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Abstract—To respond to emergencies in a fast and an effective manner, it is of critical importance to have efficient evacuation 

plans that lead to minimum road congestions. Although emergency evacuation systems have been studied in the past, the 

existing approaches, mostly based on multi-objective optimizations, are not scalable enough when involve numerous time 

varying parameters, such as traffic volume, safety status, and weather conditions. In this paper, we propose a scalable 

emergency evacuation service, termed the MacroServ that recommends the evacuees with the most preferred routes towards 

safe locations during a disaster. Unlike many existing approaches that model systems with static network characteristics, our 

approach considers real-time road conditions to compute the maximum flow capacity of routes in the transportation network. 

The evacuees are directed towards those routes that are safe and have least congestion resulting in decreased evacuation 

time. We utilized probability distributions to model the real-life stochastic behaviors of evacuees during emergency scenarios. 

The results indicate that recommendation of appropriate routes during emergency scenarios play a critical role in quicker and 

safe evacuation of the population. 

Index Terms—Route recommendation service, emergency evacuations, traffic modeling, scalable service  

——————————      —————————— 

1 INTRODUCTION

atural and man-made disasters, such as tsunamis, 
earthquakes, floods, and epidemics pose a significant 

threat to human societies. In response to the growing 
number of recent disasters, such as the Colorado flood, 
Oklahoma tornado, Japan’s earth quake, Katrina 
hurricane, and in particular, the Red River crest that 
causes flood almost every year in Fargo, North Dakota, 
the importance and scope of emergency evacuation 
systems have grown tremendously over the past decade 
[1]. Well-planned evacuation operations and 
identification of appropriate rescue routes before and 
during a disaster play a significant role in saving lives 
and minimizing casualties. 

1.1 Motivation  

Generally, transportation planning departments consider 

the peak traffic demands during normal workdays and on 
special occasions [2], [3]. However, it is almost impossible 
to conceive transportation plans for emergency situations, 
due to which large volumes of traffic involved in mass 
evacuations is likely to exceed the capacity of road 
networks that may lead to the loss of human lives. For 
example, due to the lack of proper evacuation plan, in 
1991, 25 people lost their lives within the first 30 minutes 
while attempting to flee their Oakland Hills (California) 
neighborhood during a wildfire. Moreover, reports 
indicate that the inefficient evacuation planning in case of 
the Katrina and Rita hurricanes resulted in a heavy traffic 
jam on the interstates. A similar traffic jam occurred for 20 
hours after a winter storm in Atlanta, GA, USA, in 
January 2014, as the transportation network was 
incapable of handling the traffic congestion caused by 
snow and accidents. To prevent such incidents, 
emergency evacuation plans must be developed to ensure 
the availability of safest and most efficient evacuation 
routes for the residents of a structure, region, or city. 

The objective of this paper is to develop a scalable 
service that can guide evacuees towards safe and least 
congested routes during a disaster. With the integration 
of Intelligent Transportation System (ITS), the proposed 
MacroServ service is capable of computing the efficient 
traffic flows leading to minimum congestion of the roads 
during an emergency evacuation. 

1.2 Research Problem  

Several works, such as [4]–[7], have applied multi-
objective optimization in evacuation modeling. Generally, 
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optimization-based evacuation models consider several 
assumptions to optimize parameters, such as route 
length, shelter locations, and evacuation times. However, 
as discussed in [2], most of the times such assumptions 
are performance limiting or unrealistic, and do not 
precisely depict the dynamics of real-life emergency 
situations. Moreover, the following are the limitations of 
most of the optimization-based evacuation models that 
negatively affect the performance of such systems [2].  
 A few evacuation models simulate the traffic flow with 

static road network characteristics that do not truly 
depict the real emergency scenarios [5], [8]. For 
instance, numerous time varying behavioral, 
managerial, and stochastic factors, such as number of 
evacuees and traffic conditions, are involved during an 
evacuation [8]. Such factors may lead to congestion of 
the paths that were otherwise suggested as optimal. 

 If time factor is added to optimization problems, such 
that the static network is expanded over the planning 
horizon for every time interval, then the corresponding 
problem space becomes extremely large and there are 
no known polynomial algorithms for solving such 
problems [6]. 

 Evacuation modeling in most of the optimization-based 
approaches, is formulated as a network flow 
optimization problem [6], [9]. However, such 
approaches are not scalable for the real-world large-
sized evacuation networks, due to the high 
computational complexities. Moreover, such problems 
are also considered to be NP-hard because of the multi-
commodity nature, as evacuees are differentiated by 
the origin-destination pairs [7]. Therefore, solving for 
the travel demand rates and route flow rates requires 
simulation, as a closed form expression cannot be 
captured with optimization models [10]. 

 As mentioned earlier, the optimization-based 
evacuation models consider assumptions for various 
parameters, such as road capacities, traffic volumes, 
route distances, and population sizes [2]. However, 
such assumptions can become invalid during a real 
emergency scenario due to variations in weather 
conditions, unforeseen conditions of traffic, and 
possible destruction of transportation infrastructure.  
The immediate repercussion of the above listed 

limitations is the suboptimal performance of 
optimization-based evacuation models.  

1.3 Methods and Contributions 

To address the abovementioned limitations, in this paper, 
we propose a scalable service, termed the MacroServ, 
which is capable of performing real-time simulation of 
dynamic large-scale transportation networks during 
emergency scenarios. Simulation based evacuation 
planning by emergency management agencies require 
faster execution of large-scale vehicular traffic flows. 
Therefore, we utilize parallel computing to achieve the 
required scale, size, and speed of the computations. The 
MacroServ service integrates with the ITS to obtain real-
time traffic data and utilizes our proposed algorithm to 
compute the maximum flow of routes and route costs 

among disaster sites and safety locations [11]. Based on 
the route costs, the MacroServ service redirects the traffic 
on alternate preferred routes before the congestion can 
occur. In this way, evacuees are guided towards the most 
preferred routes that have the minimum possible risk and 
the least amount of congestion.  

Massive evacuations involve many stochastic factors, 
such as degree of compliance of evacuees to evacuation 
calls, rate of evacuees departing from each household/ 
area, behavior of drivers, unforeseen traffic loads, and 
road conditions on transportation network. To depict 
such factors in our model, we make use of probability 
distributions, such as: (a) Poisson distribution [12] and (b) 
Weibull distribution [12]. The aforementioned probability 
distributions allow us to model emergency evacuation 
scenarios that closely match with the realistic scenarios. 

As a case study, we performed our simulations on the 
real map of City of Fargo, ND, USA where the Red River 
crest causes flood almost every year. The gradient (slope) 
of the Red River averages five inches per mile of length, 
and drops to 1.5 inches per mile in the region of Drayton-
Pembina [13]. Due to lack of slope, the Red River tends to 
pool and cause floods. To model our system, we obtained 
the data, including road capacities, traffic volumes, speed 
limits, contours’ elevations, historic crest levels of Red 
River, and historic flood affected areas, from the City of 
Fargo [14] and North Dakota Department of 
Transportation (NDOT) [15]. For our simulations, we 
considered the population of size 108,000 living at Red 
River flood zones that needs to be evacuated during a 
flood. Moreover, the transportation network consists of 
7,370 road links and 2,800 intersections. 

Our simulation results indicate that the traditional 
evacuation plans devised by the disaster management 
agencies are inefficient to handle sudden loads of traffic 
during an emergency. The sudden evacuations result in 
traffic jams due to which evacuation time increases. When 
the evacuees are directed towards the preferred routes 
using our MacroServ service, the overall evacuation time 
significantly decreases. Moreover, the simulation results 
indicate that the evacuation performance measures are 
largely dependent on the highway network structure and 
the number of vehicles produced in an emergency 
planning zone. In summary, the MacroServ service is 
designed to: (a) act as a decision making tool that will 
enable transportation departments to evaluate and review 
the emergency evacuation plans by simulating various 
disaster scenarios and (b) recommend preferred and 
efficient routes to the evacuees during the course of a 
disaster by making use of high-end sensors and the ITS. 

The remainder of this paper is organized as follows. The 
MacroServ service architecture is described in Section 2. In 
Section 3, we discuss the importance and role of sensors in 
emergency scenarios. Section 4 presents the design and 
modeling of our approach. Experimentation results are 
discussed in Section 5. In Section 6, we discuss the related 
work, and Section 7 concludes the paper. 
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2 SERVICE ARCHITECTURE 

The MacroServ is designed as a route recommendation 
service that computes the preferred routes on a 
transportation network during the emergency evacuation 
scenarios. To make such service scalable, the parallel 
computing architecture is utilized on a cluster setup. We 
provide details about various components of the service 
architecture with an illustrated example. 

2.1 Major Components 

2.1.1 Road Side Units 

As depicted in Fig. 1, the collection of traffic information 
is performed by Road Side Units (RSU). The RSUs consist 
of sensors deployed mostly on the intersections to capture 
the road characteristics and disaster related information, 
such as average speed of vehicles, average number of 
vehicles, rain intensity, flood level, and road’s extreme 
temperature conditions (See Section 3). The collected 
information is transferred to the route recommendation 
service, where the route computation takes place. 

2.1.2 Route Recommendation Service 

The basic purpose of route recommendation service is to 
perform the real-time analysis of the sensory data 
received through ITS and compute preferred routes for 
the evacuees that are least congested and at least risk. Fig. 
1 depicts the high-level components of the service, and 
the computational details, complexity, as well as 
empirical evaluation of the service are thoroughly 
investigated in the subsequent sections of the paper. The 
sensory data as input workload to the service consists of 
current traffic and disaster related information that is 
relayed to the route computation algorithm. The route 
computation algorithm running on cluster nodes 
computes a subset of routes that have the sufficient 
capacity to allow maximum traffic flow with minimum 
delay. The service relays the information about the 
computed set of preferred routes to the emergency 
management department to take appropriate decisions 
during evacuations, as well as to the evacuees for traffic 
guidance through RSU, navigation devices, and other 
means of communication, such as radio or smart phones.   

2.2 An Example Scenario 

Fig. 1 also presents an example scenario of the proposed 
MacroServ service architecture. While the evacuation is in 
progress, the vehicles are following different routes on a 
city’s transportation network. The road congestion 
information is communicated from the RSU sensors to the 
Traffic Control Center (TCC), as shown in Step 1 from 
where it is communicated to route recommendation 
service (Step 2). The route recommendation service 
utilizes computer cluster and route computation 
algorithm to compute the alternate routes with the 
maximum flow capacity (Step 3). The vehicles 
approaching towards congested road links are warned in 
advance, and are provided with alternate preferred routes 
on the navigation devices to prevent congestion (Step 4 
and Step 5).   

3 ITS AND DISASTER MANAGEMENT 

An ITS is a combination of advanced sensing technologies 
used in transportation engineering to monitor traffic and 
road infrastructure, and to assist users for a better traffic 
management and safe travelling [16]. A basic ITS could 
include several essential components, such as: (a) a 
sensing system, (b) a communication system, (c) roadside 
units including traffic signal control system and movable 
signs, and (d) a notification system that includes car 
navigation and disaster warning system. In addition, 
advanced modeling techniques are also intensively used 
with a combination of an ITS for traffic predictions and 
guidance based on historical baseline data. 

A sensing system plays a critical role and provides 
basis for any decisions made from the ITS. Achieving an 
accurate and reliable monitoring system for traffic and 
infrastructure behavior has attracted worldwide 
attention. Vehicle-based sensing systems are usually used 
for transportation infrastructure assessments while 
infrastructure-based systems can be applied for both 
traffic and infrastructure monitoring [19].  

Infrastructure sensors can be installed either on the 
side or top of road, or can be embedded inside the roads 
also known as in-road reflectors [17], [18]. In the past 
decades, numerous infrastructure sensors were placed 
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around cities and towns in United States, resulting in a 
network of ITS for better traffic management.  

The collection of road traffic information can be 
achieved through in-road detectors. Inductive loop 
sensor, as shown in Fig. 2(a) is one example of the 
commonly applied infrastructure traffic sensor. Fig. 2(b) 
shows a typical road-side communication unit.  

4 DESIGN AND MODELING 

In this section, we present the design and model of the 
proposed route recommendation service. Due to a 
disaster’s evolution in space and time, the network 
characteristics, such as vehicles’ speed and road capacity 
vary with time. Some roads may suffer blockade over 
time due to congestion, whereas a few roads may become 
inaccessible after being hit by the disaster (e.g., flood). 
Capturing the important time evolving variations in the 
road infrastructure, makes the model more realistic.  

We model the traffic at macro-scale level, where the 
vehicles act as intelligent agents carrying evacuees from 
sources to destinations. The MacroServ service computes 
real-time preferred routes for the evacuees. Consequently, 
the autonomous agents make dynamic route choices 
based on the congestion level on roads, distance from the 
destination, road safety condition, and capacity in safety 
shelters. The dynamic re-routing of vehicles more closely 
depicts a realistic scenario, as with the advancement in 
ITS and sensors, most of the vehicles nowadays are 
equipped with radio and GPS based navigation systems 
[11]. Therefore, the vehicles can interpret road conditions 
in advance by the help of navigation systems, as well as 
through the updates on radio. In the following text, we 
discuss the various phases of our model. 

4.1 Network Design 

To create the transportation network, we imported the 
map of City of Fargo from the OpenStreetMap API [20] 
that has a database of world maps, and the regional maps 
can be exported in XML format. For each road segment 
(between two intersections), the information from the ITS 
about traffic volumes, speed limits, number of lanes, 
segment length, and contour elevations, has been stored 
in the database as indicated in Fig. 3. The aforementioned 
information has been obtained from NDOT [15]. 
Moreover, the intersections are also stored in database as 
nodes with unique identifiers (Fig. 3).  

Based on the past records of flooding in the City of 
Fargo, the areas that are at higher risk of getting affected 
by the Red River flood are marked on the map as 

evacuation zones. Safety shelters are defined on the map 
locations that are not at risk of flooding. 

4.2 Evacuee’s Departure Rate 

In this phase, we present a way of estimating the average 
number of vehicles departing from each home within a 
disaster affected area. Specifically, we need to find the 
time distribution of the evacuating vehicles. To make 
such estimations, it is important to know the population 
size of the particular area under consideration. However, 
the population size is a random factor that varies between 
day and night. People are more likely to be at work places 
during the day and at home during night time or 
weekends. In our model, we intend to introduce the 
maximum traffic load on the transportation network from 
the disaster affected area. Therefore, we assume that the 
people are at home when the disaster warning is 
announced. Moreover, we also assume that in a given 
time interval, vehicles originating from the homes make a 
discrete count, such as 0, 1, 2,…, or n number of vehicles. 
Therefore, to represent the vehicle departure rate, we 
utilized Poisson distribution [12] given as: 
 

𝑃[𝑋 = 𝑞] =
𝜆 ∙ 𝑒  

𝑞!
. (1) 

 
The above equation indicates the probability that there 
would be q number of vehicle departures, where 𝜆 is the 
mean number of departures per time interval. The 
Poisson distribution is commonly used in queuing theory, 
and describes the probability that q events will occur 
within a time period, given that the time between two 
events is a random number that is independent of the 
time of the previous events [12]. For our given scenario, at 
a given time interval, some houses have no or a few 
vehicles coming out, most have some vehicles emerging, 
and a few houses have most vehicles departing. 
Moreover, the vehicle departures are also independent of 
each other. Under such circumstances, we considered the 
Poisson distribution to be more appropriate to depict the 
vehicular departures during an evacuation scenario. The 
primary reason for such selection is that just a single 
parameter, mean value 𝜆, needs to be configured in 
simulations to evaluate the effect of varying number of 
departing vehicles during an evacuation depending on 
the number of residents at home.  
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R1 𝑃  𝑃   1500 30 1 14,212 

R2 𝑃  𝑃   800 35 2 21,200 

… … … … … … … 

Fig. 3. Database of transportation network 

Fig. 2. Traffic and disaster sensors 
(a) (b) 
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4.3 Departure Times 

The purpose of this phase is to model the rate of vehicles 
entering the transportation network following the 
evacuation instructions. For model accuracy, it is 
imperative to consider the evacuees’ behavior in response 
to the evacuation orders. The evacuees’ decision about 
when to leave depends on factors, such as, severity of the 
disaster, social status, and the availability of information 
and transport. Some people may prefer to stay behind to 
look after their property. In general, it is more likely that 
a few people leave initially, then the evacuations reach 
the peak value, and gradually slow down as most of the 
population have already evacuated. Such an evacuation 
behavior can be depicted with a response curve as stated 
in Fig. 4 that indicates the percentage of people departing 
in each time interval. The evacuation response curve can 
be expressed with probability density function of Weibull 
distribution [12], given as: 
  

𝑓(𝑥; 𝛼, 𝛽) = {

𝛽

𝛼
(
𝑥

𝛼
)

   

× 𝑒 (
 
 
)
 

, 𝑥 ≥ 0,
 

0.                                otherwise

 (2) 

 
In above equation, the parameter 𝛼 > 0 is the scale 
parameter, and 𝛽 > 0 is the shape parameter of the 
distribution. If the parameter x represents the time taken 
in departure, then the Weibull gives a distribution that 
has departure rate proportional to a power of time. The 
values of 𝛼 and 𝛽 can be configured to analyze the impact 
of evacuees’ compliance behavior during the emergency 
evacuations. Compared to the Poisson and Uniform 
distributions, the Weibull distribution more closely 
depicts the evacuee’s behavior due to the asymmetric 
nature of the curve, as indicated in Fig. 4.  

4.4 Safety Shelter Selection 

This step computes the set of safety shelters for 
evacuating vehicles. The simplest approach is to assign 
safety shelters that are at the shortest distances from the 
vehicles. However, this may result in overcrowding of 
shelters when most of the vehicles prefer to reach the 
nearest shelters. An alternate approach is to manually 
designate shelters for the evacuees in various areas. 
However, the aforementioned approach is not efficient, as 
the roads leading to manually designated shelters may 
become inaccessible due to congestion or other factors. 

In our model, we adopt a probabilistic approach of 
assigning shelters to evacuees. We consider the real-time 
varying factors, such as road traffic, congestion, distance, 
risk level, and capacity of the shelter. In this way, 
evacuees are recommended a set of shelters that are most 
preferable in the current time interval.  

4.5 Route Selection 

In this step, the route recommendation service computes 
the preferred routes for the vehicles during evacuation. 
The service allows individuals to take decisions about 
route selection at road intersections. For an intersection, 
the service maintains a route table that contains least 
travel costs from the intersection to each of the 
destinations. Cost is based on flow capacity, maximum 
speed limit, density of traffic, length, and travel time of 
the road link. The total cost of a route between an 
intersection and the destination shelter is the sum of the 
costs of individual road segments. As a disaster has 
tendency to expand outwards from the epicenter, such as 
in the case of wild fire, tornado, and floods, the roads 
which are not affected by disaster yet may get hit by the 
disaster at a later time. Therefore, costs are computed by 
also taking into consideration the disaster affected roads. 
The information about road damage is provided at real-
time by the high-end ITS sensors. As indicated in Table 1, 
if a vehicle is heading for Shelter 2, then at the 
intersection, the least cost towards Shelter 2 is 13 that is 
for the Route 3. Moreover, the costs indicated in Table 1 
are dynamic and are adjusted at real-time according to 
the road congestions. Therefore, when more vehicles 
enter a road segment, the overall speed of the vehicles 
decrease and the cost is recalculated. In the following 
subsections, we present the cost calculation and route 
recommendation algorithm. 

4.5.1 Route Cost Calculation 

The route cost is the time it will take a vehicle to traverse 
a route to reach the destination shelter. When traffic 
capacity of a route is greater, then the vehicles will take 
lesser time in traversing the route, and smaller will be the 
route cost. Let 𝐿  be the length of a road segment k, which 
has    number of lanes, and ℓ be the average length of 
vehicles passing through the road segment. The maximum 
possible traffic flow capacity of the road segment k is: 

𝑓 =
𝐿 ×   

ℓ
. (3) 

Equation (3) computes the maximum number of vehicles 
that can traverse the road segment without congestion at 
a given time interval. In normal situations, inter-vehicular 
distance depends on speed of vehicles. More the speed, 

TABLE 1 
ROUTE COST TABLE MAINTAINED BY EACH INTERSECTION 

Route ID Shelter 1 Shelter 2 Shelter 3 Shelter 4 … 

1 11 65 32 35 … 

2 43 34 54 31 … 

3 23 13 31 33 … 

4 24 21 45 36 … 

… … … … … … 

 

 Hours  

 % Population  

Fig. 4. Evacuees departure times in response to emergency 
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higher would be the inter-vehicular distance. However, 
we assume that during the time of disaster, it is almost 
impossible for the vehicles to maintain appropriate  inter-
vehicular distance, because, evacuees are trying to save 
their lives, so traffic laws are difficult to apply. Suppose, 
the number of vehicles currently travelling through the 
road segment k is denoted by 𝜏 . Thereafter, the extent of 
congestion experienced by the road segment k is: 
 

𝑐 =
𝜏 

𝑓 
. (4) 

If we let 𝑠 
    denote the maximum allowed speed limit of 

the road segment k, then the free flow (𝐹 ) of vehicles 
currently traversing the road segment is given as: 
 

𝐹 = 𝑓 × 𝑠 
   . (5) 

 
With 𝜏  number of vehicles travelling through the link, 
the maximum possible speed can be computed as: 
  

𝑆 =
𝐹 

𝜏 

. (6) 

 
Finally, we compute the travel cost of road segment k as: 

𝐶 =
𝐿 

𝑆 

. (7) 

 
The cost in the above equation is dynamic and varies with 
time as the numbers of vehicles on the road segment vary.  
An Illustrative Example: We present an example of the 
cost computation with the support of Table 2 and Fig. 5. 
Suppose, at the time interval 𝑇 , the road segment CD has 
maximum capacity of four vehicles (𝑓  = 4) and the 
maximum speed limit 𝑠  

   = 50 km/h. The free flow of 
vehicles according to (5) is given as 𝐹  = 200. As 
indicated in Fig. 5(a), the current number of vehicles on 
link is 𝜏  = 4, so by using (6), we get the maximum 
possible speed as 𝑆  = 200/4 = 50. If the length of the 
link is 𝐿  = 300𝑚, then the travel time cost is given as 
𝐶  = 300/50 = 6 (Table 2, Column 1). As one more 
vehicles enter the link CD, the total number of vehicles 
becomes 𝜏  = 5 (Fig. 5(b)), and the travel cost is 
increased to 7.5. In Fig. 5(c), when the number of vehicles 
on link CD reaches 7, then the link cost becomes 10.5 
(Table 2, Column 3), which is an indication of road 

congestion, and consequently the vehicles are travelling 
with reduced speeds. Therefore, the incoming vehicles are 
redirected to other routes with the smaller cost (indicated 
by arrows in Fig. 5(c). In the following subsection, we 
present our algorithm that computes the preferred routes 
for the evacuating vehicles. 

4.5.2 Route Computation Algorithm 

Fig. 6 depicts a portion of the map of City of Fargo that 
we considered as a case study in this paper. The three 
main items on the map are disaster risk areas, 
intersections, and safety shelters. During the evacuation, 
the residents in affected areas flee towards safety shelters, 
and are guided about the routes on intersections. We 
denote the road network with a graph notation: 𝐺 =
(𝑉, 𝐸), where 𝑉 is the set of vertices representing 
intersections, and 𝐸 is the set of links that represent roads. 
Table 3 indicates the set of notations used in this 
subsection. The real-time processing of graph of up to the 
scale of a city is very resource intensive task and is not 
feasible to be performed by a single computational node. 
Therefore, the graph 𝐺 is logically split into several sub-
graphs, and each sub-graph is processed on a separate 
node using MPI on the HPC cluster. We denote a sub-
graph by 𝐻( ), 𝑟 = 1, 2, 3, … , 𝑛, such that 𝐻( ) ∪ 𝐻( ) ∪
𝐻( ) ∪ …∪ 𝐻( ) = 𝐺. Between any two regions 𝐻( ) and 
𝐻( ), we define a set of overlapping points as boundary 
points 𝐵  . The boundary points are the intersection nodes 

TABLE 2 
ROAD CONGESTION EXAMPLE 

         

 𝐹 = 4 × 50 = 200 
 𝑆 = 200/4 = 50 
 𝐶 = 300/50 = 6 

 𝐹 = 4 × 50 = 200 
 𝑆 = 200/5 = 40 
 𝐶 = 300/40 = 7.5 

 𝐹 = 4 × 50 = 200 
 𝑆 = 200/7 = 28.5 
 𝐶 = 300/28.5 = 10.5 

TABLE 3 
NOTATIONS AND THEIR DESCRIPTION 

𝐺 Graph representing the transportation network 

𝐻( ) Sub-graph, representing a region 𝑟 

𝑋   
Set of routes between an intersection x and 

destination z 

𝑔 A group of people 

𝑙  Location of person m 

𝑍 Set of shelters 

 

(a) (b) (c) 
Fig. 5. Route cost update: (a) no congestion, (b) slight congestion, and (c) alternate route selection due to high congestion. The arrow sign 

shows the directions to the next intersection during evacuation at intersection C. 
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that are common to both the regions, such that 𝐵  =
𝐻( ) ∩ 𝐻( ). Suppose, evacuees in region 𝐻( ) are 
recommended a shelter that is located in the region 𝐻( ), 
where 𝑟 ≠ 𝑎. As a first step, the evacuees are routed 
towards a boundary point 𝑝 ∈ {𝐵  = 𝐻( ) ∩ 𝐻( )} that 
has the minimum congestion and risk at the current time 
interval (determined through ITS). Here, 𝐻( ) is the 
region adjacent to 𝐻( ), and located on the shortest and 
safest path towards the target shelter. On reaching the 
boundary point 𝑝  using least cost paths, as the next step, 
vehicles are routed within the same region 𝐻( ) based on 
route cost computations. If k=r, then the vehicles have 
reached the desired region, where the target shelter is 
located. Otherwise, the aforementioned procedure will be 
repeated to further route the vehicles towards new 
boundary point. 

As indicated in Algorithm 1, the PARFOR loop 
executes in parallel for each of the regions (Line 2). 
Within a region, route cost tables are updated in parallel 

using (7) for every intersection and shelter (Line 3–Line 
11). There can be more than one route possible between 
an intersection and a safety shelter, and each route 
consists of numerous road segments. If the destination 
shelter lies within the same region, then the Line 6 filters 
out a route that has the minimum travel cost between an 
intersection x and shelter z. Otherwise, the minimum 
travel cost is calculated between the shelter x and the 
boundary point 𝑝  as indicated in Line 8. For various 
groups of evacuees in the disaster affected area (A), the 
preferred destination shelters are selected using 
GetDestination function in Line 13 that is defined in 
Algorithm 2. Algorithm 2 selects only those shelters from 
the set of shelters that still have space to accommodate 
more people (Line 2). We assume that shelter space 
information is available by the help of sensors installed at 
each shelter. The Line 3 to Line 7 of Algorithm 2 
computes the minimum travel cost of each evacuee in the 
group 𝑔 from each shelter. The shelter whose average 
travel cost is minimum from all the group members is 
considered as the one satisfying the group members and 
is selected as the destination shelter (Algorithm 2, Line 8 
to Line 10). An example scenario of the aforementioned 
destination selection is when members of a family are at 
different locations in a city during the time of disaster, 
and they want to gather at a place that is at shortest travel 
costs for each member. On selection of the destination 

Algorithm 2. Get Destination Shelter 

Input: A group 𝑔 of people  

Output: A shelter 𝒮 that is preferred by every member 
of group 

1: 𝑄 ← Retrieve group members from 𝑔  

2: 𝑉 ← 𝑔𝑒𝑡𝑆ℎ𝑒𝑙𝑡𝑒𝑟𝑠( ) // shelters that have space 

3: for each member 𝑚 ∈ 𝑄 do 

4:     for each shelter 𝑣 ∈ 𝑉  do 

5:         𝑃[𝑚][𝑣] = min 𝑐( )(𝑙 , 𝑣), ∀𝑗 ∈ 𝑋  ,      

6:     end for 

7: end for 

8: 𝑅𝑎𝑛𝑘[𝑣] ← 𝑎𝑣𝑔(𝑃) 

9: 𝒮 = 𝑣   (    ) 

10: return 𝒮 

 

Algorithm 1. Route Recommendation 

 
1: while time interval 𝑡 ≤ 𝑇    do 

2:    PARFOR region 𝐻( ) ∈ 𝐺 do 

3:       PARFOR intersection 𝑥 ∈ 𝐻( ) do 

4:           for each shelter 𝑧 ∈ 𝑍 do 

5:              If z ∈ 𝐻( ) then 

6:                Route cost  𝜉(  ) = 𝑚𝑖𝑛 {∑ 𝐶 } , ∈   ∀𝑗 ∈ 𝑋   

7:              else 

8:                Route cost  𝜉(   ) = 𝑚𝑖𝑛 {∑ 𝐶 } , ∈   ∀𝑗 ∈ 𝑋   
 

9:              end if 

10:           end for           

11:        end PARFOR 

12:        for each 𝑔 in area 𝐴 ∈ 𝐻( ) do 

13:           𝐷 = 𝐺𝑒𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑔) 

14:           for each 𝑚 ∈ 𝑔 do 

15:              𝑚𝑜𝑣𝑒(𝑚, 𝐷)  

16:           end for 

17:       end for 

18:    end PARFOR 

19: end while 

 

Fig. 6. Map of City of Fargo 
  

Population at risk Intersection Safety Shelter 

  

  

Red River 
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shelter, the Line 14 to Line 16 of the Algorithm 1 moves 
each group member towards destination shelter. More 
precisely, in the real emergency scenario, the move 
function is meant to recommend the evacuees with least 
cost route towards the destination. The move function also 
handles the boundary condition, such that when a vehicle 
reaches the boundary of a region 𝐻( ), the current region 
hands over  the vehicular details to the new region. Such 
a case may arise when the destination shelter is not 
located in the same region from where the vehicle has 
initiated evacuation.  

4.5.2.1 Time Complexity 

The time complexity of the MacroServ is based on the time 

complexity of the Algorithm 1. From the Line 4 to Line 9, 

the Algorithm 1 calculates the cost of all the routes from a 

single intersection to all of the shelters and boundary 

points. For z shelters and j routes from an intersection to a 

shelter, the time complexity is O(z×j) and for p boundary 

points, the time complexity is O(p×j). The time complexity 

of the Algorithm 1 from the Line 4 to Line 9 is O(z×j+p×j). 

The number of boundary points p is much larger than the 

number of shelters. Therefore, the time complexity is 

equivalent to O(p×j). For i intersections, the time 

complexity is O(i×p×j). For h regions the time complexity 

is O(h×i×p×j). In Line 13, the destination is selected for 

each group by calling the Algorithm 2.  
In Line 1 of the Algorithm2, all the members of the 

group are retrieved with time complexity O(1). All the 
shelters having space are selected in the Line 2 that takes 
O(z). The time complexity of the Algorithm 2 from Line 3 
to Line 7 is O(m×z), where m is the number of the users in 
the group. The time complexity of the Line 8 is O(m). 
Therefore, the total time complexity of the Algorithm 2 is 
O(z+m×z+m+1) that is equivalent to O(m×z).  

The Line 13 in the Algorithm 1 uses Algorithm 2 so its 
time complexity is O(m×z). For g number of groups, the 
time complexity increases to O(g×m×z). The time 
complexity of the Line 14 to Line 16 is O(m) that increases 
to O(g×m) for g number of groups. For Line 2 to Line 18, 
the time complexity becomes O(h×(i×p×j+g×m×z)). The 
algorithm iterates Tend times. Therefore, the total time 
complexity of the Algorithm 1 is O(Tend×h×(i×p×j+g× m×z)). 
By executing the algorithm in parallel, the time 
complexity is reduced to O(Tend×(p×j +g×m×z)). 

5 PERFORMANCE EVALUATION 

We implemented the route cost computation algorithm in 
C++ using OpenMPI library [21]. The experiments are 
performed on HPC cluster established in North Dakota 
State University (NDSU), Fargo, ND, USA [22]. The 
cluster nodes have the following specifications: quad-core 
Intel X5550 @ 2.67GHz with 48GB ECC DDR3 1333MHz 
(8GB DIMMs), 160GB 7.2K RPM SATA HDD, 1x Myri-
10G port, and dual Gigabit Ethernet ports. Fig. 6 indicates 

the scenario considered in the simulations. The 
population settled at the Red River’s bank needs to be 
evacuated towards the safety shelter locations. The road 
intersections are equipped with ITS sensors to send alerts 
to the vehicles during the evacuations. The map is 
divided into 3 regions (zones). The total number of 
evacuees is about 108,000. If the given map is converted 
to a graph representation, then the graph has 2,800 
vertices with 7,370 edges.  

5.1 Performance Metrics 

The performance metrics considered in the simulations 
include: (a) evacuation times, (b) average travel time, (c) 
road congestion, and (d) population evacuated. The 
evacuation time indicates the time spent between the start 
of evacuation and when the last person evacuates the 
affected area. The average travel time computes the 
average of travel times of all the evacuees. The road 
congestion is computed by (4) and indicates the amount 
of congestion experienced by a road segment at a given 
time interval. The population evacuated indicates the 
number of people who have fled from disaster area in a 
certain time interval. The performance of the system is 
observed by varying the parameters of the Poisson and 
Weibull distributions. 

5.2 Comparison Techniques 

To compare the performance of the MacroServ service, we 
considered two other evacuation approaches: (a) 
Dedicated and (b) Shortest-Path. In the first approach, the 
evacuating population follows only those routes that are 
predefined by the Fargo department of transportation 
[15]. The criterion of selection of dedicated routes is set by 
department of transportation, and the primary factor is 
the road capacity. Therefore, we considered the dedicated 
routes as a set of the interstates and main roads [14]. We 
developed the shortest-path model (based on Dijkstra 
algorithm) that allows the evacuees to take the shortest 
routes from disaster site towards safety locations. The 
information about the changes in the road conditions is 
made available to both the aforementioned approaches to 
provide a fair comparison with the MacroServ.  

5.3 Evaluation Results 

In this subsection, we present the evacuation performance 
of our proposed scheme in comparison to the 
abovementioned approaches. For each data point, the 
simulation is repeated 20 times to obtain the statistical 
significance of the results. In our experiments, we also 
introduced the damage to the roads by the disaster to 
analyze the impact on total evacuation and average travel 
time. For that purpose, we utilized Bernoulli distribution 
[12] to randomly mark roads as damaged beginning with 
destroying initially those roads that are geographically 
near to the disaster site, and as the simulation time 
proceeds, the road destruction is expanded outwards to 
mimic damage caused by the floods.  
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5.3.1 Impact of departure rate 

Figure 7 depicts average travel time of the vehicles by 
varying the departure rate of vehicles from the 
intersections. When the departure rate is lower, less than 
3 vehicles per minute, the average travel time taken is 
almost same for all the three approaches. However, as the 
departure rate increases, the average travel time of 
Dedicated and Shortest-Path turns out to be higher than the 
MacroServ. This is an expected outcome, as the 
aforementioned approaches do not take into account the 
current traffic flow rate on roads. As people tend to adopt 
the shortest route for evacuations, the roads become 
congested and road’s traffic flow rate is dropped. Same is 
the reason for Dedicated approach as arrival of too many 
vehicles on limited set of roads results in congestion.  

5.3.2 Impact of congestion 

Figure 8 compares the three approaches for congestion on 
the roads near the shelters with respect to time. Initially, 
due to heavy congestion in case of Dedicated and Shortest-
Path, very few cars are able to reach the roads leading 
towards shelters. Therefore, the congestion on the roads is 
shown lesser for Dedicated and Shortest-Path in the Fig. 8. 
Alternatively, the vehicles quickly reached the roads near 
shelters for the MacroServ scheme, which resulted in 
higher congestion in the first few minutes. However, the 
congestion decreases subsequently as most of the vehicles 
have reached the shelters. Moreover, congestion level 
decreases relatively at lower rate in the case of Dedicated 
and Shortest-Path. This is due to the fact that both the 
approaches do not consider traffic flow capacity while 

computing routes, and as a result evacuees are guided 
towards short but congested roads.  

5.3.3 Impact of shape (𝜷) of Weibull distribution 

In this simulation setup, we inspect the impact of 
evacuations with respect to time. The 𝛽=1 in Fig. 9(a) 
indicates that most of the people have departed 
immediately after disaster warning from the affected site. 
The sudden significant increase in departing population 
resulted in an overall increase in the evacuation times. 
The 𝛽=2 (Fig. 9(b)) is the approximate mean around the 
scaling parameter, which creates the similar curve 
indicated in Fig. 4. As reflected from Fig. 9(b), the total 
evacuation time with 𝛽=2 is lesser than the evacuation 
time with 𝛽=1 in Fig. 9(a). The most probable reason is 
that with 𝛽=2, few people are expected to be evacuated 
initially, then evacuations go to a peak value and 
gradually decrease, which results in the less congestion of 
roads. The slow departure puts less load on the road 
network and results in lesser evacuation time. Fig. 9 
indicates that an organized evacuation with gradual 
departure performs much better than a random 
immediate evacuation approach. However, whether the 
evacuation is organized or otherwise, the MacroServ 
scheme yields shorter evacuation time and evacuates 
more population per minute as compared to the other 
approaches. Especially, within one hour of issuing 
evacuation comments, the MacroServ service doubles the 
amount of evacuees when compared with the other two 
approaches. This accounts for the fact that the evacuees 
are directed towards the roads with maximum flow rate.  
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Fig. 7. Average travel times with varying number of departing 

vehicles from each intersection (𝛼=6 and 𝛽=2) 
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Fig. 8. Average congestion with respect to time with 

damaged road network 𝛼=6, 𝛽=2, and 𝜆=5 
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Fig. 9. Average evacuations per minute with varying shape parameter in Weibull distribution: (a) α=6, β=1, and λ=5, and (b) α=6, β=2,  
and λ=5 
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5.3.4 Impact of average departure time  

Figure 10 presents the results for varying the departure 
time that is determined by the parameter α. As it can be 
seen in Fig. 10(a), under normal road conditions, when 
the average departure time of the evacuees increases, the 
average total evacuation times become similar for 
MacroServ, Dedicated, and Shortest-path. The similarity in 
evacuation times of the three approaches is due of the low 
density of traffic on roads. As inter-arrival times of 
vehicles entering road network have increased, this leads 
to the lesser congestion on roads. Moreover, increased 
departure time also results into the increased evacuation 
times. Fig. 10(b) depicts the evacuation times under 
damaged road conditions. The MacroServ takes half of the 
time for evacuations as compared to the time taken by the 
other approaches. Alternatively, Shortest-Path does not 
consider the road condition and congestion while 
computing the routes. This may lead to traffic jams when 
vehicles move towards the damaged roads, resulting in 
increased congestion and total evacuation times. Fig. 10(c) 
shows the average travel time versus departure time, 𝛼. 
The average travel time decreases as the departure time 
increases under normal road conditions. Similar to Fig. 9, 
it can be seen from Fig. 10(c) that as people are taking 
more time in departure, there would be less congestion 
on the roads, and average travel times for the three 
approaches becomes similar. Under damaged road 
network (Fig. 10(d)), MacroServ outperforms the other 
two schemes because of the most preferred route 
recommendation strategy.  
 
5.3.5 Impact of road damage probability 
The simulations are performed to analyze the effect of 

road infrastructure damage on the three evacuation 
schemes. Fig. 11(a) indicates that with the increase in road 
damage probability, the average travel time also 
increases. However, the MacroServ scheme has lesser 
increase in travel time as compared to the other two 
approaches. The reason for the aforementioned behavior 
is that the evacuees are not directed towards damaged 
routes in the case of MacroServ, and consequently, the 
vehicle speeds are not reduced. Fig. 11(b) depicts the 
effect of damage recovery time of roads on the average 
travel time. When damage to the road network occurs, 
the vehicles are diverted towards paths that are slightly 
longer than the damaged ones. When the recovery time is 
smaller, such as 12 minutes, more vehicles arrive back on 
the shortest paths and cause congestion that causes more 
delay. With increase in the recovery time (18 to 30 
minutes), more cars were diverted to longer paths, and 
few remaining cars came back on the shortest path, and 
traveled with less congestion. Overall average travel time 
decreases slightly in case of Shortest-Path. The MacroServ 
approach is already using the road network efficiently 
and is not allowing congestion on the road, so effect of 
road damage is not observed in MacroServ.  Fig. 11(c) 
shows the effect of the percentage of road damages on 
average travel time. The Dedicated fails to complete the 
simulation with even small number of road damages. 
Therefore, we have not listed the Dedicated approach in 
the figure. Howerver, MacroServ and ShortestPath 
approaches have shown resilitant to the road damages 
upto 55% overall road damages on a grid like road 
network of Fargo city on an average.  For road damages 
more than 55%, the vehicles cutt off from the road 
networks and simulations fails to stop. 
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Fig. 10. Effect of road damage by varying departure time (scale parameter α) with β=2: (a) average total evacuations under normal 

conditions, (b) average total evacuations under damaged conditions, (c) average travel time under normal condition, and (d) average 

travel time under damaged conditions. 
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5.3.6 Impact of population growth 
In this simulation run, we evaluate the effect of damaged 
road network if the population is increased by 2% in each 

coming year [23]. Fig. 12 indicates that there would be 
very slight effect of increase in population on the average 
travel time for all the approaches. However, in contrast to 
the Dedicated and Shortest-Path the proposed MacroServ 
evacuation strategy is exhibiting the least average travel 
times in the future years. Therefore, we may conclude 
that MacroServ is capable of efficiently handling the 
evacuations with increased population size.  
5.3.7 Scalability analysis 
The simulations are performed to analyze the scalability 
of the MacroServ framework. An algorithm is known to be 
scalable if the algorithm can maintain the execution time 
in desirable limits even in case of large increase in 
workload by using additional processors.  

We split the map into smaller regions using two 

Quadtree [32].  Quadtree is a data structure technique 
most often used to partition a two-dimensional space by 
recursively subdividing it into four quadrants or regions. 
The procedure of creating the Quadtree-based 
partitioning begins with decomposing the region into 
four equal quadrants, subquadrants, and so on with each 
leaf node containing data corresponding to a specific sub-
region based on a criteria. Each node in the tree either has 
exactly four children, or has no children (a leaf node) [32].  

We varied the number of partitions in our simulations 
and observed the effects of such variation on parameters, 
such as recommendation generation time and inter-
message exchange among the computational nodes. Both 
the aforementioned parameters are most significant as 
they determine the efficiency of the proposed framework. 
We considered the maximum of 16 partitions, as 
increasing the number of partitions results in some 
partitions becoming empty (carrying no nodes). In Fig. 13 
and Fig. 14, we evaluated the aforementioned metrics for 
our proposed scheme MacroServ by varying the number 
of vertices in the map. We utilized Quadtree for map 
partitioning. 

Fig. 13 presents the effect of increasing the number of 
partitions (one partition per processor) as well as the size 
of map on the recommendation generation time. Results 
indicate that doubling the size of the region increases the 
recommendation generation time by an average of 26%. 
The increase in single processor results in decrease in the 
recommendation generation time by an average of 9%. 
Moreover, it can be observed from the results that by 
increasing the number of processors, the MacroServ 
framework can efficiently provide recommendations for 
the large-scale datasets with little effect on the 
recommendation generation time. 

Fig. 14 shows the effect of increasing the number of 
partitions and map size on the average number of 
vehicles that travel from one zone to another (i.e., number 
of messages passed between processors). The results 
indicate that the increase in a single processor increases 
the average number of vehicles travelling from one zone 
to another by 39%. However, doubling the size of the 
map decreases the average number of vehicle crossing 
from one zone to another by 76%.  
    Figure 15 represents the communication versus 
computation cost of the MacroServ. The communication 
versus computation cost is the measure of calculating the 
performance of parallelized solutions [34], [35]. The 
computational time of the MacroServ decreases with the 
increase of number of partitions. However, the 
communication time increases with the increase in 
number of partitions. The ratio of communication and 
computation remains at 0.8 on an average with four 
partitions. However, the ratio increases sharply with the 
increase of partitions due to increase in number of 
messages being passed and delayed the overall execution 
time. Our thorough experimental results show that for the 
Fargo road network size, the ideal case is to have four 
partitions of up to 700 vertices to ensure fast and efficient 
execution of the MarcroServ framework. Based on the 
results presented in Fig. 13, Fig. 14, and Fig. 15, we  
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Fig. 11. Impact of (a) road damage probability, (b) recovery 

time, (c) percentage of damaged roads, on average travel 

time with α=6, β=2, λ=5, and p=0.01 
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Number of partitions → 
Fig. 15. Communication/Computation Cost 

concluded that the MacroServ is a scalable service, as it 
can efficiently handle the large sized map by increasing 
the number of processors.  

6 RELATED WORK  

Numerous studies conducted in the past addressed 
various perspectives of emergency evacuation modeling, 
such as route finding [6], shelter site selection [5], 
evacuees’ behavior [10], and traffic control strategies [24]. 
In recent years, there has been a growing interest in the 
multi-objective optimization techniques for the 
evacuation route finding problem.  

The authors in [25] studied demand-based strategies 
for aggregate-level routing with and without congestion. 
The authors proposed a network flow model that 
optimized an evacuation specific lexicographic objective 
function. The function computes the time dependent 
evacuation routes for each of the source. However, being 
a combinatorial optimization problem, the proposed 
approach is difficult to be solved for large realistic 
networks. Therefore, the authors utilized two heuristics to 
solve the problem, but with a tradeoff of solution quality. 
Lim et al. [6] modeled evacuation problem as network 
flow optimization problem. The static network is 
expanded over the planning horizon for each time 
interval. However, this makes the optimization problem 
extremely large to solve. Therefore, the authors proposed 
a heuristic based solution that utilized Dijkstra’s 
algorithm to compute evacuation paths, and a greedy 
algorithm to find the maximum flow and exit schedule 
for each path at each time interval. In a similar study, the 
authors in [9] utilized mixed integer programming for a 
dynamic network flow optimization problem. The 
authors proposed a heuristic solution that was applied 
over the time expanded transportation network, where 
the time horizon was divided into intervals of equal 
length. However, time expansion of the network made 
optimization problem infeasible for large scale evacuation 
scenarios. Coutinho-Rodrigues et al. [5] proposed a multi-
objective optimization problem to find evacuation paths 
and the location of shelters for urban evacuation 
planning. The authors considered many objectives for 
optimization, such as path lengths, path risks, evacuation 
times, lengths of backup paths, and number of shelters. 
The set of primary routes between disaster site and 

shelter locations were generated with a bi-objective 
shortest path approach by considering the path lengths 
and path risks. The model was tested on a smaller 
network with limited roads and intersections.  

Stepanov et al. [7] proposed an integer programming 
formulation for route assignment that utilized M/G/c/c 
state dependent queues to address congestion and time 
delays on road links. The authors computed a set of 
evacuation routes with kth shortest path algorithm, and 
then utilized M/G/c/c model to evaluate the travel time 
along the shortest paths. A drawback in such approach is 
that the shortest paths may become congested during real 
evacuation scenarios due to the presence of numerous 
unforeseen random factors, such as traffic accidents and 
weather conditions. The authors in [10] developed a 
traffic simulation framework that assigns evacuees with 
the predefined routes at the beginning of evacuations. 
During the journey the evacuees were able to change the 
routes. The authors studied the effect of non-compliance 
of evacuation orders by evacuees during evacuations.  
However, the architectures and implementation details of 
the proposed framework were not discussed. El-Sergany 
et al. [31] proposed a framework for flood disaster 
management and a transport distribution model for 
evacuations. The authors utilized linear programming on 
a small scale scenario with trip distribution matrix among 
the affected sites and destination shelters.  

Huang et al. [26] presented a centralized traffic control 
framework for emergency vehicles. The authors utilized 
A* algorithm to compute three types of paths: (a) primary 
path between source and destination, (b) secondary path 
that is disjoint of the primary path, and (c) a path that 
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connects both the primary and the secondary paths. 
However, authors did not mention any details about the 
implementation and test data of their framework. 

Abdelgawad et al. [33] presented a multi-objective 
optimization framework that combines the vehicular 
traffic and mass transit system for emergency evacuation. 
The paper investigated the three objectives: (a) minimum 
in-vehicle travel time, (b) minimum at-origin waiting 
time, and (c) minimum fleet cost in case of mass transit. 
However, the authors have not included the real-time 
changing parameter such as road conditions that affect 
the real-world evacuation. 

It is noteworthy to mention that most of the 
aforementioned optimization-based evacuation models 
are unable to scale well for large-scale evacuation 
scenarios. Therefore, most of the techniques employ 
various heuristics to reduce the solution space, which 
results in sub-optimal route recommendations. In contrast 
to the optimization-based approaches, there also exist 
some commercial/non-commercial traffic simulation 
packages, such as INDY [27], PARAMICS [28], DynusT 
[29], and TransCAD [30]. Among the aforementioned, the 
PARAMICS [28] is commercial software and has been 
utilized mostly for micro-scale simulations. However, a 
common problem that most of such packages suffer from 
is the lack of scalability, especially when the network size 
is large and different from the network under normal 
conditions. Therefore, to address scalability, we utilized 
parallel computing in our proposed framework.  

7 CONCLUSIONS  

In this paper, we presented a service architecture 
MacroServ that performs the real-time route 
recommendations for the evacuees at the time of a 
disaster. The proposed service utilizes the live 
information extracted from the ITS and the road side 
sensors to calculate preferred evacuation paths that have 
maximum traffic flow capacity, least congestion, and 
travel cost. Unlike our approach, most of the existing 
work on disaster route recommendations is based on 
optimization techniques that compute a set of optimal 
routes under a specific set of parameters. However, 
optimization techniques are unable to precisely capture 
the effect of numerous stochastic and time-varying 
factors, which have significant influence on evacuations. 
Moreover, incorporating the stochastic factors in 
optimization models significantly increases the problem 
space and computation times. Therefore, to test the 
performance of the MacroServ service, we developed a 
scalable traffic simulation model that can be configured to 
simulate evacuations under different conditions and 
parameters. To achieve the desired level of scalability and 
speed we utilized parallel computing on a computer 
cluster that runs parallel instances of the real-time route 
computation algorithm. The evacuation simulations were 
performed on a real map of City of Fargo, USA consisting 
of 2,800 intersections, 7,370 roads, and a population size 
of 108,000. The simulation results indicated that by not 
routing the traffic towards the least congested routes 
during an emergency, the evacuations can suffer from 

massive traffic jams, which increases the evacuation times 
and waiting times. Moreover, the results provided best 
case estimates for the evacuation times under a given set 
of parameters and stochastic factors. The evacuation 
simulations can allow the disaster management bodies to 
plan and optimize the traffic operations during a possible 
evacuation. Moreover, it provides a way to better analyze 
the critical network elements, the effect of evacuees’ 
behavior, and managerial factors on evacuations.  

In future, we intend to extend our model by 
incorporating more number of parameters to address the 
uncertain factors during emergency scenarios. For 
instance, a driver’s behavior may vary due to stress and 
fear. Moreover, evacuees’ compliance to the 
recommended routes and time of disaster also plays an 
important role in the road congestions. All such real-life 
parameters have significance and must be considered in 
the design of emergency evacuation models.  

REFERENCES 

[1] J. Li, Q. Li, C. Liu, S. U. Khan, and N. Ghani, “Community-
based collaborative information system for emergency 
management” Computers & Operations Research, vol. 42, 
pp.116–124, 2014. 

[2] G. Galindo and R. Batta, “Review of recent developments in 

OR/MS research in disaster operations management,” European 

Journal of Operational Research, vol. 230, pp. 201–211, 2013. 
[3] O. Khalid, M. U. S. Khan, S. U. Khan, and A. Y. Zomaya, 

“OmniSuggest: A Ubiquitous Cloud based Context Aware 
Recommendation System for Mobile Social Networks,” IEEE 
Trans on Services Computing, vol. 7, no. 3, pp. 401-414, 2014. 

[4] Z. Fang, Q. Li, Q. Li, D. Han, and S. Shaw, “A space–time 
efficiency model for optimizing intra-intersection vehicle–
pedestrian evacuation movements,” Transportation Research Part 
C: Emerging Technologies, vol. 31, pp. 112–130, 2013 

[5] J. Coutinho-Rodrigues, L. Tralhão, L. Alçada-Almeida, “Solving 
a location-routing problem with a multi-objective approach: the 
design of urban evacuation plans,” Journal of Transport 
Geography. vol. 22, pp. 206–218, 2012 

[6] G. J. Lim, S. Zangeneh, M. R. Baharnemati, and T. Assavapokee, 
“A capacitated network flow optimization approach for short 
notice evacuation planning,” European Journal of Operational 
Research, vol. 223, pp. 234–245, 2012.   

[7] A. Stepanov and J. M. Smith, “Multi-objective evacuation 
routing in transportation networks,” European Journal of 
Operational Research, vol. 198, pp. 435–446, 2009. 

[8] M. Saadatseresht, A. Mansourian, and M. Taleai, “Evacuation 
planning using multiobjective evolutionary optimization 
approach,” European Journal of Operational Research, vol. 198, 
no. 1, pp.305-314, 2009. 

[9] S. Bretschneider and A. Kimms, “Pattern-based evacuation 
planning for urban areas,” European Journal of Operational 
Research, vol. 216, pp.57–69, 2012. 

[10] A. Pel, M. Bliemer, and S. Hoogendoorn, “Modelling Traveller 
Behaviour under Emergency Evacuation Conditions,” 
European Journal of Transport and Infrastructure Research, vol. 
11, no. 2, pp. 166-193, 2011. 

[11] Intelligent Transportation System, http://www.its. dot. gov/, 
accessed on March 3, 2014. 

[12] S. M. Ross. “Introduction to probability models, 9th Edition.” 
ISBN-13: 978-0-12-598062-3, Academic Press, 2006 

[13] Red River Information, 
http://www.ndsu.edu/fargo_geology/whyflood.htm, 
accessed on March 3, 2014 

[14] City of Fargo website: https://www.cityoffargo.com /Maps/, 



1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2015.2497241,
IEEE Transactions on Services Computing

AUTHOR et al.:  TITLE 14 

 

accessed on March 3, 2014 
[15] North Dakota Department of Transportation (NDDOT), 

https://www.dot.nd.gov/, accessed on March 3, 2014 
[16] K. Chen and J. Miles, “PIARC Handbook on Intelligent 

Transport System,” Artech House, London and Boston, 1999, 
ISBN 1-50852-103-2, http://road-network-
operations.piarc.org/index.php?option=com_content&task=vie
w&id=38&Itemid=71&lang=en, Assessed on May 21 2014. 

[17] L. A. Klein, M. K. Mills, and D. R.P. Gibson, “Traffic Detector 
Handbook: Third Edition—Volume I,” FHWA Report, No. 
FHWA-HRT-06-108, Federal Highway Administration, 
McLean, VA, 2006, http://www.fhwa.dot.gov/publications 
/research/operations/its/06108/06108.pdf, Assessed on May 
21 2014. 

[18] Roadside weather mast, A48 east of St Nicholas, 
http://www.geograph.org.uk/photo/2187674  

[19] V. W. Inman and G. W. Davis, “The Effects of In-Vehicle and 
Infrastructure-Based Collision Warnings at Signalized 
Intersections,” FHWA Report, No. FHWA-HRT-09-049, Federal 
Highway Administration, McLean, VA, 2009, assessed on May 
21 2014. 

[20] Open Street Map API, http://www.openstreetmap.org/, 
accessed on March 3, 2014 

[21] OpenMPI API, http://www.open-mpi.org/, accessed on 
March 3, 2014 

[22] http://www.ccast.ndsu.edu/, accessed on March 3, 2014. 
[23] https://www.cityoffargo.com/attachments/e83e7b08-c38a-

4be2-ad1c -ad320241dfb1/Fargo%20Growth %20Plan%20 
2007_Appendices.pdf  

[24] N. T. N. Anh, Y. Chevaleyre, and Jean Daniel Zucker, 
“Optimizing the Placement of Evacuation Signs on Road 
Network with Time and Casualties in Case of a Tsunami,” IEEE 
21st International Workshop on Enabling Technologies: 
Infrastructure for Collaborative Enterprises (WETICE), pp. 394-
396, 2012. 

[25] D. R. Bish and H. D. Sherali, “Aggregate-level demand 
management in evacuation planning,” European Journal of 
Operational Research, vol. 224, pp. 79–92, 2013. 

[26] C. Huang, C. Kung, C. Yang, C. Tseng, C.-H.A. Chou, “A 
Centralized Traffic Control Mechanism for Evacuation of 
Emergency Vehicles Using the DSRC Protocol,” 4th 
International Symposium on Wireless Pervasive Computing, 
2009. 

[27] http://www.floodsite.net/html/cd_task17-19/indy.html, 
accessed on March 3, 2014. 

[28] PARAMICS, http://www.paramics-online.com/, accessed on 
March 3, 2014. 

[29] DynusT, http://dynust.net/, accessed on March 3, 2014. 
[30] TransCAD, http://www.caliper.com/tcovu.htm, accessed on 

March 3, 2014.  
[31] A. T. El-Sergany and S. Alam, “Trip Distribution Model for 

Flood Disaster Evacuation Operation,” ITE Journal, vol. 82, pp. 
43-37, 2012. 

[32]  M. Berg, O. Cheong, M. Kreveld, and M. Overmars, 
“Computational Geometry: Algorithms and Applications,” 
Springer Science & Business Media, 2008. 

[33] H. Abdelgawad, B. Abdulhai, and M. Wahba, “Multiobjective 
optimization for multimodal evacuation,” Transportation 
Research Record: Journal of the Transportation Research Board 2196, 
no. 1, pp.21-33, 2010. 

[34] Y. Kwok, “Fault-Tolerant Parallel Scheduling of Tasks on a 
Heterogeneous High-Performance Workstation Cluster,” 
Journal of Supercomputing, vol. 19, no.3, pp. 299-314, July 2001 

[35] X. Lin, H. Wang, Y. Kwok, B. Chen, M. Dai, and L. Zhang, 
“Exploiting the Prefix Information to Enhance the Performance 
of FSA-Based RFID Systems,” Computer Communications, vol. 56, 
pp. 108-118, 2015. 

  
Muhammad Usman Shahid Khan is pursuing Ph.D. at the North 
Dakota State University, Fargo, USA.  

 

Osman Khalid is an Assistant Professor at COMSATS Institute of 
Information Technology, Abbottabad, Pakistan. 
 

Ying Huang received her Ph. D. degree in civil engineering from 
Missouri University of Science and Technology, Rolla, USA. Her 
areas of interest include structural health monitoring/smart 
structures for transportation infrastructure. 
 
Rajiv Ranjan is Project Leader in the CSIRO computational 
informatics, Canberra. Dr. Rajiv has 75 (30 journal papers, 30 
conference papers, 10 book chapters, 5 books) scientific 
publications.   
 
Fan Zhang received a Ph.D. degree in Control Science and 
computer engineering from Tsinghua University, China. He 
areceived Honorarium Research Funding Award and Service 
Meritorious Award, IEEE Transactions on Service Computing. 
 

Junwei Cao is a Professor and Vice Director of Research 
Institute of Information Technology. His research is focused on 
advanced computing technologies and applications.  
 
Bharadwaj Veeravalli received a PhD degree  in  Engineering 
from Indian Institute of Science, Bangalore,India. Prof. Veeravalli 
is Vice-Chairman of  IEEE Computer  Chapter and Associalte 
Editor of IEEE Transaction on Computers, IEEE Transaction on 
Systems, Man, and Cybernetics and, Cluster Computing.  
 
Samee U. Khan is Associate Professor at the North Dakota State 
University, Fargo, ND, USA. Prof. Khan’s research interests 
include optimization, robustness, and security of: cloud, cluster 
and big data computing, social networks, and optical networks.  
 
Keqin Li is SUNY Distinuguished Professor, who has published 
over 200 research papers. He received a Ph.D. degree in 
Computer Science from the University of Houston, Texas, USA, in 
1990.  
 
Albert Y. Zomaya is the Chair Professor of High Performance 
Computing & Networking in School of Information Technologies, 
University of Sydney. Prof. Zomaya is the author/co-author of 
seven books, more than 400 papers. 

 

 


