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Abstract

Scalable management and scheduling of dynamic grid resources requires new technologies to build the next generation
intelligent grid environments. This work demonstrates that Al techniques can be utilised to achieve effective workload and
resource management. A combination of intelligent agents and multi-agent approaches is applied to both local grid resource
scheduling and global grid load balancing. Each agentis a representative of alocal grid resource and utilises predictive application
performance data with iterative heuristic algorithms to engineer local load balancing across multiple hosts. At a higher level,
agents cooperate with each other to balance workload using a peer-to-peer service advertisement and discovery mechanism.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction must be addressed are scalability and adaptability.
Grid resources are geographically distributed and re-
Grid computing originated from a new comput- source performance can change quickly over time.
ing infrastructure for scientific research and coopera- Grid users submit tasks with different resource and
tion[36,20]and is becoming a mainstream technology quality of service (QoS) requirements. For manage-
for large-scale resource sharing and distributed systemment and scheduling to be effective, such systems must
integration[21]. Current efforts towards making the develop intelligent and autonomous decision-making
global infrastructure a reality provide technologies on techniques.
both grid services and application enabl[6 Software agents have been accepted to be a pow-
Workload and resource management are essen-erful high-level abstraction for modelling of com-
tial functions provided at the service level of the plex software systemig6]. In our previous work, an
grid software infrastructure. Two main challenges that agent-based methodology is developed for building
large-scale distributed systems with highly dynamic
behaviourg9,10]. This has been used in the imple-

* Corresponding author. - mentation of an agent-based resource management
E-mail addresscaoj@mit.edu (J. Cao). _ _ system for metacomputingl1] and grid computing
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This work focuses on grid load-balancing issues incoming tasks to achieve local load balancing. Each
using a combination of both intelligent agents and agent provides a high-level representation of a grid re-
multi-agent approaches. Each agent is responsible forsource and therefore characterises these resources as
resource scheduling and load balancing across multi- high performance computing service providers in a
ple hosts/processors in a local grid. The agent coupleswider grid environment. The layered structure of each
application performance data with iterative heuristical- agent is explained below:
gorithms to dynamically minimise task makespan and
hostidle time, while meeting the deadline requirements
for eachtask. The algorithmis based on an evolutionary
process and is therefore able to absorb system changes
such as the addition or deletion of tasks, or changes
in the number of hosts/processors available in a local
grid.

At the global grid level, each agent is a representa- *
tive of a grid resource and acts as a service provider
of high performance computing power. Agents are or-
ganised into a hierarchy and cooperate with each other
to discover available grid resources for tasks using a
peer-to-peer mechanism for service advertisement and
discovery.

Agents are equipped with existing PACE applica-
tion performance prediction capabiliti¢8,32]. The
key features of the PACE toolkitinclude a good level of
predictive accuracy, rapid evaluation time and a method
for cross-platform comparison. These features enable
PACE performance data to be utilized in real-time for
agents to perform grid resource schedulib§,16]

Several metrics are considered to measure the load- .
balancing performance of grid agents. A case study is 2-2- Agent hierarchy
included and corresponding results conclude that in- ) ] ] . .
telligent agents, supported by application performance  Agents are organised hierarchically in a higher level
prediction, iterative heuristic algorithms and service 9lobalgrid environment, as shownfiig. 1. The broker
discovery capabilities, are effective to achieve overall IS @nagentthat heads the whole hierarchy. A coordina-
resource scheduling and load balancing, improve appli- tor is an agent that hea_ds a.sub-hlerarchy. Leaf-nodes
cation execution performance and maximise resource areé simply termeagentsin this model.

utilisation.
2. Grid agents °

This work combines intelligent agents and multi- : G

agent approaches. The agent structure and hierarch @ ° @ : Broker

are described below.

e Communication layerAgents in the system must be
able to communicate with each other or with users
using common data models and communication pro-
tocols. The communication layer provides an agent
with an interface to heterogeneous networks and op-
erating systems.
Coordination layer The request an agent receives
from the communication layer should be explained
and submitted to the coordination layer, which de-
cides how the agent should act on the request accord-
ing to its own knowledge. For example, if an agent
receives a service discovery request, it must decide
whether it has related service information. This is
described in detail in Sectioh
e Local management layeT his layer performs func-
tions of an agent for local grid load balancing.
Detailed scheduling algorithms are described in Sec-
tion 3. This layer is also responsible for submitting
local service information to the coordination layer
for agent decision making.

: Coordinator
2.1. Agent structure @: Agent

Each agent is implemented so it can manage
hosts/processors for a local grid resource, scheduling Fig. 1. Agent hierarchy.
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Brokers, coordinators and agents are differentiated 3. Local grid load balancing
by their position in the hierarchy but not by their func-
tionality. Each node has the same capabilities and prior-  In this section, a local grid resource is consid-
ity for service and could perform services on behalf of ered to be a cluster of workstations or a multipro-
any other node. This homogeneous hierarchy provides cessor, which is abstracted uniformly as peer-to-peer
a high-level abstraction of a grid environment. networked hosts. Two algorithms are considered in the

The agent hierarchy can represent an open and dy-local management layer of each agent to perform local
namic system. New agents can join the hierarchy or grid load balancing.
existing agents can leave the hierarchy as appropriate.

The hierarchy exists only logically and each agent can 3.1. First-come-first-served algorithm
contact others as long as it has their identities.

The hierarchical model partly addresses the issues  Consider a grid resource withhosts where each
of scalability. When the number of agents increases, hostH; has its own type ty A PACE resource model
the hierarchy may lead to many system activities being can be used to describe the performance information
processed in alocal domain. In this way the system may of this host.
scale well and does not need to rely on one or a few et m be the number of considered tasksThe
central agents, which may otherwise become system grrival time of each tasKj is tj. A PACE applica-
bottlenecks. tion model tm can be used to describe the application

Service is another important concept. An agent pro- |evel performance information of each task. The user
vides a simple and uniform abstraction of the functions requirement of deadline for the task execution is rep-
(clients, services and go-betweens) in the grid manage-resented as jtr Each taskT; also has two scheduled
ment system. The service information provided at each attributes — a start time fsand an end time fe
local grid resource can be advertised throughout the MT; is the set of hosts that are allocated to t@isk
hierarchy and agents can cooperate with each other tom then is a 2D array, which describes the mapping
discover available resources. These are introduced inrelationships between hosts and tasks using Boolean
detail in Sectiont. values.

2.3. Performance prediction M={Myli=212...,n; j=212....m} (1)

Performance prediction for parallel programs plays
a key role for agents to perform resource scheduling
and load balancing. Agents are integrated with existing

PACE application performance prediction capabilities. 1 he PACE evaluation engine can produce perfor-
The PACE evaluation engine is the kernel of the Mance prediction information based on the application

PACE toolkit. The evaluation engine combines the MCdel tm and resource models ty. An appropriate sub-

PACE resource model (including performance related S€t Of hosts (note thatH cannot be an empty séf)
information of the hardware on which the parallel pro- €&" be selected, and this is evaluated and expressed as
gram will be executed) and application model (includ- follows:

ing all performance related information of the p_araIIeI VACH H+®, ycty, iy +o,

program, e.g. MPI or PVM programs) at run time to

produce evaluation results, e.g. estimation of execu- texe; = evalfy, tm;) 3)

tion time. Agents are equipped with the PACE evalua-
tion engine and use predictive application performance
data for scheduling. Detailed introduction to the PACE
toolkit is out of the scope of this paper but the use of
PACE performance prediction for both local grid and
global grid load balancing is described below in Sec- tej= min (fe)) ()
tions3 and 4 respectively. VHCH H#®

l, if H,’ EMT]'
ij= (2)

0, if H; ¢ MT;

The function of the agent local management is to
find the earliest possible time for each task to complete,
adhering to the sequence of the task arrivals.
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A task has the possibility of being allocated to any but will increase the algorithm complexity. This is ad-
selection of hosts. The agent should consider all thesedressed using an iterative heuristic algorithm described
possibilities and choose the earliest task end time. In below.
any of these situations, the end time is equal to the ear-
liest possible start time plus the execution time, which

is described as follows: 3.2. Genetic algorithm

te; =ts; + texe (5) When tasks can be reordered, the scheduling objec-
_ . . tive is also changed. Rather than looking for an earliest
The earliest possible start time for the tafkon completion time for each task individually, the schedul-

a selection of hosts is the latest free time of all the |ng a|gorithm described in this section focuses on the
selected hosts if there are still tasks running on the se- makespanl), which represents the latest Comp|eti0n

lected hosts. If there is no task running on the selected time when all the tasks are considered together and is
hosts when the task arrives at timej, Tj can be exe-  subsequently defined as:

cuted on these hosts immediately. These are expressed

as follows: w= 1m_ax {te;) (9)
<j<m
tsj = max (t/’ wT:iXH(tdij)) (6) The goal is to minimise functiof®), at the same time
o vj, tg <trj should also be satisfied as far as possible.
where tg is the latest free time of host; at the time In order to obtain near optimal solutions to this com-
tj. This equals the maximum end times of tasks that are binatorial optimisation problem, the approach taken in
allocated to the hosd; before the tasKj arrives: this work is to find schedules that meet the above cri-
teria through the use of an iterative heuristic method
= <m3x_1(tep) (7) — in this case a genetic algorithm (GA). The process
e involves building a set of schedules and identifying so-
In summary, tecan be calculated as follows: lutions that have desirable characteristics. These are

then carried into the next generation.

tej = Vﬁg‘lmﬁ#b The technique requires a coding scheme that can
- represent all legitimate solutions to the optimisation
te))) 1t problem. Any possible solution is uniquely represented
max| ¢;, max max (te exe; ; ; ; ; ;
PVl el \Vp<jMy=1 " J by a particular string, and strings are manipulated in

8) various ways until the algorithm converges on a near
optimal solution. In order for this manipulation to pro-
ceed in the correct direction, a method of prescribing

Itis not necessarily the case that scheduling all hosts a quality value (ofithes3 to each solution string is re-
to a task will achieve higher performance. On the one quired. The algorithm for providing this value is called
hand, the start time of task execution may be earlier if the fithess functiof,.
only a number of processors are selected; on the other The coding scheme we have developed for this prob-
hand, with some tasks, execution time may become lem consists of two parts: an ordering p&t which
longer if too many hosts are allocated. specifies the order in which the tasks are to be executed,
The complexity of the above algorithm is deter- and a mapping paNiy, which specifies the host allo-
mined by the number of possible host selections. It cation to each task. Létbe the number of schedules
is clear that if the number of hosts of a grid re- inthe scheduling set. The orderingdjfy is commen-
source increases, the scheduling complexity will in- surate with the task order.
crease exponentially. This is based on a first-come- A combined cost function is used which considers
first-served policy that means the sequence of the taskmakespan, idle time and deadline. It is straightforward
arrivals determines that of task executions. Reordering to calculate the makespany, of the schedul& repre-
the task set may optimise the task execution further, sented byg andMiy. Let Tix be the reordered task set
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according to the ordering part of the coding sche®e, crossover. The reordering is necessary to preserve the
node mapping associated with a particular task from

tsjy = max ( max (tepk)> (10) one generation to the next. The mutation stage is also
Vi:Miji=1 \Yp<jMipr=1 two-part, with a switching operator randomly applied
tej = tsy + texey (11) to the ordering parts, and a random bit-flip applied to
the mapping parts.
wg = 1Tj§>;{tejk} (12) In the actual agent implementation using the above

algorithm, the system dynamism must be considered.

The timing calculation described above is similar One advantage of the iterative algorithm described in
to that given in the functio(8). One difference isthat  thijs section is that it is an evolutionary process and is
since all of the tasks are considered together, the or- therefore able to absorb system changes such as the
deris defined according & instead of the task arrival  addition or deletion of tasks, or changes in the number
timet;. So the consideration gfis not necessary i{i0) of hosts available in the grid resource.
as opposed to the functid6). Another aspect is that The two scheduling algorithms are both imple-
the host selection is defined usiMjk and the PACE  mented and can be switched from one to another in
evaluation result texeis calculated directly using cor-  the agent. The algorithms provide a fine-grained so-

responding resource models, while in the funcgj lution to dynamic task scheduling and load balanc-
different possible host selectiofshave all to be con- ing across multiple hosts of a local grid resource.
sidered and compared. However, the same methodology cannot be applied

The nature of the idle time should also be taken into direcﬂy to a |arge-sca|e gr|d environment, since the
account. Thisis represented using the average idle timea|gorithms do not scale to thousands of hosts and

of all hostsgk. tasks. An additional mechanism is required for multi-
or = max {tey) — min (ts;) ple age_nts towork together and achieve global grid load
1<j<m 1<j<m balancing.
D) i Miji(tejx — tsi) (13)
n 4. Global grid load balancing
The contract penalj is derived from the expected In this work, a grid is a collection of multiple local
deadline times tr and task completion time te. grid resources that are distributed geographically in a
S (tey — tr)) wide area. The problem thatis addressed in this section
Or = el it o (14) is the discovery of available grid resources that provide
mn the optimum execution performance for globally grid-
The cost value for the schederepresented b submitted tasks. The service discovery process indi-
andMij, is derived from these metrics and theirimpact rectly results in a load-balancing effect across multiple
predetermined by: grid resources.
m i c
fk= W + Wor + WOk (15)  4.1. Service advertisement and discovery

wm 4+ Wi + We

The genetic algorithm utilises a fixed population An agent takes its local grid resource as one of its
size and stochastic remainder selection. Specialisedcapabilities. An agent can also receive many service
crossover and mutation functions are developed for use advertisements from nearby agents and store this in-
with the two-part coding scheme. The crossover func- formation in its coordination layer as its own knowl-
tion first splices the two ordering strings at a random edge. All of the service information are organised
location, and then reorders the pairs to produce legit- into Agent Capability Tables (ACTs). An agent can
imate solutions. The mapping parts are crossed overchoose to maintain different kinds of ACTs accord-
by first reordering them to be consistent with the new ing to different sources of service information. These
task order, and then performing a single-point (binary) include:
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e T_ACT: In the coordination layer of each agent, by a neighbouring agent. While this may decrease the
T_ACT is used to record service information of the load-balancing effect, the trade-offis reasonable as grid
local grid resource. The local management layer is users prefers to find a satisfactory resource as fast and
responsible for collecting this information and re- as local as possible.
porting it to the coordination layer. The advertisement and discovery mechanism also

e L_ACT: Each agent can have oneACT to record allows possible system scalability. Most requests are
the service information received from its lower processed in a local domain and need not to be
agents in the hierarchy. The services recorded in submitted to a wider area. Both advertisement and
L_ACT are provided by grid resources in its local discovery requests are processed between neighbour-
scope. ing agents and the system has no central structure,

e G_ACT: The GACT in an agent is actually arecord which otherwise might act as a potential bottle-
of the service information received from its up- neck.
per agent in the hierarchy. The service information
recorded in GACT is provided by the agents, which  4.2. System implementation

have the same upper agent as the agent itself.
Agents are implemented using Java and data are rep-

There are basically two ways to maintain the con- resented in an XML format. An agent is responsible
tents of ACTs in an agent: data-pull and data-push, for collecting service information of the local grid re-
each of which has two approaches: periodic and event- source. An example of this service information can be
driven. found below.

o Data-pull An agent asks other agents for their ser- ~29entgrid type='service™>

vice information either periodically or when a re- ~ <address>gem.dcs.warwick.ac.uk</address>
quest arrives. <port>1000</port>
o Data-pushAn agent submits its service information <type>SunUltral0</type>
to other agents in the hierarchy periodically or when  <nproc>16</nproc>
the service information is changed. <environment>mpi</environment>

. . . <environment>pvms</environment >
Apart from service advertisement, another impor-

tant process among agents is service discovery. Discov-
ering available services is also a cooperative activity.
Within each agent, its own service provided by the local </2gentgrid>
grid resource is evaluated first. If the requirement can  The agent identity is provided by a tuple of the-
be met locally, the discovery ends successfully. Other- dressand port used to initiate communication. The
wise service information in both ACT and GACT hardware model and the number of processors are also
is evaluated and the request dispatched to the agentprovided. The example specifies a single cluster, in this
which is able to provide the best requirement/resource case a cluster of 16 SunUItral0 workstations. To sim-
match. If no service can meet the requirement, the re- plify the problem, the hosts within each grid resource
questis submitted to the upper agent. When the head ofare configured to be homogeneous. The application ex-
the hierarchy is reached and the available service is still ecution environments that are supported by the current
not found, the discovery terminates unsuccessfully.  agent implementation include MPI, PVM, andest
While the process of service advertisement and dis- mode that is designed for the experiments described
covery is not motivated by grid scheduling and load in this work. Undertestmode, tasks are not actually
balancing, it can result in an indirect coarse-grained executed and predictive application execution times
load-balancing effect. A task tends to be dispatched to are scheduled and assumed to be accurate. The latest
a grid resource that has less workload and can meet thescheduling makespan indicates the earliest (approx-
application execution deadline. The discovery process imate) time that corresponding grid resource become
does not aim to find the best service for each request, available for more tasks. Due to the effect of load bal-
but endeavours to find an available service provided ancing, itis reasonable to assume that all of hosts within

<environment>test</environment>
<freetime>Nov 1504:43:102001</freetime>
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a grid resource have approximately the sdraetime estimated using:
The agents use this item to estimate the workload of _
each grid resource and make decisions on where tote, = w + min {evalfy,tm,)}  (16)

dispatch incoming tasks. This item changes over time VHCH Hz0. 5ty A0

and must be frequently updated. Service advertisement
is therefore important among the agents.

A portal has been developed which allows users to
submit requests destined for the grid resources. An ex-
ample request is given below.

For a grid resource with homogeneous hosts, the
PACE evaluation function is calledtimes. If tg <tr,,
the resource is considered to be able to meet the re-
quired deadline. Otherwise, the resource is not consid-
ered available for the incoming task. This performance

<agentgrid type="request” > estimation of local grid resources at the global level

<application>

<name>sweep3d</name>

<binary>
<file>binary/sweep3d</file>
<inputfile>input/input.50</inputfile>
</binary >

<performance>
<datatype>pacemodel</datatype>
<modelname>model/sweep3d</modelname>
</performance>

</application>

<requirement >
<environment>test</environment>
<deadline>Nov 1504:43:17 2001</deadline>

is simple but efficient. However, when the task is dis-
patched to the corresponding agent, the actual situa-
tion may differ from the scenario considered(i6).

The agent may change the task order and advance or
postpone a specific task execution in order to balance
the workload on different hosts, and in so doing max-
imise resource utilisation while maintaining the dead-
line contracts of each user.

Service discovery for a request within an agent in-
volves multiple matchmaking processes. An agent al-
ways gives priority to the local grid resource. Only
when the local resource is unavailable is the ser-
vice information of other grid resources evaluated
and the request dispatched to another agent. In or-
der to measure the effect of this mechanism for grid

scheduling and load balancing, several performance
metrics are defined and many experiments are carried
out.

</requirement >
<email>junwei</email>

</agentgrid>

A user is required to specify the details of the ap-
plication, the requirements and contact information for
each request. Application information includes binary
executable files and also the corresponding PACE ap- - ) o F )
plication performance model tin the current imple- uation of grid load balancing using intelligent agents

mentation we assume that both binary and model files descrik_)ed in above s_ections. Performaqce metrips are
are pre-compiled and available in all local file systems. preqefmed and experimental results are included in this
In the requirements, both the application execution en- section.

vironment and the required deadline timesihould be

specified. Currently the user’'s email address is used as5.1. Performance metrics

the contact information.

Service discovery processes are triggered by the  There are a number of performance criteria that can
arrival of a request at an agent, where the kernel be used to describe resource management and schedul-
of this process is the matchmaking between service ing systems. What is considered as high performance
and request information. The match is straightforward depends on the system requirements. In this work, there
whether an agent can provide the required application are several common statistics that can be investigated
execution environment. The expected execution com- quantitatively and used to characterise the effect of
pletion time for a given task on a given resource can be scheduling and load balancing.

5. Performance evaluation

Experiments are carried out for performance eval-
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5.1.1. Total application execution time

This defines the period of time when a set ofm
parallel taskd are scheduled onto resourdésvith n
hosts. Note that the host déthere is slightly different
from that defined in SectioB.1because it may include
those either at multiple grid resources or within a single
grid resource.

t = max
1<j<m

{te;} — min {ts;} a7
1<j<m

5.1.2. Average advance time of application
execution completion
This can be calculated directly using:

Z’]’Ll(trj —te))
m

(18)
which is negative when most deadlines fail.

5.1.3. Average resource utilisation rate
The resource utilisation ratg of each hosH; is
calculated as follows:
_ 2vjm=1(t&j — 15))

Vi ; x 100%

(19)
The average resource utilisation rat®f all hosts

His:

_ Dis1Vi

n

v (20)

whereuv is in the range 0-1.

5.1.4. Load-balancing level
The mean square deviation gfis defined as:

Z?:1(U - Ui)z

n

d= (21)

and the relative deviation afoverv that describes the
load-balancing level of the system is:

B = (1-‘-’) x 100%
v

The most effective load balancing is achieved when
d equals zero an@ equals 100%. The four aspects of

(22)
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across all the considered hosts, the resource utilisation
rate is usually high and the tasks finish quickly. An-
other metrics that can only applied for measurement of
grid agents is the number of network packets used for
service advertisement and discovery.

5.2. Experimental design

The experimental system is configured with 12
agents, illustrated by the hierarchy showrkig. 2

These agents are nam&4q ..., S2 (for the sake
of brevity) and represent heterogeneous hardware re-
sources containing 16 hosts/processors per resource.
As shown inFig. 2 the resources range in their com-
putational capabilities. The SGI multiprocessor is the
most powerful, followed by the SunUltral0, 5, 1, and
SPARCStation 2 in turn.

In the experimental system, each agent maintains a
set of service information for the other agents in the
system. Each agent pulls service information from its
lower and upper agents in every 10 s. All of the agents
employ identical strategies with the exception of the
agent at the head of the hierarctg;) that does not
have an upper agent.

The applications used in the experiments include
typical scientific computing programs. Each applica-
tion has been modelled and evaluated using PACE.
Different applications have different performance sce-
narios. During each experiment, requests for one
of the test applications are sent at 1-s intervals
to randomly selected agents. The required execu-
tion time deadline for the application is also se-
lected randomly from a given domain. The request
phase of each experiment lasts for 10 min during
which 600 task execution requests are sent out to the
agents.

While the experiments use the same resource con-
figurations and application workloads described above,
different combinations of local grid scheduling al-
gorithms and global grid mechanisms are applied as
shown inTable 1

5.3. Experimental results

the system described above can be applied bothto a grid

resource or a grid environment that consists of multi-

The experimental results are givenTiable 2 this

ple grid resources. These performance metrics are alsoincludes the three metrics applied to each agent and to

interrelated. For example, if the workload is balanced

all the grid resources in the system.
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Case study: experimental design
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S
(SGIOrigin2000, 16)

S>
(SGIOrigin2000, 16)

Sy

(SunUltral0, 16)
S3
(SunUltral0, 16)

Si1
(SunSPARCstati
on2, 16)

Fig. 2. Case study: agents and resources.

5.3.1. Experiment 1

Experiment number

(SunSPARCstati
on2, 16)
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Inthe first experiment, each agentis configured with
the first-come-first-served algorithm for local grid re-
source scheduling. Agents are not organised for co-

1 2 3 operation. The experimental scenario is visualised in
First-come-first-served algorithm v Fig_ 3
'StEfaF'Ve hde““f_“c a'got”th’;‘d_ v v The algorithm does not consider makespan, idle
ervice adverisement and discovery v time or deadline. Each agent receives approximately
Table 2
Case study: experimental results
Experiment number
1 2 3
e(s) v (%) B (%) e (s) v (%) B (%) e(s) v (%) B (%)
S 42 7 71 52 9 89 29 81 96
S 11 9 78 34 9 89 23 81 95
S -135 13 62 23 13 92 24 77 87
% —328 22 45 ~30 28 96 44 82 94
S —607 32 56 —492 58 95 38 82 94
S —321 25 56 ~123 29 90 42 78 92
S —261 23 57 10 25 92 38 84 93
S —695 33 52 —513 52 90 42 82 91
S —806 45 58 —724 63 90 30 80 84
Sio —405 28 61 ~129 34 94 25 81 94
Sn ~1095 44 50 -816 73 92 35 75 89
S —859 a1 46 —550 67 91 26 78 90
Total —475 26 31 —295 38 42 32 80 90
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Agent Task Distribution % Agent Task Distribution %
SO1 I I ] 7 So1 T AT 17
S02 NNy ] 8 S02 M ENNATIT ] 8
S03 [N 1 5 S03 [INNT WY 15
S04 [N T W T T 1 9 S04 [N TR 19
SUCHIEN & B 0 SEENE 5 — . ] SO TN WTIN T HEN W I 00 10
So6 I ENT TENT T NI ] 8 S06 TR | | 18
SO7 [ N - ). (¢ SO7 NI 17
G e e E i e UG S B Eme o o —
Soo DN THEN T O T N N N EEENEY T ] S0o N DTN N | R 1) 11
S0 (M DY T . i S0 (N T N 1 7
S11 (N DO W B N DY e S ST W W TR
St N N O T W ey W ] 7 ST TE 7T 7T T W 0 7

0.0s 1396.5s 2793.0s 0.0s 1099.0s 2198.0s
Fig. 3. Experimental scenario . Fig. 4. Experimental scenario II.

50 task requests on average, which results in only the
powerful platforms (SGI multiprocesso& and )
meeting the requirements. The slower machines in-
cluding the Sun SPARCStations clust&g and S,
impose serious delays in task execution with long task
gueues (se€ig. J). The total task execution time is )
about 46 min. The overall average delay for task execu- 2-3-3- Experiment 3 _ _ _
tion is approximately 8 min. Itis apparent that the high N experiment 3, the service advertisement and dis-
performance platforms are not utilised effectively, and COVery mechanism is enabled for high-level load bal-
the lack of proper scheduling overloads clusters like @Ncing. The experimental scenario is visualised in
Si1 thatis only 44% utilised. The average utilisation of Fig. 5 ) . ) o

grid resources is only 26%. The workload for each host Service discovery results in a new distribution of re-
in each grid resource is also unbalanced. For example, dU€Sts to the agents, where the more powerful platform

the load-balancing level @, is as low as 46%. The  T€ceives more requests. As showrFig. 5 powerful
overall grid workload is also unbalanced at 31%. platform like S; receives 16% of tasks, which is four
times of tasks received by relatively slow platfo8n.

The total task execution time is also dramatically de-
creased to 11 min. As a result, the majority of task ex-
ecution requirements can be met and all grid resources
are well utilised (80% on average). The load balanc-

each grid resources is significantly improved, the lack
of any higher level load-balancing mechanism results
in a slightly improved overall grid load balancing to
42% (as opposed to 31% in experiment 1).

5.3.2. Experiment 2
In experiment 2, the iterative heuristic algorithm is
used in place of the first-come-first-serve algorithm al-

though no higher level agent cooperation mechanism ¢ S .
is applied. The experimental scenario is visualised in "9 Of the overall grid is significantly improved from
Fig. 4 42% (in experiment 2) to 90%. The load balancing on

The algorithm aims to minimise makespan and idle
time, while meeting deadlines. Compared to those of "‘;’;“‘IT““ EHetpian k-
experiment 1, almost all metrics are improved. Task 5o gy — — —— 14

executions are completed earlier. The total task exe- sz T — T TEE—— T

<

cution time is improved from 46 to 36 min and the 50 [ -
average task execution delay is reduced to approxi- §§§ [;:__:!:;i_i d
mately 5 min. However, resources suchsasandS;» S07 TR B BN |
remain overloaded and the GA scheduling is not able % —:__:-:E Z
to find solutions that satisfy all the deadlines. Gener- g, " EEETT T T T T—T——— —?} o
ally, resources are better utilised as a result of the bet- s11 = ——— T ¢

5

ter scheduling, such as the use%f that increases e m
from 44 to 73%. The overall average utilisation also ' '
improves from 26 to 38%. While load balancing on Fig. 5. Experimental scenario lll.
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Fig. 6. Case study: trends | for experimental results on advance times Fig. 8. Case study: trends Ill for experimental results on load-

of application execution completien balancing levep.

resources such & and$; are only marginally im-  5-3.4. Application execution

proved by the GA scheduling when the workload is N Fig. 6, it is apparent that both the GA schedul-

higher. None of other agents show an improvement in ing and the service discovery mechanism contribute to

local grid load balancing. improving the application execution completion.
Experimental results ifiable 2are also illustrated in The curve implies that the more a resource is loaded

Figs. 6-8 showing the effect on the performance met- the more significant the effect is. For exame and

rics givenin Sectiob.1 The curves indicate thatdiffer- S are notoverloaded during the three experiments, and

ent platforms exhibit different trends when agents are therefore the value of only changes slightlys;; and

configured with more scheduling and load-balancing Si2 are heavily overloaded during the experiments 1

mechanisms. Among these the curvesSgIS, (which anq 2, and therefor_e the imp_roygmentgdh th? ex-
are the most powerful) arf§| 1, Si» (which are the least ~ Periments 2 and 3 is more significant. The situations
powerful) are representative and are therefore empha-of Ss, ..., Sio are distributed between these two ex-

sised, while others are indicated using grey lines. The tremes. The curve for the overall grid provides an av-

curve for the overall grid is illustrated using a bold erage estimation for all situations, which indicates that

line. the service discovery mechanism contributes more to-
wards the improvement in application executions than
GA scheduling.

5 —— S|

80 4 :::i 5.3.5. Resource utilisation

70 ot The curves irFig. 7illustrate similar trends to those

60 o—85 of Fig. 6. §, & and §1, S still represent the two
SEE —o—56 extreme situations between which the other platforms
2 404 ——87 are distributed.

30 1 ——S8 The curve for the overall grid indicates that the ser-

20 1 s vice discovery mechanism contributes more to max-

109 ii:? imising resource utilisation. However, overloaded plat-

0 | ' 5 ' 5 " —a—srn forms like S;1 and S;2 benefit mainly from the GA

_ ’ =3 Total scheduling, which is more effective at load balancing
Experiment Number

when the workload is high; lightly loaded platforms

Fig. 7. Case study: trends Il for experimental results on resource like S andS_z Chleﬂ)_/ benefit _from the service discov-
utilisation ratev. ery mechanism, which can dispatch more tasks to them.
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5.3.6. Load balancing 1604 [ Centralised
Curves inFig. 8 demonstrate that local and global 140 9y Distributed
grid load balancing are achieved in different ways. 1(2)8 1
While S, S andS; 1, Si2 are two representative sit- 50
uations, the global situation is not simply an average 60 A
of local trends as those illustratedkigs. 6 and 7In 40
the second experiment, when the GA scheduling is en- 20
abled, the load balancing of hosts or processors within 0
a local grid resource are significantly improved. In the
third experiment, when the service discovery mech-
anism is enabled, the overall grid load balancing is Fig. 9. comparison of total application execution time between the
improved dramatically. It is clear that the GA schedul- centralised and distributed strategies.
ing contributes more to local grid load balancing and
the service discovery mechanism contributes more to
global grid load balancing. The coupling of both as
described in this work is therefore a good choice to
achieve load balancing at both local and global grid
levels.

t (mins)

4 6 8 10 12 14 16 18 20
Agent Number

ments, the number of grid agents is changed to enable
the system scalability to be investigated.

5.4.1. Total application execution time

Fig. 9 provides a comparison of total application
execution time for the two strategies.

The total task execution time decreases when the
number of agents and grid resources increases. It is
clear that the centralised strategy leads to a bit bet-
ter load-balancing results, since tasks finish in a less
time under the centralised control. This is more obvi-
ous when the number of the agents increases.

5.4. Agent performance

Additional experiments are carried out to compare
the performance of grid agents when different ser-
vice advertisementand discovery strategies are applied.

These are introduced briefly in this section. It is reasonable that a centralised strategy can

th A cent;allsEed chontrollltng mechan|sdmt|s (rj]e3|grlﬁd for achieve a better scheduling, because full service adver-
€ agents. tach agent Is assumed 1o have € préyiqq manteads to full knowledge on the performance of
knowledge of any other agents. Each time an agent

. ) o all grid resources. However, under a distributed mecha-
receives a task execution request, it will contact all of

. . . nism, each agent has only up-to-date information on its
the other agents for quoting of completion time. The g yup

igh [ hich limit the scheduling effect.
best bid is chosen and the request is dispatched to thene'g bouring agents, which limit the scheduling effect

available grid resource directly in one step. Thisis ac- 5. 4.2 Average advance time of application
tually an event-driven data-pull strategy, which means gyecution completion

ery. . . _ in Fig. 10in terms of the average advance time of ap-
The service advertisement strategy used in the last jication execution time.

section is periodic data-pull, where service informa-
tion is only transferred among neighbouring agents. Agent Number
This results that service discovery has also to be pro- 4 46 8 10 12 14
cessed step by step. This distributed strategy means R o
that not full advertisement results in necessary discov-
ery steps. The experimental results introduced below
indicate that balancing the overhead for advertisement
and discovery in this way can lead to a better agent
performance.

The details of the experimental design are not in-
cluded, though actually very similar to that introduced Fig. 10. Comparison of average advance time of application execu-
in Section5.2 One difference is that in these experi- tion completion between the centralised and distributed strategies.

20 4
-30 4
-40 4
504 .
60 ] 7
-70 4

€ (mins)

"""" Centralised
Distributed
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25000 - S— such as Conddg8], EASY [27], Maui[25], LSF[40]
"""" i _ and PBJ24]. Most of these support batch queuing us-
ing the FCFS algorithm. The main advantage of GA

20000 4

% 130009 scheduling used in this work for job scheduling is the
& 10000 quality of service and multiple performance metrics
50004 .7 support.
—_— This work also focuses on the cooperation of local
0 T T T T T T T T 1 . .
$T 8 & i i ik 18 48 50 grid and global grid levels of management and schedul-
Agent Number ing. OGSA and its implementation, the Globus toolkit

[19], is the standard for grid service and application
Fig. 11. Comparison of network packets between the centralised and development, which is based on web services proto-
distributed strategies. cols and standard81]. Some existing systems use the

Globus toolkit to integrate with the grid computing en-

Tasks are executed quicker when the number of ironment, including Condor-G22], Nimrod/G [3],

agents increases. It is clear that the centralised strat-though a centralised control structure is applied in both
egy leads to a bit better result again. The reason is jmplementations. Another grid computing infrastruc-
similar to that described ir_1 the last section. The re- ture, Legior{23], is developed using an object-oriented
sult values are negative since the workload of these methodology that provides similar functionalities to the
experiments is quite heavy and grid resources can- Gjohus. In this work, a multi-agent approach is consid-
not meet the deadline requirements of task execution gre(. Agents are used to control the query process and

averagely. to make resource discovery decisions based on inter-
nal logic rather than relying on a fixed-function query
5.4.3. Network packets engine.
A differentresultis included ifrig. 11that provides Agent-based grid management is also used in
a comparison of the network packets involved during JAMM [7,38] and NetSolve[17,18] where a cen-
the experiments of the two strategies. tralised broker/agents architecture is developed. In this

The number of network messages used for service work, agents perform peer-to-peer service advertise-
advertisement and discovery increases linearly with the ment and discovery to achieve global grid load bal-
number of agents. Itis clear that the distributed strategy ancing. Compared with another “Agent Grid” work
significantly decreases the amount of network traffic. described in[33], rather than using a collection of
The strategy of only passing messages among neigh-many predefined specialised agents, grid load bal-
bouring agents improves the system scalability as the ancing in this work uses a hierarchy of homoge-
agent number increases. neous agents that can be reconfigured with different

roles at running time. While there are also several

other related projects that have a focus on agent-
6. Related work based grid computing29,34,37] the emphases of

these works are quite different. In this work, per-

In this work, local grid load balancing is performed formance for grid load balancing is investigated in
in each agent using Al scheduling algorithms. The on- a quantitative way that cannot found in any other
the-fly use of predictive performance data for schedul- work.
ing described in this work is similar to that of Ap- There are many other enterprise computing and mid-
pLeS[5], Ninf [30] and Nimrod[2]. While AppLeS dleware technologies that are being adopted for grid
and Ninf management and scheduling are also basedmanagement, such as CORB25] and Jini[4]. Com-
on performance evaluation techniques, they utilise the pared with these methods, the most important advan-
NWS [39] resource monitoring service. Nimrod has a tage of an agent-based approach is that it can provide a
number of similarities to this work, including a para- clear high-level abstraction of the grid environment that
metric engine and heuristic algorithifi§ for schedul- is extensible and compatible for integration of future
ing jobs. There are also many job scheduling systems, grid services and toolkits.
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7. Conclusions [5] F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao,
Application-level scheduling on distributed heterogeneous net-
This work addresses grid Ioad—balancing issues us- works, in: Proceedings of the Supercomputing‘96, Pittsburgh,

. o S : PA, USA, 1996.
ing a combination of intelligent agents and multi-agent (6] F. Berman, A.J.G. Hey, G. Fox, Grid Computing: Making The

approaches. For local grid load balancing, the iter- Global Infrastructure a Reality, John Wiley & Sons, 2003.
ative heuristic algorithm is more efficient than the [7] C.Brooks, B. Tierney, W. Johnston, JAVA agents for distributed
first-come-first-served algorithm. For global grid load system management, LBNL Report, 1997.

balancing, a peer-to-peer service advertisement and [8] J. Cao, D.J. Kerbyson, E. Papaefstathiou, G.R. Nudd, Perfor-
mance modelling of parallel and distributed computing using

discovery technique is shown to be effective. The Use e 'in: proceedings of the IPCCC'00, Phoenix, AZ, USA,

of a dlstrlbu_ted_ ggent strategy can reduce the network 2000, pp. 485-492.

overhead significantly and allow the system to scale [9] J. Cao, D.J. Kerbyson, G.R. Nudd, Dynamic application inte-
well rather than using a centralised control, as well as gratiqn using agent-based operational administration, in: Pro-
achieving a reasonable good resource utilisation and ~ ¢eedings of the PAAM'00, Manchester, UK, 2000, pp. 393~

. L . . 396.
meeting appllcat!on execu_tlon deadl_mes' . [10] J. Cao, D.J. Kerbyson, G.R. Nudd, High performance service
Further experiments will be carried out using the discovery in large-scale multi-agent and mobile-agent systems,
grid testbed being built at Warwick. Since large-scale Int. J. Software Eng. Knowl. Eng. 11 (5) (2001) 621-641.
deployments of developing systems are problematic, [11] J. Cao, D.J. Kerbyson, G.R. Nudd, Use of agent-based service
a grid modelling and simulation environment is under discovery for resource management in metacomputing envi-

development to enable performance and scalability of ronment, in: Proceedings of the Euro-Par‘01, Lecture Notes
p p Yy on Computer Science, vol. 2150, Springer, Berlin, 2001, pp.

the agent system to be investigated when thousands of  gg»_ggg.

grid resources and agents are involved. [12] J.Cao, D.J. Kerbyson, G.R. Nudd, Performance evaluation of an
The next generation grid computing environment agent-based resource management infrastructure for grid com-

must be intelligent and autonomous to meet require- puting, in: Proceedings of the CCGrid‘01, Brisbane, Australia,

L 2001, pp. 311-318.

ments of self mana}gement' Related resear?h topics In_[13] J. Cao, D.P. Spooner, J.D. Turner, S.A. Jarvis, D.J. Kerbyson,

clude semantic gridg41] and knowledge grid§42]. S. Saini, G.R. Nudd, Agent-based resource management for

The agent-based approach described in this work grid computing, in: Proceedings of the AgentGrid‘02, Berlin,

is an initial attempt towards a distributed frame- Germany, 2002, pp. 350-351.

[14] J. Cao, S.A. Jarvis, S. Saini, D.J. Kerbyson, G.R. Nudd, ARMS:
an agent-based resource management system for grid comput-
ing, Scientific Programming (Special Issue on Grid Computing)

work for building such an intelligent grid environ-
ment. Future work includes the extension of the agent

framework with new features, e.g. automatic QoS 10 (2) (2002) 135-148.

negotiation, self-organising coordination, semantic in- [15] J. Cao, S.A. Jarvis, D.P. Spooner, J.D. Turner, D.J. Kerbyson,
tegration, knowledge-based reasoning and ontology- G.R. Nudd, Performance prediction technology for agent-based
based service brokering resource management in grid environments, in: Proceedings of

the HCW'02, Fort Lauderdale, FL, USA, 2002.

[16] J. Cao, D.P. Spooner, S.A. Jarvis, S. Saini, G.R. Nudd,
Agent-based grid load balancing using performance-driven task
scheduling, in: Proceedings of the IPDPS'03, Nice, France,
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