
Address correspondence to Junwei Cao, Research Institute of Information Technology, Tsinghua National Laboratory for

Information Science and Technology, Tsinghua University. E-mail: jcao@tsinghua.edu.cn

Yuxin Wan, Junwei Cao and Kang He

Department of Automation, Research Institute of Information Technology, Tsinghua National

Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

Huaying Zhang, Peng Yu and Senjing Yao

Shenzhen Power Supply Co. Ltd., China Southern Power Grid, Shenzhen 518020, China

Keqin Li

Department of Computer Science, State University of New York, New Paltz, New York 12561, USA

The Internet of Things (IoT), which combines identification, sensing, computing and

communication technologies, is considered one of the major trends in information and

communication technologies. Communication performance is critical for IoT applications.

According to previous research, an internet-based overlay model is feasible for the

implementation of the IoT. One important issue in the overlay routing model is the overlay node

placement problem (ONPP). Once the size of overlay node set is fixed to a particular number k,

the ONPP changes to k-ONPP. In this work, the IoT-based overlay node placement problem is

formulized and analyzed. The major contributions of the paper include providing the time

complexity of multi-hop k-ONPP and its theoretical limit boundary of approximation ratio and

proposing a local search algorithm. Furthermore, the time complexity and approximation ratio

boundary of the local search algorithm are given. The proposed local search algorithm is

evaluated by both time and efficiency where efficiency refers to the degree of approximation of

algorithm results with optimal solutions. Another algorithm, TAG, is used for comparison. Finally,

a simulation experiment based on network simulator EstiNet is provided. The experimental results

show network delay benefits from the proposed method.

Keywords Approximation Ratio; Communication Delay; Internet of Things; Node Placement;

1. Introduction

The Internet of Things (IoT) has been regarded as the future of internet and one of the major

trends in information and communication technologies [1]. The key idea of IoT is combining

identification, sensing, computing and communication technologies to provide a better description

of physical processes. IoT technologies can be applied in a wide variety of applications such as

smart homes, smart cities, environmental monitoring and health care [2].

Node Placement Analysis for Overlay

Networks in IoT Applications

Yuxin Wan et al

Many IoT-based applications require timely interaction between users and physical objects.

Therefore, communication performance is very important in IoT implementation. There are three

options for the implementation of the IoT: using the current internet, building a new network and

building a dual-layer network [3]. Based on the consideration of both performance and ease of

implementation, an internet based dual-layer network is suitable for the IoT. Here, the dual-layer

network refers to the overlay network. Currently, many IoT applications are implemented using an

overlay network. Take the smart grid, for example. One typical example of a smart grid is the wide

area management system (WAMS). The WAMS uses the phasor measurement unit (PMU) as

sensor and data collector. The collected data need to be transferred to a control center for analysis.

The current WAMS is built on an IP-based network, and many studies have been conducted on the

influence of network performance on WAMS [4][5][6].

However, as the internet only provides a best-effort service, internet-based overlay networks

should add additional methods to improve network performance. Such methods include admission

control and overlay routing. Admission control guarantees the worst-case delay boundary, but it

may deny a connection [7] and requires special network devices. Overlay routing has been proved

useful in reducing end-to-end delay [8], and no further devices are needed. The overlay routing

method can be used to reduce the communication delay between sensors and the data center where

the data are analyzed. One important issue in the overlay routing model is the overlay node

placement problem (ONPP) [9]. The objective of the ONPP is to find the optimal overlay node set

with minimum total data transfer cost. However, the size of overlay node set may be fixed to a

given number k due to cost and efficiency considerations. This modified ONPP is called k-ONPP.

In this work, the overlay node placement problem (ONPP) in IoT applications is formulized

and a local search algorithm is proposed. The time complexity of k-ONPP is analyzed.

Furthermore, we give the theoretical limit boundary of the approximation ratio for k-ONPP.

Additionally, the approximation ratio boundary of the proposed local search algorithm is provided.

A genetic algorithm and a greedy algorithm are introduced for performance comparison. All

algorithms are evaluated by time cost and efficiency with MATLAB tools. Here efficiency refers

to the degree of approximation of algorithm results with optimal solutions. Finally, a simulation

experiment based on the network simulator EstiNet [10] is provided to test the efficiency of

proposed overlay network model and algorithm. The experimental results show network delay

benefits from the proposed method.

The rest of the paper is organized as follows: Section 2 introduces the research background

and related work in overlay node placement. Section 3 presents the model and formulation of

k-ONPP in the IoT and provides a theoretical analysis for this problem. Section 4 proposes a local

search algorithm and provides its time complexity and approximation ratio boundary. Section 5

evaluates the algorithms based on time cost and algorithm approximation using MATLAB tools. A

genetic algorithm and a greedy algorithm, TAG, are introduced for comparison. The local search

algorithm is tested in a simulation scenario with the network simulator EstiNet in Section 6. Some

additional factors that impact the algorithm are discussed. Finally, a general conclusion is

provided in Section 7.

2. Research Background and Related Work

Overlay routing has been proved to be a feasible method to improve network performance with

Node Placement Analysis for Overlay Networks in IOT Applications

unreliable internet infrastructure [8]. The basic concept of overlay routing is choosing one or more

nodes in the overlay network as hop nodes for data transfer. Overlay routing will use an additional

routing algorithm, separate from the underlying internet routing algorithm. There are two types of

overlay networks: peer-to-peer networks and infrastructure networks [9]. Network nodes of

peer-to-peer networks may change rapidly, while the nodes of infrastructure networks have higher

persistence. In most infrastructure overlay networks, overlay nodes belong to a single entity, so it is

feasible to apply the routing algorithm in these overlay nodes. Currently, most networks of IoT

applications are similar to infrastructure overlay networks, so this paper focuses on the overlay node

placement problem in such networks.

Previous work in [8] has proved that with the overlay routing method, the RTT of end-to-end

packet may be reduced. D.G. Anderson et al. found that network performance would improve with only

one hop node [12]. A random-k algorithm is proposed in [11]. The basic idea of this algorithm is

randomly selecting k nodes out of M. Then, a source sends a test packet through these k nodes to the

destination. The intermediate node whose response comes back first will be chosen as the overlay node.

This algorithm aims to improve the network reliability after path failure occurs, so other performance

metrics such as communication delay are not considered. Additionally, this algorithm is based on

experimental experience, no theoretical analysis is given.

In [13], Y. Zhu et al. further studied the node placement problem with one hop node. Their

scenario uses overlay routing and multi-homing to improve network performance and availability.

They proved the overlay node placement problem with one hop node is an NP-hard problem based on a

reduction from the set covering problem. The number of overlay nodes is not fixed in their scenario. In

contrast to previous work in [11], network performance is considered in [13]. Four heuristic methods,

Random, Customer-driven, Traffic-driven and Performance-driven, are introduced and tested. Their

results show an improved RTT from sources to destinations with overlay routing.

A measurement study on the benefits from overlay routing is made in [14]. Their scenario uses

overlay routing to improve end-to-end network performance. The intermediate node is also set to be

one. In contrast to previous work in [11], [12] and [13], the number of overlay nodes is fixed to a given

number k in this work. The problem is also proved to be a NP-hard one. Four greedy heuristic

algorithms are introduced and tested.

A generic description of k-ONPP is given in [9] as follows: Given M possible overlay nodes and a

number k, choose k nodes out of M to optimize the application-specialized performance metric.

Moreover, the number of intermediate nodes in an overlay path is unfixed. In [15], S. Yang et al.

considered this generalized problem with the performance metric group delays from sources to

destinations. In this work, the node placement problem is described by a linear programming formula

and solved with ILOG CPLEX, an optimization software package designed by IBM. Although in this

work the generalized problem is considered, it is unfeasible to implement the solution in a real network

as the results are calculated by other software.

The latest work on overlay node placement problem can be found in [16], [17] and [18]. In [16], S.

Roy et al. introduced a greedy algorithm called Traffic Aware Greedy (TAG) and compared this

algorithm with the node degree-based algorithm. Another greedy algorithm is proposed in [17]. R.

Cohen and D. Raz made progress on this problem by providing a theoretical limit boundary of the

approximation ratio that can be achieved by a polynomial algorithm based on the set cover problem

Yuxin Wan et al

[18]. The overlay node placement problem also has been discussed in other contexts such as web cache

placement in [19] and [20], but the motivation and objective are quite different.

As described above, most of the current work on the overlay node placement algorithm are greedy

algorithms and lack a theoretical analysis. Although [18] analyzed this problem in a theoretical manner

and provided a limit boundary of approximation ratio, their analysis is based on a one-hop overlay. In

addition, the approximation ratio of their proposed algorithm is denoted by another parameter m, where

m is the size of the maximum minimal overlay vertex cut. As written in [18], finding the minimal

overlay vertex cut is not easy. In this work, the overlay node placement model for IoT applications is

proposed, and a different analysis approach is made based on a reduction from the k-median problem.

We further analysis the k-ONPP problem with a multi-hop overlay and provide its time complexity and

the limit boundary of the approximation ratio. A local search algorithm is proposed, and the

approximation ratio boundary has been provided in a more calculable way.

3. Problem Formulation and Analysis

According to previous research in IoT [21][22], the architectural of IoT can be divided into three

parts: sensor/actuator layer; information transmission layer (network layer) and application layer. As

mentioned in the introduction, currently the internet based dual-layer network is feasible for an IoT

application, so an abstract IoT architectural scheme can be described as following figure 1.

IOT Network Layer

Sensor/Actuator Layer

Application Layer Data analysis

Dual layer network

Current Internet

Different

sensors/actuators
Smart Grid

sensor/actuator

Intelligent
Transportation
sensor/actuator

Environment
Monitor
sensor

Energe
management

Traffic
management

Meteorological
disaster

early-warning

Distributed IoT data server

 Figure 1 IoT architectural scheme

Consider the above IoT architectural scheme, the communication network of IoT is used for data

gathering from distributed sensors to analysis centers. Some data concentrators, such as PMU in smart

grid, are deployed so that an internet-based dual layer network is already there. These concentrators

and sensors are fully constructed and controlled by the same entity or group, so they can be used as an

overlay node to gain benefits. As these concentrators are almost persistent, this overlay network can be

regarded as an infrastructure overlay network. Thus, the problem is how to place these concentrators to

maximize the benefits. Figure 2 provides a sketch map of such a dual layer network.

Data

Relay node

Data

generating

node

Data destination Data destination

Data

generating

node

Data

generating

node

Data

generating

node

Data

Relay node

Data

generating

node

Data

generating

node

Data

Relay node

Underlay internet channel Underlay internet channel

Underlay internet channel Underlay internet channelUnderlay internet channel

Node Placement Analysis for Overlay Networks in IOT Applications

Figure 2 Sketch map of a dual layer network of the IoT

3.1. Problem Formulation

We consider the performance metric of group communication delay, which is the total

communication delay from each sensor to the analysis center. Group communication delay is used

because data generated by sensors in IoT application is predictable and generally periodic. This

means if group communication delay drops, system performance may become better. Then, the

overlay node placement problem can be formulized as follows.

Consider a physical network represented as a graph , where V denotes the

networking devices and E denotes links between V. The weight of link e in E is defined by a metric

such as network bandwidth or communication delay, denoted by where i, j indicates the

vertexes of link e. We use communication delay as metric. A group of source vertexes denoted by S

need to send data to destination vertexes denoted by T. A candidate set of vertexes may

suitable locations to deploy concentrators. Let denote the chosen overlay node set. The

destination of each is fixed to . We define the function t(s), which denotes the that

is connected to. Once the overlay node set O is chosen, each of the source vertexes can use O to

transfer data. Let

 indicate the weight of the direct path from vertex s to t(s) and

 indicate

the weight with overlay nodes.

 is the weight of shortest path with overlay set O. Suppose the

shortest overlay path from s to t(s) is then

 . If

overlay set O is not helpful to reduce the original weight, then s will link directly to t(s). Then,

. We define

 ; then,

can be defined as follows:

Clearly,

. This is different from other discussions, as in others each source must connect

to one overlay node. Then, the objective function can be written as finding to minimize

∑

 , where is defined above and denotes the destination to which s connects.

Considering the cost of deploying these overlay nodes and the cost of maintaining communication

delay information between the overlay nodes, the size of set O should be limited. Suppose a given

number k is used. We define this problem as the k-ONPP problem. Then, the problem is modified to

finding to minimize ∑

 , and the size of is k.

3.2. Problem Analysis

In this section, we will analysis the time complexity for k-ONPP and discuss the theoretical limit

boundary of approximation ratio. We give the following theorems.

Theorem 1 k-ONPP is an NP-hard problem.

Proof: First, we consider another NP-complete problem. The k-median decision problem is a typical

NP-complete problem which can be described as follows. Given a client set ̂ and a candidate

position set ̂. The weight from each ̂ ̂ to ̂ ̂ is denoted by ̂ ̂ ̂ . Determine whether

there exists a set ̂ out of ̂ where the size of ̂ is k such that

∑ ̂ ̂ ̂

 ̂ ̂ ̂ ̂

We define this problem as . Then, we consider a modified problem from k-ONPP as follows.

Consider a graph , a source set S, a destination set T and a possible set B. Find to

Yuxin Wan et al

minimize ∑

 , where the size of is k. Define this problem as . This

objective function means at most only one overlay hop can be used in an overlay path. Consider the

decision problem , determining whether there exists a set out of where the size of is k such

that

∑

We define this problem as .

Next, we modify problem into a different version. Let ̂ ̂ and ̂ . Consider a

client point ̂ ̂and an candidate overlay node ̂ ̂. Define

 ̂ ̂ ̂

Then, problem changes to determining whether there exists a set ̂ out of ̂ where Size(̂ ̂

such that ∑ (̂ ̂ ̂) ̂ ̂ ̂ ̂ . It is obvious that modified problem is the same as problem .

Because is NP-complete, then is NP-complete as well. Additionally, this proves problem is

the same as the k-median problem.

Now, we consider the original k-ONPP. Given a graph , a source set S, a destination set T

and a possible set B, find to minimize ∑

 , where the size of is k. Suppose there is

a polynomial algorithm for k-ONPP. Construct a special case of k-ONPP. Let

where and . Obviously, in this constructed k-ONPP, only one hop node at most may

be used in the overlay path. If there is a polynomial algorithm for k-ONPP, then the constructed

k-ONPP can be solved, then problem can be solved. The algorithm for can be designed as

follows:

1. Use the polynomial algorithm for k-ONPP to find the result R of constructed k-ONPP.

2. Test if R .

 Because ∝k-ONPP and is NP-complete, k-ONPP is a NP-hard problem. This proves

theorem 1.

Next, we provide the theoretical limit boundary of an approximation ratio for k-ONPP. In k-ONPP,

define following parameters:

 }

 }

α ax

 𝐵

Theorem 2 There is no polynomial algorithm for k-ONPP with an approximation ratio less than

α × 1
𝜔−

𝑒

Proof: As proved above, problem is the same as k-median problem. With the above-defined

 and , also denotes
max 𝑙𝑐̂ 𝑏̂

 𝑙𝑐̂ 𝑏̂
, where ̂ ̂ in problem . R. Pan et al. proved that

with a so-defined there are no polynomial algorithms with an approximation ratio less

than 1
𝜔−

𝑒
 unless 𝑁 𝐷 𝐼𝑀 𝑙 𝑔𝑙 𝑔 for a general distance space k-median problem

Node Placement Analysis for Overlay Networks in IOT Applications

[23]. Let the optimal result for be and the optimal result for k-ONPP be . Let the best

result can be obtained with polynomial algorithm for be 𝑅 and the best result can be

obtained with a polynomial algorithm for k-ONPP be 𝑅 . Obviously, we have , 𝑅 𝑅 .

Because
𝑅

≥ 1

𝜔−

𝑒
 ,

𝑅

≥

𝑅

≥

𝑅

𝑅
×

𝑅

. However, for each overlay path for client S,

 ≥

 𝐵

 ≥ α ×

 . Therefore,

𝑅

𝑅
≥ α and

𝑅

≥ α × 1

𝜔−

𝑒
 . This proves theorem 2.

Both α and 𝜔 are easy to calculate in this formula. It is obvious that the time complexity to

obtain 𝜔 is 𝑧𝑒 × 𝑧𝑒 . The time complexity to obtain α is the time complexity of

shortest path algorithm. Because 𝐵

 means using whole candidate set B as overlay node set,

the shortest path algorithm can be applied.

4. Proposed Algorithm and Analysis

As discussed above, the k-ONPP problem is similar to the k-median problem, so the

algorithm for the k-median problem may also be applied in k-ONPP. The proposed local search

algorithm is modified from the local search algorithm developed by Arya in [24]. However, the

discussion in [24] is based on the metric space, which means the distance definition satisfies the

symmetrical characteristic and triangle inequality. However, neither of these two properties is

consistent with network delay. In fact, if network delay satisfies triangle inequality, there is no

need to optimize the delay as

 . The modified local search algorithm works as

follows.

We define the cost function as Cost(N) with given set N, which indicates the group

communication delay from the client set S to destination T with a given overlay set N. A

neighborhood structure for the set N is defined as 𝐹 𝑁 𝑁 − 𝑁 ∉ 𝑁 .

We define a local optimum as 𝑁 < 𝑁′ for all 𝑁′ 𝐹 𝑁 . Then, the steps of

proposed local search algorithm are as follows in figure 3.

Algorithm: Local Search Algorithm

Input: Candidate set B; Cost function Cost(N); Neighborhood structure F(N);

Delay graph G(V,E)

Output: Sub-optimal overlay node set O

1. Random select a set N which Size(N)=k

2. Constructing a new graph with

3. Apply Dijkstra algorithm in to get the shortest path from N to { }

4. Calculating the Cost(N)=

5. If that then = , return to step 1

6. Return N.

Figure 3 Proposed local search algorithm

Next, we discuss the time complexity of the proposed algorithm. We state the following

Yuxin Wan et al

theorem.

Theorem 3 The time complexity of the proposed local search algorithm is polynomial.

Proof: Let Size(B)=M, where p indicates the number of iterations. Suppose k 𝑁. The time cost for the

Dijkstra algorithm is O(). The maximum replacement in each iteration for set N is Size(B-N). So, the

total time complexity for local search algorithm is O(𝑀). As discussed in [24], p can be defined as

 (

)

 −
 . Here, is the initial value, O is the optimal result, >0 is constant

and Q is the size of where S is the set of all feasible solutions and G(S) is the

neighborhood of S. With proposed local search algorithm 𝐹 −

 ∉ therefore, 𝑧𝑒 × 𝑧𝑒 − which is polynomial, because Q, log() and

log(Cost(O)) are polynomial with the input size. So, the time complexity of the local search algorithm

is polynomial. This proves theorem 3.

Finally, we provided the approximation ratio boundary of the local search algorithm in

theorem 4.

Theorem 4 The approximation ratio boundary of the proposed local search algorithm is
𝜔

α
.

Proof: Suppose the optimal set for k-ONPP is O and local optimal set is N. Let

and 𝑁 . and are defined the same as before, 𝜔
𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛
. As N is the

local optimal set, then for all 𝑁′ 𝐹 𝑁 , we obtain

 𝑁′ − 𝑁 1

From inequality (1), we replace the overlay node in N with node in O, then we obtain

 𝑁 − − 𝑁 2

Define 𝑁1 , 𝑁2 , 𝑁 . Define 𝐷 as the

clients which connect as first overlay node. For N1, let 𝐷 connect to as first

overlay node, and let ′ − 𝐷 connect to ′ 𝑁1 ′ with minimum

min(
 ′ ′

 N
 ′ ′

). Therefore, inequality (2) can be expanded as follows:

 𝑁 − − 𝑁

 ∑ (
c 𝑁

 c − 𝑁
c c

) ∑ (𝑁
c c − 𝑁

c c
)

 −𝐷𝐶 𝐷𝐶

 3

For the first portion before the plus sign in (3)

1

α

 𝐵

1

α
 (

)
1

α

c c

c 𝑁

 c
c

 c 𝜔
𝜔

α

c c

For the second portion in (3)

 𝑁
c c

c c

 𝜔
𝜔

α

c c

So, inequality (3) can be expanded as follows:

Node Placement Analysis for Overlay Networks in IOT Applications

 < ∑ (
 𝑁

 − 𝑁

) ∑ (𝑁

− 𝑁

)

 −𝐷𝐶 𝐷𝐶

 ∑ (
𝜔

α

 − 𝑁

) ∑ (

𝜔

α

 − 𝑁

)

 −𝐷𝐶 𝐷𝐶

 ∑(
𝜔

α

− 𝑁

)
𝜔

α
 −

Then, we have obtained the approximation ratio with defined 𝜔 and α as follows:

 <
𝜔

α

This proves theorem 4.

5. Algorithm Evaluation

In this paper, the proposed local search algorithm is tested with both Matlab and the network

simulator Estinet. Estinet is used to test the algorithm’s performance in a network environment.

However, as the amount of network nodes is limited in a simulator, in this section Matlab is used

to evaluate the algorithm based on time cost and effectiveness. A genetic algorithm is introduced

to approach the optimal result, while the TAG algorithm proposed in [16] is used for comparison.

5.1. Experiment Design and Implementation

As described above, a physical network can be represented as a graph , where V

denotes networking devices and E denotes the time delay between V. In the actual network,

networking devices are connected in two modes: directly connecting with links and indirectly

connecting with routers or switchers. So, the first step of experiment is generating an 𝑀 × 𝑀

matrix to record the graph, where M is the number of network devices. After that, direct

connections with time delay between graph vertexes are randomly generated. In the third step,

each pair of two vertexes in the graph is connected through the directly connecting vertexes. The

time delay between indirectly connecting vertexes is the sum of the time delay between directly

connecting vertexes in the path.

The Matlab test is implemented on a laptop with two Intel i5 core processors and 3GB

memory. For each experiment, we test the algorithm 500 times. The mean value of the proposed

algorithm is then calculated to better expose the performance. In addition, the 95% quartile of 500

tests is calculated and the 95% confidence interval of the mean value is obtained. For the genetic

algorithm the best result of the 500 tests will be recorded, as it is used to generate the optimal

result.

5.2. Two Other Algorithms for Comparison

5.2.1 Genetic algorithm

To evaluate the time cost and algorithm approximation, the global optimal result is needed for

comparison. However, as previously proved, k-ONPP is NP-hard; we cannot calculate the global

optimal solution with an increasing problem scale. So, the result of a genetic algorithm is used to

approximate the global optimal result. It is unnecessary to provide the detailed steps of the genetic

Yuxin Wan et al

algorithm, so only the key definitions are described here as follows:

1. Genetic representation. The target of k-ONPP is finding k nodes out of possible set B to

minimize group delay. A natural thought is using the tag of these nodes to represent the

solution. So, we mark each node in set B with a number and represent each individual as a set

of numbers. The size of the individual set is fixed to k.

2. Fitness function. The property of the fitness function is the better the solution, the larger the

fitness will be. However, the cost function defined above is the group delay. Suppose 𝑁

denotes current generations and C denotes the fitness of calculated individual. We define

fitness function as follows.

1 −
 − 𝑁

 (𝑁) − 𝑁

3. Crossover. Randomly choose the crossover point in an individual set. Then, the tag number

before or after the crossover point are swapped. However, the same point may appear twice in

a single individual set after crossover. For example, this occurs if individual A is (3, 4, 7, 9),

individual B is (1, 3, 5, 7), and the crossover is happened at the second point; one of the

results is (3, 3, 5, 7). In case of such a scenario, we extract the set of the same points from

individuals and cross the left part. After the crossover, this set is added into both results.

During the experiment, an adaptive crossover probability is used based on the work of M.

Srinivas, and L. M. Patnaik in [25].

4. Mutation. Given a mutation probability, for each point in the individual set, randomly

generate a number between 0 and 1. If the random number bigger than mutation probability,

select another point in candidate set B to replace this point. An adaptive mutation probability

is also used based on [25].

5.2.2 TAG algorithm

The TAG algorithm is a greedy algorithm proposed by S. Roy et al. in [16]. The TAG

algorithm works as follows. It selects overlay nodes from candidate set B based on a greedy

strategy. During each step, the algorithm chooses the node that gives the best value of the cost

function. Suppose there are already m nodes in the overlay node set O. Then, the (m+1)-th node is

selected among the rest of the B-O nodes. There is no replacement strategy in TAG, so once the

node is chosen it cannot be modified. The time complexity of TAG is O(𝑀), where k is the

given size of overlay set and 𝑀 is the size of candidate set B.

5.3. Experimental Results

5.3.1 Comparison between Optimal Solutions and Genetic Algorithm Solutions

As a genetic algorithm is used to acquire the global optimal result, the efficiency of genetic

algorithm must first be tested. Table 1 presents the comparison of the genetic algorithm with the

global optimal algorithm in a small scale problem. The global optimal algorithm is achieved by

the traversing method, so it is limited by the problem scale. For example, the time cost with M=50

and k=5 is 26531s, which is almost 8 hours. For genetic algorithm, as described above, the best

result out of 500 experiments is used to increase the possibility of finding the global optimal result.

In the following, k denotes the size of overlay node set; M denotes the size of candidate set B. In

order to eliminate randomness, these experiments are carried out with different network topology.

Node Placement Analysis for Overlay Networks in IOT Applications

So experiment results of different parameter M are not comparable.

As mentioned above, the adaptive crossover and mutation probability are used in the

implementation of genetic algorithm. Adaptive function and parameters are the same as described

in [25] except a minimum crossover probability is set to 0.1 and a minimum mutation probability

is set to 0.05. Population size is set to 300. The iteration stop condition is that the fitness value

maintains unchanged for 100 iterations.

TABLE 1 Comparison of genetic algorithm results with global optimal results

M/k

Average result of 500

experiments acquired by

the genetic algorithm (ms)

Best result of 500

experiments acquired by

the genetic algorithm (ms)

Global

optimal

results (ms)

M=30 k=3 46.1543 45.9002 45.9002

k=5 36.7103 36.6999 36.6999

M=40 k=3 58.3422 58.3204 58.3204

k=5 55.7610 55.6698 55.6698

M=50 k=3 54.7344 54.7214 54.7214

k=5 52.0495 52.0034 52.0034

As table 1 presents, the genetic algorithm works efficiently with above definitions and

parameters. The obtained results of genetic algorithm are very close to the results calculated by

traversing method. Also, the best result of genetic algorithm can be the same as optimal result as

illustrated in table 1. These results illustrate the efficiency of proposed genetic algorithm. During

the experiment we also found that increased population size would lead to increased probability of

getting optimal results but with increased time cost too.

5.3.2 Comparison of Different Algorithms

Figure 4 compares the results of the local search algorithm, the TAG algorithm and the best

result achieved by the genetic algorithm.

Figure 4 Algorithm results comparison

Clearly, in figure 4, the results of local search algorithm are almost as good as the best result

of the genetic algorithm, while the results of the TAG algorithm are very unstable. Although in

some cases the TAG algorithm can obtain a result close to local search algorithm, the result of

0 50 100 150 200 250 300 350 400 450
25

30

35

40

45

50

Size of candidate set B

A
lg

o
ri
th

m
 r

e
s
u
lt
s
 (

m
s
)

Average result of local search algorithm with K=5

Best result of genetic algorithm with K=5

Average result of TAG algorithm with K=5

app:ds:crossover
app:ds:probability

Yuxin Wan et al

TAG is not monotonic, as shown in figure 4. This occurs when the candidate set B increases but

the result decreases. This is because TAG selects a node that gives the best cost value according to

the current node set. However, a good node in one step may not be part of the best overly node set.

And, once the node is selected, there is no strategy for replacement.

Figure 5 illustrates the time cost of different algorithms. Time cost of local search algorithm

and TAG algorithm are the mean time cost of 500 tests. Time cost of genetic algorithm is

calculated based on the mean value of iteration step which returns the best solution.

 Figure 5 Time cost comparison

As figure 5 presents, the genetic algorithm is more time-consuming than the local search

algorithm, and the time cost of TAG is minimal. This result is consistent with the theoretical

analysis. Additionally, these results clearly show the time cost of the local search algorithm is

linear with the size of candidate set B.

5.3.3 Stability of the Proposed Algorithm

As there is no randomness in the TAG algorithm, each of the 500 tests obtains the same result.

For proposed local search algorithm, there are random steps, so the corresponding result may

fluctuate. However, during the tests we discovered that the result of proposed algorithm only

varies over a small interval, therefore the proposed algorithm works stably. Table 2 presents the 95%

quartile of 500 tests and the 95% confidence interval of the mean value. Regardless of the

distribution of the results, the confidence interval of the mean value is still reasonable because of

the central limit theorem. Each of the experiments can be treated as an independent random

variable, and these independent random variables have the same mean and variance. Thus, the

mean value of these independent random variables follows the normal distribution.

TABLE 2 Stability of proposed algorithm

M
TAG algorithm

results

Mean value of

proposed algorithm

95% quartile of

proposed algorithm

95% Confidence

interval of mean value

30 47.2386 47.2386 47.2386 (47.2386, 47.2386)

50 40.9723 40.3376 40.3119 (40.3209, 40.3543)

100 36.4616 35.6586 35.6452 (35.6513, 35.6659)

150 36.4616 34.5786 35.5903 (34.4789, 34.6782)

200 38.0621 34.4447 35.5903 (34.3397, 34.5497)

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

Size of candidate set B

T
im

e
 c

o
s
ts

 (
s
)

Time cost of local search algorithm with K=5

Time cost of genetic algorithm with K=5

Time cost of TAG algorithm with K=5

Node Placement Analysis for Overlay Networks in IOT Applications

250 38.0621 34.3215 35.5903 (34.2119, 34.4311)

300 37.105 34.0292 35.9118 (33.9424, 34.1161)

350 37.105 33.9983 35.9118 (33.9132, 34.0835)

400 29.6423 29.0581 29.0172 (29.0222, 29.0940)

450 31.1796 28.4569 28.4420 (28.4423, 28.4715)

As table 2 presents, the proposed algorithm works quite stably.

5.3.4 Impact of the Number of Overlay Nodes

In section 3, we noted that because of the cost of deploying overlay nodes and the cost of

maintaining communication delay information between overlay nodes, the size of set O should be

limited. Figures 6 and 7 present the algorithm results and time cost with k increasing under the

same M.

Figure 6 Algorithm results with an increasing k

Figure 7 Time cost with an increasing k

As figures 6 and 7 show, the algorithm result and the number of overlay nodes are not linearly

correlated. When k increases to a certain range, the algorithm results may remain unchanged. In

contrast, the time cost will keep increasing. Thus, considering both the algorithm efficiency and

2 3 4 5 6 7 8 9 10
25

30

35

40

45

50

55

Number of overlay node K

A
lg

o
ri
th

m
 r

e
s
u
lt
s
 (

m
s
)

Algorithm results with M=100

Algorithm results with M=200

Algorithm results with M=300

Algorithm results with M=400

Algorithm results with M=500

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Number of overlay node K

T
im

e
 c

o
s
t

(s
)

Time cost with M=100

Time cost with M=200

Time cost with M=300

Time cost with M=400

Time cost with M=500

Yuxin Wan et al

cost of deployment, the size of the overlay set should be limited.

6. Experiment with Network Simulation

In this section, the proposed local search algorithm is tested in a network simulation

environment. This section is used to represent the algorithm performance and some factors that

impact the performance. The network simulator EstiNet is applied.

6.1.EstiNet Network Simulation

EstiNet is a novel network simulator developed by S.Y. Wang since 1999 [26]. The current

version is EstiNet 8.0, which can be found in [10]. A novel simulation methodology called “kernel

reentering methodology” is implemented in EstiNet. It combines the advantages of both

simulation and emulation. In contrast to existing network simulators NS2 or OPNET, EstiNet uses

the real-life UNIX TCP/IP protocol stack during the simulation, and thus all the real-life network

application programs can readily run on any node in a simulated network without any

modification. This approach can only be performed in emulation mode with other simulators.

However, with emulation mode, the performance of switches, links, etc., are controlled by the

operating system, which makes the results unpredictable; thus, the simulation result cannot be

repeated precisely. There is a useful tool in EstiNet called “Generate Large Internet-like Network”.

It automatically generates a large network that is similar to the Internet. We use this tool to

implement following experiments.

6.2.Experiment Design

Figure 8 shows the schematic diagram of the proposed experiment. The red points denote the

sensors that are used to collect data. The black points denote the data analyzer used to gather data

from sensors. The blue points denote the overlay node, and the red dotted lines denote the logic

path from sensor to analyzer through the overlay node. A data-generating program is implemented

in each sensor which periodically generates data packets with size L. A data server program is

implemented in the analyzer. A data transfer program is implemented in the overlay node and

retransfers each packet from the sensor to next overlay node or data server. The goal is to find the

optimal overlay node set with given size k that minimizes the sum of time delay from each sensor

to the analyzer.

Overlay path

sensor

Overlay
node

Overlay path

Overlay path

Data
generator

Data serverData transfer Data
Packet

Data
Packet Data transferData

Packet

Overlay path

Overlay path

Overlay path

Analyzer
Overlay path Overlay path

2 Overlay path 3

Overlay path

4

Overlay path

51

Figure 8 Schematic diagram of the experiments

Node Placement Analysis for Overlay Networks in IOT Applications

In a realistic environment, a delay testing program and transfer program should be placed at

each candidate node. Once the optimal overlay set has been found, the transfer program in overlay

node is set to continue while the other transfer program suspends. The recalculation should be

triggered by time or by network events such as increasing network delay from sensors. For

simplicity of analysis, we decompose the progress in the simulation. The simulation steps are as

follows:

1. First, we add network traffic in the simulation environment.

2. Then, we find the original time delay from the sensors to the analyzer. In this step,

data-generating programs implemented in sensors directly sending data to the server with the

server IP address.

3. To obtain the optimal overlay node set, a delay matrix that indicates the time delay of each

two nodes in candidate set B is needed. Thus, a program to measure time delay from each two

nodes is required. Here, we use the ping method to acquire the RTT of each two nodes. We

modified the ping program to calculate the mean RTT and record it in a file.

4. We construct the delay matrix out of measured time delay and find the optimal overlay node

set.

5. We implement the node transfer programs in the overlay nodes and re-test the group time

delay from the sensors to the analyzer.

The simulation network includes 167 nodes; we randomly select 11 nodes as sensors and 1

node as the analyzer. The overlay node set size is set to 5, and all the other nodes are added into

candidate node set. 5 overlay nodes are used because system performance improvement becomes

trivial with more overlay nodes. To eliminate the effect of randomness of the network, each of the

following experiments has been repeated five times.

6.3.Experimental Results and analysis

Network communication delay consists of four parts: nodal processing delay, queuing delay,

transmission delay and propagation delay. Queuing delay, nodal processing delay and propagation

delay can be measured by RTT, while transmission delay is related to network bandwidth and data

size. To test the overlay network performance with different conditions, different data sizes are

used in the experiment. In addition, all the network programs used in the experiment are

implemented based on the Linux socket. Within socket programming, a large file should be

decomposed into small packet for transfer, otherwise the delay would increase. Consequently,

packet size is also used as a parameter in the experiment. Some interesting phenomena are

revealed.

Table 3 illustrates the overlay network performance with increasing data size. Here D denotes

the size of data sent from sensors; P denotes the program transfer packet size. The original cost

means the group delay from sensors to analyzer without the overlay. The overlay network cost

means the group delay after applying the overlay. The total improvement is calculated with a

percentage.

TABLE 3 Comparison of overlay network performance with increasing data size

D (Byte)/P (Byte)
Original cost

(ms)
Overlay network cost (ms)

Delay improvement

(percentage)

D=100 P=1000 48.177 18.186 62.25%

Yuxin Wan et al

P=1430 47.968 18.234 61.99%

P=1800 48.146 18.203 62.19%

D=1K P=1000 122.642 101.675 17.10%

P=1430 122.806 102.589 16.46%

P=1800 120.466 102.178 15.18%

D=5K P=1000 208.380 188.026 9.77%

P=1430 219.872 180.811 17.77%

P=1800 300.919 225.573 25.04%

D=10K P=1000 372.405 297.364 20.15%

P=1430 368.939 269.100 27.06%

P=1800 384.022 276.791 27.92%

D=100K P=1000 1521.535 1157.466 23.93%

P=1430 1543.298 1169.730 24.21%

P=1800 1526.384 1165.816 23.62%

Table 3 illustrates that overlay network with the proposed algorithm can improve network

delay under all conditions. Additionally, the transmission delay would affect system performance.

When the sensor data size is small enough, the delay improvement is extremely good. This

performance would decreases with increase sensor data size. However, after data size achieves a

certain range, system performance would be stable. In addition, from table 2 also reveals that the

transferring packet size should be set in agreement with MTU. When P is 1430, the system

performance is the best. (Although when P is 1800, the delay improvement seems better, the

actual delay cost increases.)

6.4.Further discussion

Although above experiments shows a good results of overlay network with the proposed

algorithm, there is still work to be done. As described above, the weight of an edge in a network is

represented by the average RTT. This weight matrix is the basic requirement for optimization.

However, the mean value may not be sufficient to denote this network edge weight matrix.

According to current research in internet performance, both internet traffic and delay show the

self-similarity characteristic [27][28]. In a self-similarity time-series, mean value and variance are

not appropriate for describing the property because they may not exist [29]. To simulate the effect

of hop phenomenon of RTT in real network, a large file is randomly added into network traffic.

According to [30], this may be one cause of self-similarity. In figure 9, the effect of such a

phenomenon is shown.

Node Placement Analysis for Overlay Networks in IOT Applications

Figure 9 Time cost with random large files

Figure 9 shows the group delay of 30 former experiments with D=5K and P=1430. It reveals

that network delay burst will affect overlay network performance, especially with an IoT

application, as the data of an IoT application are generated periodically. As the mean value of

RTT is not sufficient for overlay node placement optimization in IoT applications, other

parameters such as the Hurst parameter should be imported to define the weight of edges.

7. Conclusions

Network delay is one of the critical issues in IoT applications. Based on both performance and

ease of implementation, an internet based dual-layer network, which refers to the overlay network,

is suitable for the IoT. Overlay routing has been proved to be a feasible solution to optimize the

end-to-end delay. In this work, one of the most important issues in overlay routing, the overlay

node placement problem (ONPP), has been discussed. The NP-hardness of multi-hop k-ONPP has

been proven, and a theoretical boundary for k-OPNN optimization is provided.

With defined parameter 𝜔 and α, there is no polynomial algorithm with an approximation

ratio less then α × 1
𝜔−

𝑒
 . A local search algorithm has been proposed and a theoretical

approximation ratio bound has been provided. The approximation ratio of the local search

algorithm is less than
𝜔

α
. The proposed local search algorithm has been tested and compared with

a genetic algorithm and the TAG algorithm with MATLAB tools. The results illustrate that the

local search algorithm obtains better performance than the TAG algorithm, and the time cost is

linear with the problem scale.

The local search algorithm is finally tested with the network simulator EstiNet. The

experimental results show a stable benefit from the proposed method. Moreover, an additional

discussion about measuring network edge weight is provided, which reveals a future research

direction for ONPP.

Acknowledgments

This work is supported in part by Ministry of Science and Technology of China under the

National 973 Basic Research Program (grants No. 2013CB228206 and No. 2011CB302505) and

0 5 10 15 20 25 30
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

5

Test times

T
im

e
 c

o
s
ts

 (
m

s
)

Yuxin Wan et al

the National 863 Science and Technology Support Program (grant No. 2013BAH19F01), the

National Natural Science Foundation of China (grants No. 61233016), the China Southern Power

Grid Science and Technology project (K-SZ2012-026), and Tsinghua National Laboratory for

Information Science and Technology (TNList) cross-disciplinary research program. The authors

thank the EstiNet Company for providing a free license for the EstiNet software and technical

support.

References

[1] L. Atzori, A. Iera and G. Morabito, “The Internet of Things: A survey”, Computer Networks, vol.

54, no. 15, 2010, pp. 2787–2805.

[2] D. Miorandi, S. Sicari, F. D. Pellegrini and I. Chlamtac, “Internet of things: Vision, applications

and research challenges”, Ad Hoc Networks, vol. 10, no. 7, 2012, pp. 1497-1516.

[3] J. J. Wu and W. Zhao, “WInternet: From Net of Things to Internet of Things”, Journal of

Computer Research and Development, vol. 50, no. 6, 2013, pp. 1127-1134.

[4] M. Chenine, I. Al hatib, J. Ivanovski, V. Maden, and L. Nordstr m, “PM Traffic Shaping in

IP-based Wide Area Communication”, in Proc. 5th Int. Conf. on Critical Infrastructure, 2010, pp.

1-6.

[5] A. G. Phadke and J. S. Thorp, “Communication Needs for Wide Area Measurement

Applications”, in Proc. 5th Int. Conf. on Critical Infrastructure, 2010, pp. 1-7.

[6] M. Chenine, E. aram, and L. Nordstr m, “Modeling and Simulation of Wide Area Monitoring

and Control Systems in IP-based Networks”, Proc. IEEE Power & Energy Society General

Meeting, 2009, pp. 1-8.

[7] A. Raha, S. amat, X. Jia and Wei Zhao, “ sing Traffic Regulation to Meet End-to-End

Deadlines in ATM Networks”, IEEE Transactions on Computers, vol. 48, no. 9, 1999, pp.

917-935.

[8] S. Savage, A. Collins, E. Hoffman, J. Snell and T.E. Anderson, “The end-to-end effects of

Internet path selection”, ACM SIGCOMM Computer Communication Review, vol. 29, no. 4,

1999, pp. 289-299.

[9] S. Roy, H. Pucha, Z. Zhang, Y.C. Hu and L. Qiu, “Overlay Node Placement: Analysis,

Algorithms and Impact on Applications”, in Proc. 27th International Conference on Distributed

Computing Systems (ICDCS), 2007, pp. 53-63.

[10] EstiNet. http://www.estinet.com/

[11] .P. Gummadi, H.V. Madhyastha, S.D. Gribble, H.M. Levy and D. Wetherall, “Improving the

reliability of internet paths with one-hop source routing”, in Proc. 6th Symp. on Operating System

Design and Implementation (OSDI), 2004, pp. 183-197.

[12] D.G, Andersen, H. Balakrishnan, M.F. aashoek and R. Morris, “Resilient overlay networks”, in

Proc. 19th ACM Symp. on Operating Systems Principles (SOSP), 2001, pp. 131-145.

[13] Y. Zhu, C. Dovrolis and M. Ammar, “Combining multihoming with overlay routing”, in Proc.

IEEE 6th International Conference on Computer Communications (INFOCOM), 2007, pp.

839-847.

[14] L. Tang, Y. Huai, J. Zhou, H, Yin, Z. Chen and J. Li, “A Measurement Study on the Benefits of

Open Routers for Overlay Routing”, Journal of Communications, vol. 3, no. 9, 2009, pp. 714-723.

http://www.estinet.com/

Node Placement Analysis for Overlay Networks in IOT Applications

[15] S. Yang, Y.A. im and B. Wang, “Designing Infrastructure-based Overlay Networks for

Delay-sensitive Group Communications”, in Proc. IEEE Global Telecommunications Conference

(GLOBECOM), 2007, pp. 565-570.

[16] S. Roy, H. Pucha, Z. Zhang, Y.C. Hu and L. Qiu, “On the Placement of Infrastructure Overlay

Nodes”, IEEE/ACM Transactions on Networking, vol. 17, no. 4, 2009, pp. 1298-1311.

[17] N. Cleju, N. Thomos and P. Frossard, “Network coding node placement for delay minimization in

streaming overlays”, in Proc. IEEE International Conference on Communications (ICC), 2010, pp.

1-5.

[18] R. Cohen and D. Raz, “Cost Effective Resource Allocation of Overlay Routing Relay Nodes”, in

Proc. IEEE International Conference on Computer Communications (INFOCOM), 2011, pp.

3236-3244.

[19] S. Jamin, A. Ann, J. Cheng, A.R. urc, D. Raz and Y. Shavitt, “Constrained mirror placement on

the Internet”, in Proc. IEEE International Conference on Computer Communications (INFOCOM),

2001, pp. 31-40.

[20] M.Y. Wu, Y. Zhu and W. Shu, “Optimal multicast overlay placement for real time streaming

media”, in Proc. IEEE International Conference on Multimedia and Expo (ICME), 2004, pp.

479-482.

[21] Á.L.V. Caraguay, A.B. Peral, L.I.B. López, and L.J.G. Villalba, “Software-Defined Networking:

Evolution and Opportunities in the Development IoT Applications”, To be appear in International

Journal of Distributed Sensor Networks

[22] “European Lighthouse Integrated Project, Internet of Things Architecture”.

http://www.iot-a.eu/public

[23] R. Pan, D.M. Zhu, S.H. Ma and J.J. Xiao, “Approximated Computational Hardness and Local

Search Approximated Algorithm Analysis for k-Median Problem”, Journal of Software, vol. 16,

no. 3, 2005, pp. 393-399.

[24] V. Arya, N. Garg, R. handekar, A. Meyerson, . Munagala and V. Pandit, “Local Search

Heuristics for k-Median and Facility Location Problems”, SIAM Journal on Computer, vol. 33, no.

3, 2004, pp. 544-562.

[25] M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover Genetic and Mutation in

Genetic Algorithms”, IEEE Transactions on Systems, Man and Cybernetics, vol. 24, no. 3, 1994,

pp. 656-667

[26] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou and C.C. Lin, “The

design and implementation of the NCT ns 1.0 network simulator”, Computer Networks, vol. 42,

no. 2, 2003, pp. 175-197.

[27] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, “On the self-similar nature

of Ethernet traffic”, ACM SIGCOMM Computer Communication Review, vol. 24, no. 3,

1993, pp. 183-193.

[28] M.S. Borella, S. ludag, G.B. Brewster, I. Sidhu, “Self-similarity of Internet packet delay”, IEEE

International Conference on Communications, 1997, pp. 513-517.

[29] Ming Li, “Fractal Time Series—A Tutorial Review”, Mathematical Problems in Engineering, vol.

2010, 2010, pp. 1-26.

[30] M.E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: evidence and

possible causes”, IEEE/ACM Transactions on Networking, vol. 5, no. 6, 1997, pp. 835-846.

