requirement/reso
atch. If no service can meet the requirement, th
uest is submitted to the upper agent. When the he

he hierarchy is reached and the available service is
ot found, the discovery terminates unsuccessfull

While the process of service advertisement and
overy is not motivated by grid scheduling and lo
alancing, it can result in an indirect coarse-gra

oad-balancing effect. A task tends to be dispatche
grid resource that has less workload and can me
pplication execution deadline. The discovery pro
oes not aim to find the best service for each req
ut endeavours to find an available service prov
/agentgrid>

The agent identity is provided by a tuple of thead-
ressand port used to initiate communication. T
ardware model and the number of processors are
rovided. The example specifies a single cluster, in
ase a cluster of 16 SunUltra10 workstations. To
lify the problem, the hosts within each grid resou
re configured to be homogeneous. The applicatio
cution environments that are supported by the cu
gent implementation include MPI, PVM, and atest
ode that is designed for the experiments descr

n this work. Undertestmode, tasks are not actua
xecuted and predictive application execution ti
re scheduled and assumed to be accurate. The
cheduling makespanω indicates the earliest (appro
mate) time that corresponding grid resource bec
vailable for more tasks. Due to the effect of load
ncing, it is reasonable to assume that all of hosts w

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 141

a grid resource have approximately the samefreetime.
The agents use this item to estimate the workload of
each grid resource and make decisions on where to
dispatch incoming tasks. This item changes over time
and must be frequently updated. Service advertisement
is therefore important among the agents.

A portal has been developed which allows users to
submit requests destined for the grid resources. An ex-
ample request is given below.

<agentgrid type=‘‘request’’ >

<application>

<name>sweep3d</name>

<binary>

<file>binary/sweep3d</file>

<inputfile>input/input.50</inputfile>

</binary >

<performance>

<datatype>pacemodel</datatype>

<modelname>model/sweep3d</modelname>

</performance>

</application>

<requirement >

<environment>test</environment>

<deadline>Nov 1504:43:17 2001</deadline>

</requirement >

<email>junwei</email>

</agentgrid>

ap-
p for
e ary
e ap-
p -
m files
a ms.
I en-
v
s ed as
t

the
a rnel
o vice
a ard
w tion
e om-
p n be

estimated using:

ter = ω + min
∀H⊆H,H
=Φ,ty⊆ty,ty
=Φ

{eval(ty, tmr)} (16)

For a grid resource with homogeneous hosts, the
PACE evaluation function is calledn times. If ter ≤ trr ,
the resource is considered to be able to meet the re-
quired deadline. Otherwise, the resource is not consid-
ered available for the incoming task. This performance
estimation of local grid resources at the global level
is simple but efficient. However, when the task is dis-
patched to the corresponding agent, the actual situa-
tion may differ from the scenario considered in(16).
The agent may change the task order and advance or
postpone a specific task execution in order to balance
the workload on different hosts, and in so doing max-
imise resource utilisation while maintaining the dead-
line contracts of each user.

Service discovery for a request within an agent in-
volves multiple matchmaking processes. An agent al-
ways gives priority to the local grid resource. Only
when the local resource is unavailable is the ser-
vice information of other grid resources evaluated
and the request dispatched to another agent. In or-
der to measure the effect of this mechanism for grid
scheduling and load balancing, several performance
metrics are defined and many experiments are carried
out.

5

val-
u nts
d s are
p this
s

5

can
b hedul-
i ance
d there
a ated
q t of
s

A user is required to specify the details of the
lication, the requirements and contact information
ach request. Application information includes bin
xecutable files and also the corresponding PACE
lication performance model tmr . In the current imple
entation we assume that both binary and model
re pre-compiled and available in all local file syste

n the requirements, both the application execution
ironment and the required deadline time trr should be
pecified. Currently the user’s email address is us
he contact information.

Service discovery processes are triggered by
rrival of a request at an agent, where the ke
f this process is the matchmaking between ser
nd request information. The match is straightforw
hether an agent can provide the required applica
xecution environment. The expected execution c
letion time for a given task on a given resource ca
. Performance evaluation

Experiments are carried out for performance e
ation of grid load balancing using intelligent age
escribed in above sections. Performance metric
redefined and experimental results are included in
ection.

.1. Performance metrics

There are a number of performance criteria that
e used to describe resource management and sc

ng systems. What is considered as high perform
epends on the system requirements. In this work,
re several common statistics that can be investig
uantitatively and used to characterise the effec
cheduling and load balancing.

142 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

5.1.1. Total application execution time
This defines the period of timet, when a set ofm

parallel tasksT are scheduled onto resourcesH with n
hosts. Note that the host setH here is slightly different
from that defined in Section3.1because it may include
those either at multiple grid resources or within a single
grid resource.

t = max
1≤j≤m

{tej} − min
1≤j≤m

{tsj} (17)

5.1.2. Average advance time of application
execution completion

This can be calculated directly using:

ε =
∑m

j=1(trj − tej)

m
(18)

which is negative when most deadlines fail.

5.1.3. Average resource utilisation rate
The resource utilisation rateυi of each hostHi is

calculated as follows:

υi =
∑

∀j,Mij=1(tej − tsj)

t
× 100% (19)

The average resource utilisation rateυ of all hosts
H is:

υ =
∑n

i=1υi

n
(20)

whereυ is in the range 0–1.

5

d

a e
l

β

hen
d of
t a grid
r ulti-
p also
i ced

across all the considered hosts, the resource utilisation
rate is usually high and the tasks finish quickly. An-
other metrics that can only applied for measurement of
grid agents is the number of network packets used for
service advertisement and discovery.

5.2. Experimental design

The experimental system is configured with 12
agents, illustrated by the hierarchy shown inFig. 2.

These agents are namedS1, . . ., S12 (for the sake
of brevity) and represent heterogeneous hardware re-
sources containing 16 hosts/processors per resource.
As shown inFig. 2, the resources range in their com-
putational capabilities. The SGI multiprocessor is the
most powerful, followed by the SunUltra10, 5, 1, and
SPARCStation 2 in turn.

In the experimental system, each agent maintains a
set of service information for the other agents in the
system. Each agent pulls service information from its
lower and upper agents in every 10 s. All of the agents
employ identical strategies with the exception of the
agent at the head of the hierarchy (S1) that does not
have an upper agent.

The applications used in the experiments include
typical scientific computing programs. Each applica-
tion has been modelled and evaluated using PACE.
Different applications have different performance sce-
narios. During each experiment, requests for one
o vals
t ecu-
t se-
l est
p ring
w o the
a

con-
fi ove,
d al-
g d as
s

5

i nd to
a

.1.4. Load-balancing level
The mean square deviation ofυi is defined as:

=
√∑n

i=1(υ − υi)2

n
(21)

nd the relative deviation ofdoverυ that describes th
oad-balancing level of the system is:

=
(

1 − d

υ

)
× 100% (22)

The most effective load balancing is achieved w
equals zero andβ equals 100%. The four aspects

he system described above can be applied both to
esource or a grid environment that consists of m
le grid resources. These performance metrics are

nterrelated. For example, if the workload is balan
f the test applications are sent at 1-s inter
o randomly selected agents. The required ex
ion time deadline for the application is also
ected randomly from a given domain. The requ
hase of each experiment lasts for 10 min du
hich 600 task execution requests are sent out t
gents.

While the experiments use the same resource
gurations and application workloads described ab
ifferent combinations of local grid scheduling
orithms and global grid mechanisms are applie
hown inTable 1.

.3. Experimental results

The experimental results are given inTable 2; this
ncludes the three metrics applied to each agent a
ll the grid resources in the system.

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 143

Fig. 2. Case study: agents and resources.

Table 1
Case study: experimental design

Experiment number

1 2 3

First-come-first-served algorithm
√

Iterative heuristic algorithm
√ √

Service advertisement and discovery
√

Table 2
Case study: experimental results

Experiment number

1 2 3

ε (s) υ (%) β (%) ε (s) υ (%) β (%) ε (s) υ (%) β (%)

S1 42 7 71 52 9 89 29 81 96
S2 11 9 78 34 9 89 23 81 95
S3 −135 13 62 23 13 92 24 77 87
S4 −328 22 45 −30 28 96 44 82 94
S5 −607 32 56 −492 58 95 38 82 94
S6 −321 25 56 −123 29 90 42 78 92
S7 −261 23 57 10 25 92 38 84 93
S8 −695 33 52 −513 52 90 42 82 91
S9 −806 45 58 −724 63 90 30 80 84
S10 −405 28 61 −129 34 94 25 81 94
S11 −1095 44 50 −816 73 92 35 75 89
S12 −859 41 46 −550 67 91 26 78 90

Total −475 26 31 −295 38 42 32 80 90

5.3.1. Experiment 1
In the first experiment, each agent is configured with

the first-come-first-served algorithm for local grid re-
source scheduling. Agents are not organised for co-
operation. The experimental scenario is visualised in
Fig. 3.

The algorithm does not consider makespan, idle
time or deadline. Each agent receives approximately

144 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

Fig. 3. Experimental scenario I.

50 task requests on average, which results in only the
powerful platforms (SGI multiprocessorsS1 andS2)
meeting the requirements. The slower machines in-
cluding the Sun SPARCStations clustersS11 andS12
impose serious delays in task execution with long task
queues (seeFig. 3). The total task execution time is
about 46 min. The overall average delay for task execu-
tion is approximately 8 min. It is apparent that the high
performance platforms are not utilised effectively, and
the lack of proper scheduling overloads clusters like
S11 that is only 44% utilised. The average utilisation of
grid resources is only 26%. The workload for each host
in each grid resource is also unbalanced. For example,
the load-balancing level ofS12 is as low as 46%. The
overall grid workload is also unbalanced at 31%.

5.3.2. Experiment 2
In experiment 2, the iterative heuristic algorithm is

used in place of the first-come-first-serve algorithm al-
though no higher level agent cooperation mechanism
is applied. The experimental scenario is visualised in
Fig. 4.

The algorithm aims to minimise makespan and idle
time, while meeting deadlines. Compared to those of
experiment 1, almost all metrics are improved. Task
executions are completed earlier. The total task exe-
cution time is improved from 46 to 36 min and the
average task execution delay is reduced to approxi-
mately 5 min. However, resources such asS11 andS12
remain overloaded and the GA scheduling is not able
t ner-
a bet-
t s
f lso
i on

Fig. 4. Experimental scenario II.

each grid resources is significantly improved, the lack
of any higher level load-balancing mechanism results
in a slightly improved overall grid load balancing to
42% (as opposed to 31% in experiment 1).

5.3.3. Experiment 3
In experiment 3, the service advertisement and dis-

covery mechanism is enabled for high-level load bal-
ancing. The experimental scenario is visualised in
Fig. 5.

Service discovery results in a new distribution of re-
quests to the agents, where the more powerful platform
receives more requests. As shown inFig. 5, powerful
platform likeS1 receives 16% of tasks, which is four
times of tasks received by relatively slow platformS11.
The total task execution time is also dramatically de-
creased to 11 min. As a result, the majority of task ex-
ecution requirements can be met and all grid resources
are well utilised (80% on average). The load balanc-
ing of the overall grid is significantly improved from
42% (in experiment 2) to 90%. The load balancing on
o find solutions that satisfy all the deadlines. Ge
lly, resources are better utilised as a result of the

er scheduling, such as the use ofS11 that increase
rom 44 to 73%. The overall average utilisation a
mproves from 26 to 38%. While load balancing
 Fig. 5. Experimental scenario III.

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 145

Fig. 6. Case study: trends I for experimental results on advance times
of application execution completionε.

resources such asS1 andS2 are only marginally im-
proved by the GA scheduling when the workload is
higher. None of other agents show an improvement in
local grid load balancing.

Experimental results inTable 2are also illustrated in
Figs. 6–8, showing the effect on the performance met-
rics given in Section5.1. The curves indicate that differ-
ent platforms exhibit different trends when agents are
configured with more scheduling and load-balancing
mechanisms. Among these the curves forS1,S2 (which
are the most powerful) andS11,S12 (which are the least
powerful) are representative and are therefore empha-
sised, while others are indicated using grey lines. The
curve for the overall grid is illustrated using a bold
line.

F urce
u

Fig. 8. Case study: trends III for experimental results on load-
balancing levelβ.

5.3.4. Application execution
In Fig. 6, it is apparent that both the GA schedul-

ing and the service discovery mechanism contribute to
improving the application execution completion.

The curve implies that the more a resource is loaded
the more significant the effect is. For example,S1 and
S2 are not overloaded during the three experiments, and
therefore the value ofε only changes slightly.S11 and
S12 are heavily overloaded during the experiments 1
and 2, and therefore the improvement ofε in the ex-
periments 2 and 3 is more significant. The situations
of S3, . . ., S10 are distributed between these two ex-
tremes. The curve for the overall grid provides an av-
erage estimation for all situations, which indicates that
the service discovery mechanism contributes more to-
wards the improvement in application executions than
GA scheduling.

5.3.5. Resource utilisation
The curves inFig. 7illustrate similar trends to those

of Fig. 6. S1, S2 andS11, S12 still represent the two
extreme situations between which the other platforms
are distributed.

The curve for the overall grid indicates that the ser-
vice discovery mechanism contributes more to max-
imising resource utilisation. However, overloaded plat-
forms like S11 andS12 benefit mainly from the GA
scheduling, which is more effective at load balancing
when the workload is high; lightly loaded platforms
l v-
e hem.
ig. 7. Case study: trends II for experimental results on reso
tilisation rateυ.
ike S1 andS2 chiefly benefit from the service disco
ry mechanism, which can dispatch more tasks to t

146 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

5.3.6. Load balancing
Curves inFig. 8 demonstrate that local and global

grid load balancing are achieved in different ways.
WhileS1,S2 andS11,S12 are two representative sit-

uations, the global situation is not simply an average
of local trends as those illustrated inFigs. 6 and 7. In
the second experiment, when the GA scheduling is en-
abled, the load balancing of hosts or processors within
a local grid resource are significantly improved. In the
third experiment, when the service discovery mech-
anism is enabled, the overall grid load balancing is
improved dramatically. It is clear that the GA schedul-
ing contributes more to local grid load balancing and
the service discovery mechanism contributes more to
global grid load balancing. The coupling of both as
described in this work is therefore a good choice to
achieve load balancing at both local and global grid
levels.

5.4. Agent performance

Additional experiments are carried out to compare
the performance of grid agents when different ser-
vice advertisement and discovery strategies are applied.
These are introduced briefly in this section.

A centralised controlling mechanism is designed for
the agents. Each agent is assumed to have the pre-
knowledge of any other agents. Each time an agent
receives a task execution request, it will contact all of
the other agents for quoting of completion time. The
b o the
a ac-
t ans
t cov-
e

last
s a-
t nts.
T pro-
c eans
t cov-
e elow
i ent
a gent
p

t in-
c ced
i ri-

Fig. 9. Comparison of total application execution time between the
centralised and distributed strategies.

ments, the number of grid agents is changed to enable
the system scalability to be investigated.

5.4.1. Total application execution time
Fig. 9 provides a comparison of total application

execution time for the two strategies.
The total task execution time decreases when the

number of agents and grid resources increases. It is
clear that the centralised strategy leads to a bit bet-
ter load-balancing results, since tasks finish in a less
time under the centralised control. This is more obvi-
ous when the number of the agents increases.

It is reasonable that a centralised strategy can
achieve a better scheduling, because full service adver-
tisement leads to full knowledge on the performance of
all grid resources. However, under a distributed mecha-
nism, each agent has only up-to-date information on its
neighbouring agents, which limit the scheduling effect.

5.4.2. Average advance time of application
execution completion

Similar comparison for the two strategies is included
in Fig. 10in terms of the average advance time of ap-
plication execution time.

F xecu-
t ies.
est bid is chosen and the request is dispatched t
vailable grid resource directly in one step. This is
ually an event-driven data-pull strategy, which me
hat full advertisement results in no necessary dis
ry.

The service advertisement strategy used in the
ection is periodic data-pull, where service inform
ion is only transferred among neighbouring age
his results that service discovery has also to be
essed step by step. This distributed strategy m
hat not full advertisement results in necessary dis
ry steps. The experimental results introduced b

ndicate that balancing the overhead for advertisem
nd discovery in this way can lead to a better a
erformance.

The details of the experimental design are no
luded, though actually very similar to that introdu
n Section5.2. One difference is that in these expe
ig. 10. Comparison of average advance time of application e
ion completion between the centralised and distributed strateg

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 147

Fig. 11. Comparison of network packets between the centralised and
distributed strategies.

Tasks are executed quicker when the number of
agents increases. It is clear that the centralised strat-
egy leads to a bit better result again. The reason is
similar to that described in the last section. The re-
sult values are negative since the workload of these
experiments is quite heavy and grid resources can-
not meet the deadline requirements of task execution
averagely.

5.4.3. Network packets
A different result is included inFig. 11that provides

a comparison of the network packets involved during
the experiments of the two strategies.

The number of network messages used for service
advertisement and discovery increases linearly with the
number of agents. It is clear that the distributed strategy
significantly decreases the amount of network traffic.
The strategy of only passing messages among neigh-
bouring agents improves the system scalability as the
agent number increases.

6. Related work

In this work, local grid load balancing is performed
in each agent using AI scheduling algorithms. The on-
the-fly use of predictive performance data for schedul-
ing described in this work is similar to that of Ap-
pLeS[5], Ninf [30] and Nimrod[2]. While AppLeS
a ased
o the
N s a
n ra-
m -
i ems,

such as Condor[28], EASY [27], Maui [25], LSF[40]
and PBS[24]. Most of these support batch queuing us-
ing the FCFS algorithm. The main advantage of GA
scheduling used in this work for job scheduling is the
quality of service and multiple performance metrics
support.

This work also focuses on the cooperation of local
grid and global grid levels of management and schedul-
ing. OGSA and its implementation, the Globus toolkit
[19], is the standard for grid service and application
development, which is based on web services proto-
cols and standards[31]. Some existing systems use the
Globus toolkit to integrate with the grid computing en-
vironment, including Condor-G[22], Nimrod/G [3],
though a centralised control structure is applied in both
implementations. Another grid computing infrastruc-
ture, Legion[23], is developed using an object-oriented
methodology that provides similar functionalities to the
Globus. In this work, a multi-agent approach is consid-
ered. Agents are used to control the query process and
to make resource discovery decisions based on inter-
nal logic rather than relying on a fixed-function query
engine.

Agent-based grid management is also used in
JAMM [7,38] and NetSolve[17,18], where a cen-
tralised broker/agents architecture is developed. In this
work, agents perform peer-to-peer service advertise-
ment and discovery to achieve global grid load bal-
ancing. Compared with another “Agent Grid” work

of
bal-
ge-
rent
eral
ent-
f

er-
in

her

id-
grid

van-
ide a
hat
re
nd Ninf management and scheduling are also b
n performance evaluation techniques, they utilise
WS [39] resource monitoring service. Nimrod ha
umber of similarities to this work, including a pa
etric engine and heuristic algorithms[1] for schedul

ng jobs. There are also many job scheduling syst
described in[33], rather than using a collection
many predefined specialised agents, grid load
ancing in this work uses a hierarchy of homo
neous agents that can be reconfigured with diffe
roles at running time. While there are also sev
other related projects that have a focus on ag
based grid computing[29,34,37], the emphases o
these works are quite different. In this work, p
formance for grid load balancing is investigated
a quantitative way that cannot found in any ot
work.

There are many other enterprise computing and m
dleware technologies that are being adopted for
management, such as CORBA[35] and Jini[4]. Com-
pared with these methods, the most important ad
tage of an agent-based approach is that it can prov
clear high-level abstraction of the grid environment t
is extensible and compatible for integration of futu
grid services and toolkits.

148 J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149

7. Conclusions

This work addresses grid load-balancing issues us-
ing a combination of intelligent agents and multi-agent
approaches. For local grid load balancing, the iter-
ative heuristic algorithm is more efficient than the
first-come-first-served algorithm. For global grid load
balancing, a peer-to-peer service advertisement and
discovery technique is shown to be effective. The use
of a distributed agent strategy can reduce the network
overhead significantly and allow the system to scale
well rather than using a centralised control, as well as
achieving a reasonable good resource utilisation and
meeting application execution deadlines.

Further experiments will be carried out using the
grid testbed being built at Warwick. Since large-scale
deployments of developing systems are problematic,
a grid modelling and simulation environment is under
development to enable performance and scalability of
the agent system to be investigated when thousands of
grid resources and agents are involved.

The next generation grid computing environment
must be intelligent and autonomous to meet require-
ments of self management. Related research topics in-
clude semantic grids[41] and knowledge grids[42].
The agent-based approach described in this work
is an initial attempt towards a distributed frame-
work for building such an intelligent grid environ-
ment. Future work includes the extension of the agent

oS
in-
gy-

ul-
D-

or
rk-

VA,

tric
,

,

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao,
Application-level scheduling on distributed heterogeneous net-
works, in: Proceedings of the Supercomputing‘96, Pittsburgh,
PA, USA, 1996.

[6] F. Berman, A.J.G. Hey, G. Fox, Grid Computing: Making The
Global Infrastructure a Reality, John Wiley & Sons, 2003.

[7] C. Brooks, B. Tierney, W. Johnston, JAVA agents for distributed
system management, LBNL Report, 1997.

[8] J. Cao, D.J. Kerbyson, E. Papaefstathiou, G.R. Nudd, Perfor-
mance modelling of parallel and distributed computing using
PACE, in: Proceedings of the IPCCC‘00, Phoenix, AZ, USA,
2000, pp. 485–492.

[9] J. Cao, D.J. Kerbyson, G.R. Nudd, Dynamic application inte-
gration using agent-based operational administration, in: Pro-
ceedings of the PAAM‘00, Manchester, UK, 2000, pp. 393–
396.

[10] J. Cao, D.J. Kerbyson, G.R. Nudd, High performance service
discovery in large-scale multi-agent and mobile-agent systems,
Int. J. Software Eng. Knowl. Eng. 11 (5) (2001) 621–641.

[11] J. Cao, D.J. Kerbyson, G.R. Nudd, Use of agent-based service
discovery for resource management in metacomputing envi-
ronment, in: Proceedings of the Euro-Par‘01, Lecture Notes
on Computer Science, vol. 2150, Springer, Berlin, 2001, pp.
882–886.

[12] J. Cao, D.J. Kerbyson, G.R. Nudd, Performance evaluation of an
agent-based resource management infrastructure for grid com-
puting, in: Proceedings of the CCGrid‘01, Brisbane, Australia,
2001, pp. 311–318.

[13] J. Cao, D.P. Spooner, J.D. Turner, S.A. Jarvis, D.J. Kerbyson,
S. Saini, G.R. Nudd, Agent-based resource management for
grid computing, in: Proceedings of the AgentGrid‘02, Berlin,
Germany, 2002, pp. 350–351.

[14] J. Cao, S.A. Jarvis, S. Saini, D.J. Kerbyson, G.R. Nudd, ARMS:
an agent-based resource management system for grid comput-
ing, Scientific Programming (Special Issue on Grid Computing)

[son,
ased
gs of

[udd,
task

nce,

[r sci-
t. 24

[ork-
7.

[truc-
7)

[om-

[ices
02)
10 (2) (2002) 135–148.
15] J. Cao, S.A. Jarvis, D.P. Spooner, J.D. Turner, D.J. Kerby

G.R. Nudd, Performance prediction technology for agent-b
resource management in grid environments, in: Proceedin
the HCW‘02, Fort Lauderdale, FL, USA, 2002.

16] J. Cao, D.P. Spooner, S.A. Jarvis, S. Saini, G.R. N
Agent-based grid load balancing using performance-driven
scheduling, in: Proceedings of the IPDPS‘03, Nice, Fra
2003.

17] H. Casanova, J. Dongarra, Using agent-based software fo
entific computing in the NetSolve system, Parallel Compu
(12–13) (1998) 1777–1790.

18] H. Casanova, J. Dongarra, Applying NetSolve’s netw
enabled server, IEEE Comput. Sci. Eng. 5 (3) (1998) 57–6

19] I. Foster, C. Kesselman, Globus: a metacomputing infras
ture toolkit, Int. J. High Perform. Comput. Appl. 2 (199
115–128.

20] I. Foster, C. Kesselman, The GRID: Blueprint for a New C
puting Infrastructure, Morgan-Kaufmann, 1998.

21] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke, Grid serv
for distributed system integration, IEEE Comput. 35 (6) (20
37–46.
framework with new features, e.g. automatic Q
negotiation, self-organising coordination, semantic
tegration, knowledge-based reasoning and ontolo
based service brokering.

References

[1] A. Abraham, R. Buyya, B. Nath, Nature’s heuristics for sched
ing jobs on computational grids, in: Proceedings of the A
COM‘00, Cochin, India, 2000.

[2] D. Abramson, R. Sosic, J. Giddy, B. Hall, Nimrod: a tool f
performing parameterized simulations using distributed wo
stations, in: Proceedings of the HPDC‘95, Pentagon City,
USA, 1995.

[3] D. Abramson, J. Giddy, L. Kotler, High performance parame
modelling with Nimrod/G: killer application for the global grid
in: Proceedings of the IPDPS‘00, Cancun, Mexico, 2000.

[4] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo, A. Woolrath
The JiniTM Specification, Addison Wesley, 1999.

J. Cao et al. / Future Generation Computer Systems 21 (2005) 135–149 149

[22] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-
G: a computation management agent for multi-institutional
grids, Cluster Comput. 5 (3) (2002) 237–246.

[23] A. Grimshaw, W.A. Wulf, Legion team, The Legion vision of
a worldwide virtual computer, Commun. ACM 40 (1) (1997)
39–45.

[24] R.L. Henderson, Job scheduling under the Portable Batch Sys-
tem, in: Proceedings of the JSSPP‘95, Lecture Notes in Com-
puter Science, vol. 949, Springer, Berlin, 1995, pp. 279–294.

[25] D. Jackson, Q. Snell, M. Clement, Core algorithms of the
Maui scheduler, in: Proceedings of the JSSPP‘01, Lecture
Notes Computer Science, vol. 2221, Springer, Berlin, 2001, pp.
87–102.

[26] N.R. Jennings, M.J. Wooldridge (Eds.), Agent Technology: Fo-
undations, Applications, and Markets, Springer, Berlin, 1998.

[27] D. Lifka, The ANL/IBM SP scheduling system, in: Proceedings
of the JSSPP‘01, Lecture Notes Computer Science, vol. 2221,
Springer, Berlin, 2001, pp. 187–191.

[28] M. Litzkow, M. Livny, M. Mutka, Condor – a hunter of idle
workstations, in: Proceedings of the ICDCS‘88, San Jose, CA,
USA, 1988, pp. 104–111.

[29] L. Moreau, Agents for the grid: a comparison for web services
(part 1: the transport layer), in: Proceedings of the CCGrid‘02,
Berlin, Germany, 2002, pp. 220–228.

[30] H. Nakada, M. Sato, S. Sekiguchi, Design and implementations
of Ninf: towards a global computing infrastructure, Future Gen.
Comput. Syst. 5–6 (1999) 649–658.

[31] E. Newcomer, Understanding Web Services: XML, WSDL,
SOAP, and UDDI, Addison Wesley, 2002.

[32] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S.
Harper, D.V. Wilcox, PACE – a toolset for the performance pre-
diction of parallel and distributed systems, Int. J. High Perform.
Comput. Appl. 14 (3) (2000) 228–251.

[33] O.F. Rana, D.W. Walker, The agent grid: agent-based resource
integration in PSEs, in: Proceedings of the IMACS‘00, Lau-

[tion
entc-

[Hall,

[e I-
1)

[hni-
998,

[sive
ture

[ser-
e for
999)

[s dis-
ting,

[41] H. Zhuge, Semantics, resource and grid, Future Gen. Comput.
Syst. 20 (1) (2004) 1–5.

[42] H. Zhuge, China’s e-science knowledge grid environment, IEEE
Intell. Syst. 19 (1) (2004) 13–17.

Junwei Cao is currently a Research Scien-
tist at the Center for Space Research, Mas-
sachusetts Institute of Technology, USA.
He has been working on grid infrastructure
implementation and grid-enabled applica-
tion development since 1999. Before join-
ing MIT in 2004, Dr Cao was a research
staff member of C&C Research Laborato-
ries, NEC Europe Ltd., Germany. He re-
ceived his PhD in Computer Science in 2001
from the University of Warwick, UK and

MSc in 1998 from Tsinghua University, China, respectively. He is a
member of the IEEE Computer Society and the ACM.

Daniel P. Spooner is a newly appointed
Lecturer and a member of the High Perfor-
mance System Group at the University of
Warwick. He has 15 referred publications
on the generation and application of analyt-
ical performance models to Grid comput-
ing systems. He has worked at the Perfor-
mance and Architectures Laboratory at the
Los Alamos National Laboratory on per-
formance modelling tools, and is currently
involved in an e-Science programme to de-

velop performance-aware middleware services.

StephenA. Jarvisis a Senior Lecturer in the
High Performance System Group at the Uni-
versity of Warwick. He has authored over
50 referred publications (including three

r-
e
,
-

s.
-

-
ntre
na-
au-

ager
es.

ir-
t at
-
and
r
-

ries
sanne, Switzerland, 2000.
34] W. Shen, Y. Li, H. Ghenniwa, C. Wang, Adaptive negotia

for agent-based grid computing, in: Proceedings of the Ag
ities/AAMAS‘02, Bologna, Italy, 2002, pp. 32–36.

35] D. Slama, J. Garbis, P. Russell, Enterprise Corba, Prentice
1999.

36] R. Stevens, P. Woodward, T. DeFanti, C. Catlett, From th
WAY to the national technology grid, Commun. ACM 40 (1
(1997) 50–60.

37] C. Thompson, Characterizing the agent grid, Tec
cal Report, Object Services and Consulting Inc., 1
http://www.objs.com/agility/tech-reports/9812-grid.html.

38] B. Tierney, W. Johnston, J. Lee, M. Thompson, A data inten
distributed computing architecture for grid applications, Fu
Gen. Comput. Syst. 16 (5) (2000) 473–481.

39] R. Wolski, N.T. Spring, J. Hayes, The network weather
vice: a distributed resource performance forecasting servic
metacomputing, Future Gen. Comput. Syst. 15 (5–6) (1
757–768.

40] S. Zhou, LSF: load sharing in large-scale heterogeneou
tributed systems, in: Proceedings of the Cluster Compu
1992.
books) in the area of software and perfo
mance evaluation. While previously at th
Oxford University Computing Laboratory
he worked on performance tools for a num
ber of different programming paradigm
He has close research links with IBM, in
cluding current projects with IBM’s TJ Wat

son Research Center in New York and with their development ce
at Hursley Park in the UK. Dr Jarvis sits on a number of inter
tional programme committees for high-performance computing,
tonomic computing and active middleware; he is also the Man
of the Midlands e-Science Technical Forum on Grid Technologi

Graham R. Nudd is Head of the High
Performance Computing Group and Cha
man of the Computer Science Departmen
the University of Warwick. His primary re
search interests are in the management
application of distributed computing. Prio
to joining Warwick in 1984, he was em
ployed at the Hughes Research Laborato
in Malibu, California.

http://www.objs.com/agility/tech-reports/9812-grid.html

	Grid load balancing using intelligent agents
	Introduction
	Grid agents
	Agent structure
	Agent hierarchy
	Performance prediction

	Local grid load balancing
	First-come-first-served algorithm
	Genetic algorithm

	Global grid load balancing
	Service advertisement and discovery
	System implementation

	Performance evaluation
	Performance metrics
	Total application execution time
	Average advance time of application execution completion
	Average resource utilisation rate
	Load-balancing level

	Experimental design
	Experimental results
	Experiment 1
	Experiment 2
	Experiment 3
	Application execution
	Resource utilisation
	Load balancing

	Agent performance
	Total application execution time
	Average advance time of application execution completion
	Network packets

	Related work
	Conclusions
	References

