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The Internet of Things (IoT), which combines identification, sensing, computing and 

communication technologies, is considered one of the major trends in information and 

communication technologies. Communication performance is critical for IoT applications. 

According to previous research, an internet-based overlay model is feasible for the 

implementation of the IoT. One important issue in the overlay routing model is the overlay node 

placement problem (ONPP). Once the size of overlay node set is fixed to a particular number k, 

the ONPP changes to k-ONPP. In this work, the IoT-based overlay node placement problem is 

formulized and analyzed. The major contributions of the paper include providing the time 

complexity of multi-hop k-ONPP and its theoretical limit boundary of approximation ratio and 

proposing a local search algorithm. Furthermore, the time complexity and approximation ratio 

boundary of the local search algorithm are given. The proposed local search algorithm is 

evaluated by both time and efficiency where efficiency refers to the degree of approximation of 

algorithm results with optimal solutions. Another algorithm, TAG, is used for comparison. Finally, 

a simulation experiment based on network simulator EstiNet is provided. The experimental results 

show network delay benefits from the proposed method. 
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1. Introduction 

The Internet of Things (IoT) has been regarded as the future of internet and one of the major 

trends in information and communication technologies [1]. The key idea of IoT is combining 

identification, sensing, computing and communication technologies to provide a better description 

of physical processes. IoT technologies can be applied in a wide variety of applications such as 

smart homes, smart cities, environmental monitoring and health care [2].  
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Many IoT-based applications require timely interaction between users and physical objects. 

Therefore, communication performance is very important in IoT implementation. There are three 

options for the implementation of the IoT: using the current internet, building a new network and 

building a dual-layer network [3]. Based on the consideration of both performance and ease of 

implementation, an internet based dual-layer network is suitable for the IoT. Here, the dual-layer 

network refers to the overlay network. Currently, many IoT applications are implemented using an 

overlay network. Take the smart grid, for example. One typical example of a smart grid is the wide 

area management system (WAMS). The WAMS uses the phasor measurement unit (PMU) as 

sensor and data collector. The collected data need to be transferred to a control center for analysis. 

The current WAMS is built on an IP-based network, and many studies have been conducted on the 

influence of network performance on WAMS [4][5][6]. 

However, as the internet only provides a best-effort service, internet-based overlay networks 

should add additional methods to improve network performance. Such methods include admission 

control and overlay routing. Admission control guarantees the worst-case delay boundary, but it 

may deny a connection [7] and requires special network devices. Overlay routing has been proved 

useful in reducing end-to-end delay [8], and no further devices are needed. The overlay routing 

method can be used to reduce the communication delay between sensors and the data center where 

the data are analyzed. One important issue in the overlay routing model is the overlay node 

placement problem (ONPP) [9]. The objective of the ONPP is to find the optimal overlay node set 

with minimum total data transfer cost. However, the size of overlay node set may be fixed to a 

given number k due to cost and efficiency considerations. This modified ONPP is called k-ONPP. 

In this work, the overlay node placement problem (ONPP) in IoT applications is formulized 

and a local search algorithm is proposed. The time complexity of k-ONPP is analyzed. 

Furthermore, we give the theoretical limit boundary of the approximation ratio for k-ONPP. 

Additionally, the approximation ratio boundary of the proposed local search algorithm is provided. 

A genetic algorithm and a greedy algorithm are introduced for performance comparison. All 

algorithms are evaluated by time cost and efficiency with MATLAB tools. Here efficiency refers 

to the degree of approximation of algorithm results with optimal solutions. Finally, a simulation 

experiment based on the network simulator EstiNet [10] is provided to test the efficiency of 

proposed overlay network model and algorithm. The experimental results show network delay 

benefits from the proposed method. 

The rest of the paper is organized as follows: Section 2 introduces the research background 

and related work in overlay node placement. Section 3 presents the model and formulation of 

k-ONPP in the IoT and provides a theoretical analysis for this problem. Section 4 proposes a local 

search algorithm and provides its time complexity and approximation ratio boundary. Section 5 

evaluates the algorithms based on time cost and algorithm approximation using MATLAB tools. A 

genetic algorithm and a greedy algorithm, TAG, are introduced for comparison. The local search 

algorithm is tested in a simulation scenario with the network simulator EstiNet in Section 6. Some 

additional factors that impact the algorithm are discussed. Finally, a general conclusion is 

provided in Section 7. 

2. Research Background and Related Work 

Overlay routing has been proved to be a feasible method to improve network performance with 
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unreliable internet infrastructure [8]. The basic concept of overlay routing is choosing one or more 

nodes in the overlay network as hop nodes for data transfer. Overlay routing will use an additional 

routing algorithm, separate from the underlying internet routing algorithm. There are two types of 

overlay networks: peer-to-peer networks and infrastructure networks [9]. Network nodes of 

peer-to-peer networks may change rapidly, while the nodes of infrastructure networks have higher 

persistence. In most infrastructure overlay networks, overlay nodes belong to a single entity, so it is 

feasible to apply the routing algorithm in these overlay nodes. Currently, most networks of IoT 

applications are similar to infrastructure overlay networks, so this paper focuses on the overlay node 

placement problem in such networks. 

Previous work in [8] has proved that with the overlay routing method, the RTT of end-to-end 

packet may be reduced. D.G. Anderson et al. found that network performance would improve with only 

one hop node [12]. A random-k algorithm is proposed in [11]. The basic idea of this algorithm is 

randomly selecting k nodes out of M. Then, a source sends a test packet through these k nodes to the 

destination. The intermediate node whose response comes back first will be chosen as the overlay node. 

This algorithm aims to improve the network reliability after path failure occurs, so other performance 

metrics such as communication delay are not considered. Additionally, this algorithm is based on 

experimental experience, no theoretical analysis is given. 

In [13], Y. Zhu et al. further studied the node placement problem with one hop node. Their 

scenario uses overlay routing and multi-homing to improve network performance and availability. 

They proved the overlay node placement problem with one hop node is an NP-hard problem based on a 

reduction from the set covering problem. The number of overlay nodes is not fixed in their scenario. In 

contrast to previous work in [11], network performance is considered in [13]. Four heuristic methods, 

Random, Customer-driven, Traffic-driven and Performance-driven, are introduced and tested. Their 

results show an improved RTT from sources to destinations with overlay routing. 

A measurement study on the benefits from overlay routing is made in [14]. Their scenario uses 

overlay routing to improve end-to-end network performance. The intermediate node is also set to be 

one. In contrast to previous work in [11], [12] and [13], the number of overlay nodes is fixed to a given 

number k in this work. The problem is also proved to be a NP-hard one. Four greedy heuristic 

algorithms are introduced and tested.  

A generic description of k-ONPP is given in [9] as follows: Given M possible overlay nodes and a 

number k, choose k nodes out of M to optimize the application-specialized performance metric. 

Moreover, the number of intermediate nodes in an overlay path is unfixed. In [15], S. Yang et al. 

considered this generalized problem with the performance metric group delays from sources to 

destinations. In this work, the node placement problem is described by a linear programming formula 

and solved with ILOG CPLEX, an optimization software package designed by IBM. Although in this 

work the generalized problem is considered, it is unfeasible to implement the solution in a real network 

as the results are calculated by other software. 

The latest work on overlay node placement problem can be found in [16], [17] and [18]. In [16], S. 

Roy et al. introduced a greedy algorithm called Traffic Aware Greedy (TAG) and compared this 

algorithm with the node degree-based algorithm. Another greedy algorithm is proposed in [17]. R. 

Cohen and D. Raz made progress on this problem by providing a theoretical limit boundary of the 

approximation ratio that can be achieved by a polynomial algorithm based on the set cover problem 
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[18]. The overlay node placement problem also has been discussed in other contexts such as web cache 

placement in [19] and [20], but the motivation and objective are quite different.  

As described above, most of the current work on the overlay node placement algorithm are greedy 

algorithms and lack a theoretical analysis. Although [18] analyzed this problem in a theoretical manner 

and provided a limit boundary of approximation ratio, their analysis is based on a one-hop overlay. In 

addition, the approximation ratio of their proposed algorithm is denoted by another parameter m, where 

m is the size of the maximum minimal overlay vertex cut. As written in [18], finding the minimal 

overlay vertex cut is not easy. In this work, the overlay node placement model for IoT applications is 

proposed, and a different analysis approach is made based on a reduction from the k-median problem. 

We further analysis the k-ONPP problem with a multi-hop overlay and provide its time complexity and 

the limit boundary of the approximation ratio. A local search algorithm is proposed, and the 

approximation ratio boundary has been provided in a more calculable way. 

3. Problem Formulation and Analysis 

According to previous research in IoT [21][22], the architectural of IoT can be divided into three 

parts: sensor/actuator layer; information transmission layer (network layer) and application layer. As 

mentioned in the introduction, currently the internet based dual-layer network is feasible for an IoT 

application, so an abstract IoT architectural scheme can be described as following figure 1. 

IOT Network Layer 

Sensor/Actuator Layer

Application Layer Data analysis

Dual layer network

Current Internet

Different 

sensors/actuators
Smart Grid 

sensor/actuator

Intelligent 
Transportation 
sensor/actuator

Environment 
Monitor 
sensor

Energe 
management

Traffic 
management

Meteorological 
disaster 

early-warning 

Distributed IoT data server

 Figure 1 IoT architectural scheme 

Consider the above IoT architectural scheme, the communication network of IoT is used for data 

gathering from distributed sensors to analysis centers. Some data concentrators, such as PMU in smart 

grid, are deployed so that an internet-based dual layer network is already there. These concentrators 

and sensors are fully constructed and controlled by the same entity or group, so they can be used as an 

overlay node to gain benefits. As these concentrators are almost persistent, this overlay network can be 

regarded as an infrastructure overlay network. Thus, the problem is how to place these concentrators to 

maximize the benefits. Figure 2 provides a sketch map of such a dual layer network. 
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Figure 2 Sketch map of a dual layer network of the IoT 

3.1. Problem Formulation 

We consider the performance metric of group communication delay, which is the total 

communication delay from each sensor to the analysis center. Group communication delay is used 

because data generated by sensors in IoT application is predictable and generally periodic. This 

means if group communication delay drops, system performance may become better. Then, the 

overlay node placement problem can be formulized as follows.  

Consider a physical network represented as a graph       , where V denotes the 

networking devices and E denotes links between V. The weight of link e in E is defined by a metric 

such as network bandwidth or communication delay, denoted by        where i, j indicates the 

vertexes of link e. We use communication delay as metric. A group of source vertexes denoted by S 

need to send data to destination vertexes denoted by T. A candidate set of vertexes     may 

suitable locations to deploy concentrators. Let     denote the chosen overlay node set. The 

destination of each     is fixed to    . We define the function t(s), which denotes the   that   

is connected to. Once the overlay node set O is chosen, each of the source vertexes     can use O to 

transfer data. Let   
      

 indicate the weight of the direct path from vertex s to t(s) and   
      

 indicate 

the weight with overlay nodes.   
      

 is the weight of shortest path with overlay set O. Suppose the 

shortest overlay path from s to t(s) is                    then   
      

     
      

          . If 

overlay set O is not helpful to reduce the original weight, then s will link directly to t(s). Then, 

  
      

   
      

. We define   
         

   
         

  ; then,   
      

can be defined as follows:  

  
      

                   
      

      
                                       

Clearly,   
      

   
      

. This is different from other discussions, as in others each source must connect 

to one overlay node. Then, the objective function can be written as finding     to minimize 

∑   
      

   , where     is defined above and denotes the destination     to which s connects. 

Considering the cost of deploying these overlay nodes and the cost of maintaining communication 

delay information between the overlay nodes, the size of set O should be limited. Suppose a given 

number k is used. We define this problem as the k-ONPP problem. Then, the problem is modified to 

finding     to minimize ∑   
      

   , and the size of   is k.  

3.2. Problem Analysis 

In this section, we will analysis the time complexity for k-ONPP and discuss the theoretical limit 

boundary of approximation ratio. We give the following theorems. 

Theorem 1 k-ONPP is an NP-hard problem. 

Proof: First, we consider another NP-complete problem. The k-median decision problem is a typical 

NP-complete problem which can be described as follows. Given a client set  ̂ and a candidate 

position set  ̂. The weight from each  ̂   ̂ to  ̂   ̂ is denoted by  ̂ ̂ ̂   . Determine whether 

there exists a set  ̂ out of  ̂ where the size of  ̂ is k such that 

∑       ̂ ̂ ̂ 

 ̂  ̂  ̂  ̂

   

We define this problem as   . Then, we consider a modified problem from k-ONPP as follows. 

Consider a graph       , a source set S, a destination set T and a possible set B. Find     to 
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minimize ∑        
      

   
      

      
        , where the size of   is k. Define this problem as   . This 

objective function means at most only one overlay hop can be used in an overlay path. Consider the 

decision problem   , determining whether there exists a set   out of   where the size of   is k such 

that 

∑        
      

   
      

      
 

       

   

We define this problem as   .  

Next, we modify problem    into a different version. Let  ̂     ̂    and  ̂   . Consider a 

client point  ̂   ̂and an candidate overlay node   ̂   ̂. Define  

 ̂ ̂  ̂          
      

   
      

      
  

Then, problem    changes to determining whether there exists a set  ̂ out of  ̂ where Size( ̂   ̂ 

such that ∑    ( ̂ ̂ ̂) ̂  ̂  ̂  ̂   . It is obvious that modified problem    is the same as problem   .  

Because    is NP-complete, then    is NP-complete as well. Additionally, this proves problem   is 

the same as the k-median problem. 

Now, we consider the original k-ONPP. Given a graph       , a source set S, a destination set T 

and a possible set B, find     to minimize ∑   
      

    , where the size of   is k. Suppose there is 

a polynomial algorithm for k-ONPP. Construct a special case of k-ONPP. Let   
          

        

where         and    . Obviously, in this constructed k-ONPP, only one hop node at most may 

be used in the overlay path. If there is a polynomial algorithm for k-ONPP, then the constructed 

k-ONPP can be solved, then problem    can be solved. The algorithm for    can be designed as 

follows: 

1. Use the polynomial algorithm for k-ONPP to find the result R of constructed k-ONPP. 

2. Test if R  . 

 Because   ∝k-ONPP and    is NP-complete, k-ONPP is a NP-hard problem. This proves 

theorem 1. 

Next, we provide the theoretical limit boundary of an approximation ratio for k-ONPP. In k-ONPP, 

define following parameters: 

                
      

   
      

      
                } 

                
      

   
      

      
                } 

  
    

    

 

α   ax  
  
     𝐵

      

  
      

      
                  

Theorem 2 There is no polynomial algorithm for k-ONPP with an approximation ratio less than 

α ×  1  
𝜔− 

𝑒
  

Proof: As proved above, problem    is the same as k-median problem. With the above-defined 

     and     ,   also denotes 
max 𝑙𝑐̂ 𝑏̂

   𝑙𝑐̂ 𝑏̂
, where  ̂   ̂ in problem   . R. Pan et al. proved that 

with a so-defined    there are no polynomial algorithms with an approximation ratio less 

than 1  
𝜔− 

𝑒
 unless 𝑁  𝐷 𝐼𝑀     𝑙 𝑔𝑙 𝑔    for a general distance space k-median problem 
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[23]. Let the optimal result for    be    and the optimal result for k-ONPP be   . Let the best 

result can be obtained with polynomial algorithm for    be 𝑅  and the best result can be 

obtained with a polynomial algorithm for k-ONPP be 𝑅 . Obviously, we have      , 𝑅  𝑅 .  

Because 
𝑅 

  
≥  1  

𝜔− 

𝑒
 , 

𝑅 

  
≥

𝑅 

  
≥

𝑅 

𝑅 
×

𝑅 

  
. However, for each overlay path for client   S, 

       
      

   
      

      
 ≥        

      
   

     𝐵
      

 ≥ α ×        
      

   
      

      
 . Therefore, 

𝑅 

𝑅 
≥ α and 

𝑅 

  
≥  α ×  1  

𝜔− 

𝑒
 . This proves theorem 2.  

Both α and 𝜔 are easy to calculate in this formula. It is obvious that the time complexity to 

obtain 𝜔 is     𝑧𝑒   ×   𝑧𝑒    . The time complexity to obtain α is the time complexity of 

shortest path algorithm. Because  𝐵
      

 means using whole candidate set B as overlay node set, 

the shortest path algorithm can be applied. 

4. Proposed Algorithm and Analysis 

As discussed above, the k-ONPP problem is similar to the k-median problem, so the 

algorithm for the k-median problem may also be applied in k-ONPP. The proposed local search 

algorithm is modified from the local search algorithm developed by Arya in [24]. However, the 

discussion in [24] is based on the metric space, which means the distance definition satisfies the 

symmetrical characteristic and triangle inequality. However, neither of these two properties is 

consistent with network delay. In fact, if network delay satisfies triangle inequality, there is no 

need to optimize the delay as   
      

      
  . The modified local search algorithm works as 

follows.  

We define the cost function as Cost(N) with given set N, which indicates the group 

communication delay from the client set S to destination T with a given overlay set N. A 

neighborhood structure for the set N is defined as 𝐹 𝑁   𝑁 −        𝑁      ∉ 𝑁 . 

We define a local optimum as      𝑁 <      𝑁′  for all 𝑁′  𝐹 𝑁 . Then, the steps of 

proposed local search algorithm are as follows in figure 3. 

Algorithm: Local Search Algorithm

Input: Candidate set B; Cost function Cost(N); Neighborhood structure F(N); 

Delay graph G(V,E)

Output: Sub-optimal overlay node set O

1. Random select a set N which Size(N)=k

2. Constructing a new graph with 

3. Apply Dijkstra algorithm in to get the shortest path from N to { }

4. Calculating the Cost(N)= 

5. If that then = , return to step 1

6. Return N.
 

Figure 3 Proposed local search algorithm 

Next, we discuss the time complexity of the proposed algorithm. We state the following 



Yuxin Wan et al 

theorem. 

Theorem 3 The time complexity of the proposed local search algorithm is polynomial.  

Proof: Let Size(B)=M, where p indicates the number of iterations. Suppose k 𝑁. The time cost for the 

Dijkstra algorithm is O(  ). The maximum replacement in each iteration for set N is Size(B-N). So, the 

total time complexity for local search algorithm is O(  𝑀 ). As discussed in [24], p can be defined as 

     (
        

       
)       

 

  −    
 . Here,    is the initial value, O is the optimal result,  >0 is constant 

and Q is the size of         where S is the set of all feasible solutions and G(S) is the 

neighborhood of S. With proposed local search algorithm      𝐹      −            

   ∉    therefore,     𝑧𝑒   ×   𝑧𝑒  −     which is polynomial, because Q, log(        ) and 

log(Cost(O)) are polynomial with the input size. So, the time complexity of the local search algorithm 

is polynomial. This proves theorem 3. 

Finally, we provided the approximation ratio boundary of the local search algorithm in 

theorem 4. 

Theorem 4 The approximation ratio boundary of the proposed local search algorithm is 
𝜔

α
. 

Proof: Suppose the optimal set for k-ONPP is O and local optimal set is N. Let              

and 𝑁            .      and      are defined the same as before, 𝜔  
𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛
. As N is the 

local optimal set, then for all 𝑁′  𝐹 𝑁 , we obtain  

     𝑁′ −      𝑁                                                                1  

From inequality (1), we replace the overlay node    in N with node    in O, then we obtain  

     𝑁 −       −      𝑁                                              2  

Define 𝑁1            , 𝑁2              , 𝑁            . Define 𝐷      as the 

clients which connect    as first overlay node. For N1, let   𝐷      connect to    as first 

overlay node, and let  ′   − 𝐷      connect to  ′   𝑁1      ′    with minimum 

min(  
 ′  ′

  N 
 ′    ′ 

). Therefore, inequality (2) can be expanded as follows: 

     𝑁 −       −      𝑁  

 ∑ (  
c     𝑁 

     c −  𝑁
c   c 

)  ∑ ( 𝑁 
c   c −  𝑁

c   c 
)

   −𝐷𝐶      𝐷𝐶    

        3  

For the first portion before the plus sign in (3) 

     
1

α
       

         
     𝐵

        
1

α
   (  

      
   

      
      

)  
1

α
  
c   c 

 

  
c     𝑁 

     c    
c      

     c  𝜔     
𝜔

α
  
c   c 

 

For the second portion in (3) 

 𝑁 
c   c 

   
c   c 

 𝜔     
𝜔

α
  
c   c 

 

So, inequality (3) can be expanded as follows: 
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 < ∑ (  
      𝑁 

       −  𝑁
      

)  ∑ ( 𝑁 
      

−  𝑁
      

)

   −𝐷𝐶      𝐷𝐶    

 ∑ (
𝜔

α
  
      −  𝑁

      
)  ∑ (

𝜔

α
  
      −  𝑁

      
)

   −𝐷𝐶      𝐷𝐶    

 ∑(
𝜔

α
  
      

−  𝑁
      

)  
𝜔

α
       −        

   

 

Then, we have obtained the approximation ratio with defined 𝜔 and α as follows: 

       <
𝜔

α
                                                                          

This proves theorem 4. 

5. Algorithm Evaluation 

In this paper, the proposed local search algorithm is tested with both Matlab and the network 

simulator Estinet. Estinet is used to test the algorithm’s performance in a network environment. 

However, as the amount of network nodes is limited in a simulator, in this section Matlab is used 

to evaluate the algorithm based on time cost and effectiveness. A genetic algorithm is introduced 

to approach the optimal result, while the TAG algorithm proposed in [16] is used for comparison. 

5.1. Experiment Design and Implementation 

As described above, a physical network can be represented as a graph       , where V 

denotes networking devices and E denotes the time delay between V. In the actual network, 

networking devices are connected in two modes: directly connecting with links and indirectly 

connecting with routers or switchers. So, the first step of experiment is generating an 𝑀 × 𝑀 

matrix to record the graph, where M is the number of network devices. After that, direct 

connections with time delay between graph vertexes are randomly generated. In the third step, 

each pair of two vertexes in the graph is connected through the directly connecting vertexes. The 

time delay between indirectly connecting vertexes is the sum of the time delay between directly 

connecting vertexes in the path.  

The Matlab test is implemented on a laptop with two Intel i5 core processors and 3GB 

memory. For each experiment, we test the algorithm 500 times. The mean value of the proposed 

algorithm is then calculated to better expose the performance. In addition, the 95% quartile of 500 

tests is calculated and the 95% confidence interval of the mean value is obtained. For the genetic 

algorithm the best result of the 500 tests will be recorded, as it is used to generate the optimal 

result. 

5.2. Two Other Algorithms for Comparison 

5.2.1 Genetic algorithm 

To evaluate the time cost and algorithm approximation, the global optimal result is needed for 

comparison. However, as previously proved, k-ONPP is NP-hard; we cannot calculate the global 

optimal solution with an increasing problem scale. So, the result of a genetic algorithm is used to 

approximate the global optimal result. It is unnecessary to provide the detailed steps of the genetic 
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algorithm, so only the key definitions are described here as follows: 

1. Genetic representation. The target of k-ONPP is finding k nodes out of possible set B to 

minimize group delay. A natural thought is using the tag of these nodes to represent the 

solution. So, we mark each node in set B with a number and represent each individual as a set 

of numbers. The size of the individual set is fixed to k.  

2. Fitness function. The property of the fitness function is the better the solution, the larger the 

fitness will be. However, the cost function defined above is the group delay. Suppose 𝑁 

denotes current generations and C denotes the fitness of calculated individual. We define 

fitness function as follows. 

1 −
       −           𝑁  

   (     𝑁 ) −          𝑁  
 

3. Crossover. Randomly choose the crossover point in an individual set. Then, the tag number 

before or after the crossover point are swapped. However, the same point may appear twice in 

a single individual set after crossover. For example, this occurs if individual A is (3, 4, 7, 9), 

individual B is (1, 3, 5, 7), and the crossover is happened at the second point; one of the 

results is (3, 3, 5, 7). In case of such a scenario, we extract the set of the same points from 

individuals and cross the left part. After the crossover, this set is added into both results. 

During the experiment, an adaptive crossover probability is used based on the work of M. 

Srinivas, and L. M. Patnaik in [25]. 

4. Mutation. Given a mutation probability, for each point in the individual set, randomly 

generate a number between 0 and 1. If the random number bigger than mutation probability, 

select another point in candidate set B to replace this point. An adaptive mutation probability 

is also used based on [25]. 

5.2.2 TAG algorithm 

The TAG algorithm is a greedy algorithm proposed by S. Roy et al. in [16]. The TAG 

algorithm works as follows. It selects overlay nodes from candidate set B based on a greedy 

strategy. During each step, the algorithm chooses the node that gives the best value of the cost 

function. Suppose there are already m nodes in the overlay node set O. Then, the (m+1)-th node is 

selected among the rest of the B-O nodes. There is no replacement strategy in TAG, so once the 

node is chosen it cannot be modified. The time complexity of TAG is O(  𝑀), where k is the 

given size of overlay set and 𝑀 is the size of candidate set B. 

5.3. Experimental Results 

5.3.1 Comparison between Optimal Solutions and Genetic Algorithm Solutions 

As a genetic algorithm is used to acquire the global optimal result, the efficiency of genetic 

algorithm must first be tested. Table 1 presents the comparison of the genetic algorithm with the 

global optimal algorithm in a small scale problem. The global optimal algorithm is achieved by 

the traversing method, so it is limited by the problem scale. For example, the time cost with M=50 

and k=5 is 26531s, which is almost 8 hours. For genetic algorithm, as described above, the best 

result out of 500 experiments is used to increase the possibility of finding the global optimal result. 

In the following, k denotes the size of overlay node set; M denotes the size of candidate set B. In 

order to eliminate randomness, these experiments are carried out with different network topology. 



Node Placement Analysis for Overlay Networks in IOT Applications 

So experiment results of different parameter M are not comparable. 

As mentioned above, the adaptive crossover and mutation probability are used in the 

implementation of genetic algorithm. Adaptive function and parameters are the same as described 

in [25] except a minimum crossover probability is set to 0.1 and a minimum mutation probability 

is set to 0.05. Population size is set to 300. The iteration stop condition is that the fitness value 

maintains unchanged for 100 iterations. 

TABLE 1 Comparison of genetic algorithm results with global optimal results 

M/k 

Average result of 500 

experiments acquired by 

the genetic algorithm (ms) 

Best result of 500 

experiments acquired by 

the genetic algorithm (ms) 

Global 

optimal 

results (ms) 

M=30 k=3  46.1543  45.9002 45.9002 

k=5 36.7103 36.6999 36.6999
 

M=40 k=3 58.3422 58.3204 58.3204 

k=5 55.7610 55.6698 55.6698 

M=50 k=3 54.7344 54.7214 54.7214 

k=5 52.0495 52.0034 52.0034 

As table 1 presents, the genetic algorithm works efficiently with above definitions and 

parameters. The obtained results of genetic algorithm are very close to the results calculated by 

traversing method. Also, the best result of genetic algorithm can be the same as optimal result as 

illustrated in table 1. These results illustrate the efficiency of proposed genetic algorithm. During 

the experiment we also found that increased population size would lead to increased probability of 

getting optimal results but with increased time cost too.  

5.3.2 Comparison of Different Algorithms  

Figure 4 compares the results of the local search algorithm, the TAG algorithm and the best 

result achieved by the genetic algorithm.  

 

Figure 4 Algorithm results comparison 

Clearly, in figure 4, the results of local search algorithm are almost as good as the best result 

of the genetic algorithm, while the results of the TAG algorithm are very unstable. Although in 

some cases the TAG algorithm can obtain a result close to local search algorithm, the result of 
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TAG is not monotonic, as shown in figure 4. This occurs when the candidate set B increases but 

the result decreases. This is because TAG selects a node that gives the best cost value according to 

the current node set. However, a good node in one step may not be part of the best overly node set. 

And, once the node is selected, there is no strategy for replacement.  

Figure 5 illustrates the time cost of different algorithms. Time cost of local search algorithm 

and TAG algorithm are the mean time cost of 500 tests. Time cost of genetic algorithm is 

calculated based on the mean value of iteration step which returns the best solution. 

 
  Figure 5 Time cost comparison 

As figure 5 presents, the genetic algorithm is more time-consuming than the local search 

algorithm, and the time cost of TAG is minimal. This result is consistent with the theoretical 

analysis. Additionally, these results clearly show the time cost of the local search algorithm is 

linear with the size of candidate set B. 

5.3.3 Stability of the Proposed Algorithm  

As there is no randomness in the TAG algorithm, each of the 500 tests obtains the same result. 

For proposed local search algorithm, there are random steps, so the corresponding result may 

fluctuate. However, during the tests we discovered that the result of proposed algorithm only 

varies over a small interval, therefore the proposed algorithm works stably. Table 2 presents the 95% 

quartile of 500 tests and the 95% confidence interval of the mean value. Regardless of the 

distribution of the results, the confidence interval of the mean value is still reasonable because of 

the central limit theorem. Each of the experiments can be treated as an independent random 

variable, and these independent random variables have the same mean and variance. Thus, the 

mean value of these independent random variables follows the normal distribution. 

TABLE 2 Stability of proposed algorithm 

M 
TAG algorithm 

results 

Mean value of 

proposed algorithm 

95% quartile of 

proposed algorithm 

95% Confidence 

interval of mean value 

30 47.2386 47.2386 47.2386 (47.2386, 47.2386) 

50 40.9723 40.3376 40.3119 (40.3209, 40.3543)
 

100 36.4616 35.6586 35.6452 (35.6513, 35.6659) 

150 36.4616 34.5786 35.5903 (34.4789, 34.6782) 

200 38.0621 34.4447 35.5903 (34.3397, 34.5497) 
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250 38.0621 34.3215 35.5903 (34.2119, 34.4311) 

300 37.105 34.0292 35.9118 (33.9424, 34.1161) 

350 37.105 33.9983 35.9118 (33.9132, 34.0835) 

400 29.6423 29.0581 29.0172 (29.0222, 29.0940) 

450 31.1796 28.4569 28.4420 (28.4423, 28.4715) 

As table 2 presents, the proposed algorithm works quite stably. 

5.3.4 Impact of the Number of Overlay Nodes 

In section 3, we noted that because of the cost of deploying overlay nodes and the cost of 

maintaining communication delay information between overlay nodes, the size of set O should be 

limited. Figures 6 and 7 present the algorithm results and time cost with k increasing under the 

same M.  

 

Figure 6 Algorithm results with an increasing k 

 

Figure 7 Time cost with an increasing k 

As figures 6 and 7 show, the algorithm result and the number of overlay nodes are not linearly 

correlated. When k increases to a certain range, the algorithm results may remain unchanged. In 

contrast, the time cost will keep increasing. Thus, considering both the algorithm efficiency and 
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cost of deployment, the size of the overlay set should be limited. 

6. Experiment with Network Simulation 

In this section, the proposed local search algorithm is tested in a network simulation 

environment. This section is used to represent the algorithm performance and some factors that 

impact the performance. The network simulator EstiNet is applied. 

6.1.EstiNet Network Simulation 

EstiNet is a novel network simulator developed by S.Y. Wang since 1999 [26]. The current 

version is EstiNet 8.0, which can be found in [10]. A novel simulation methodology called “kernel 

reentering methodology” is implemented in EstiNet. It combines the advantages of both 

simulation and emulation. In contrast to existing network simulators NS2 or OPNET, EstiNet uses 

the real-life UNIX TCP/IP protocol stack during the simulation, and thus all the real-life network 

application programs can readily run on any node in a simulated network without any 

modification. This approach can only be performed in emulation mode with other simulators. 

However, with emulation mode, the performance of switches, links, etc., are controlled by the 

operating system, which makes the results unpredictable; thus, the simulation result cannot be 

repeated precisely. There is a useful tool in EstiNet called “Generate Large Internet-like Network”. 

It automatically generates a large network that is similar to the Internet. We use this tool to 

implement following experiments. 

6.2.Experiment Design 

Figure 8 shows the schematic diagram of the proposed experiment. The red points denote the 

sensors that are used to collect data. The black points denote the data analyzer used to gather data 

from sensors. The blue points denote the overlay node, and the red dotted lines denote the logic 

path from sensor to analyzer through the overlay node. A data-generating program is implemented 

in each sensor which periodically generates data packets with size L. A data server program is 

implemented in the analyzer. A data transfer program is implemented in the overlay node and 

retransfers each packet from the sensor to next overlay node or data server. The goal is to find the 

optimal overlay node set with given size k that minimizes the sum of time delay from each sensor 

to the analyzer.  
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Figure 8 Schematic diagram of the experiments 
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In a realistic environment, a delay testing program and transfer program should be placed at 

each candidate node. Once the optimal overlay set has been found, the transfer program in overlay 

node is set to continue while the other transfer program suspends. The recalculation should be 

triggered by time or by network events such as increasing network delay from sensors. For 

simplicity of analysis, we decompose the progress in the simulation. The simulation steps are as 

follows: 

1. First, we add network traffic in the simulation environment. 

2. Then, we find the original time delay from the sensors to the analyzer. In this step, 

data-generating programs implemented in sensors directly sending data to the server with the 

server IP address.   

3. To obtain the optimal overlay node set, a delay matrix that indicates the time delay of each 

two nodes in candidate set B is needed. Thus, a program to measure time delay from each two 

nodes is required. Here, we use the ping method to acquire the RTT of each two nodes. We 

modified the ping program to calculate the mean RTT and record it in a file. 

4. We construct the delay matrix out of measured time delay and find the optimal overlay node 

set. 

5. We implement the node transfer programs in the overlay nodes and re-test the group time 

delay from the sensors to the analyzer. 

The simulation network includes 167 nodes; we randomly select 11 nodes as sensors and 1 

node as the analyzer. The overlay node set size is set to 5, and all the other nodes are added into 

candidate node set. 5 overlay nodes are used because system performance improvement becomes 

trivial with more overlay nodes. To eliminate the effect of randomness of the network, each of the 

following experiments has been repeated five times. 

6.3.Experimental Results and analysis 

Network communication delay consists of four parts: nodal processing delay, queuing delay, 

transmission delay and propagation delay. Queuing delay, nodal processing delay and propagation 

delay can be measured by RTT, while transmission delay is related to network bandwidth and data 

size. To test the overlay network performance with different conditions, different data sizes are 

used in the experiment. In addition, all the network programs used in the experiment are 

implemented based on the Linux socket. Within socket programming, a large file should be 

decomposed into small packet for transfer, otherwise the delay would increase. Consequently, 

packet size is also used as a parameter in the experiment. Some interesting phenomena are 

revealed.  

Table 3 illustrates the overlay network performance with increasing data size. Here D denotes 

the size of data sent from sensors; P denotes the program transfer packet size. The original cost 

means the group delay from sensors to analyzer without the overlay. The overlay network cost 

means the group delay after applying the overlay. The total improvement is calculated with a 

percentage. 

TABLE 3 Comparison of overlay network performance with increasing data size  

D (Byte)/P (Byte) 
Original cost 

(ms) 
Overlay network cost (ms) 

Delay improvement 

(percentage) 

D=100 P=1000 48.177 18.186 62.25% 
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P=1430 47.968 18.234 61.99% 

P=1800 48.146 18.203 62.19% 

D=1K P=1000 122.642 101.675 17.10% 

P=1430 122.806 102.589 16.46% 

P=1800 120.466 102.178 15.18% 

D=5K P=1000 208.380 188.026 9.77% 

P=1430 219.872 180.811 17.77% 

P=1800 300.919 225.573 25.04% 

D=10K P=1000 372.405 297.364 20.15% 

P=1430 368.939 269.100 27.06% 

P=1800 384.022 276.791 27.92% 

D=100K P=1000 1521.535 1157.466 23.93% 

P=1430 1543.298 1169.730 24.21% 

P=1800 1526.384 1165.816 23.62% 

Table 3 illustrates that overlay network with the proposed algorithm can improve network 

delay under all conditions. Additionally, the transmission delay would affect system performance. 

When the sensor data size is small enough, the delay improvement is extremely good. This 

performance would decreases with increase sensor data size. However, after data size achieves a 

certain range, system performance would be stable. In addition, from table 2 also reveals that the 

transferring packet size should be set in agreement with MTU. When P is 1430, the system 

performance is the best. (Although when P is 1800, the delay improvement seems better, the 

actual delay cost increases.) 

6.4.Further discussion 

Although above experiments shows a good results of overlay network with the proposed 

algorithm, there is still work to be done. As described above, the weight of an edge in a network is 

represented by the average RTT. This weight matrix is the basic requirement for optimization. 

However, the mean value may not be sufficient to denote this network edge weight matrix. 

According to current research in internet performance, both internet traffic and delay show the 

self-similarity characteristic [27][28]. In a self-similarity time-series, mean value and variance are 

not appropriate for describing the property because they may not exist [29]. To simulate the effect 

of hop phenomenon of RTT in real network, a large file is randomly added into network traffic. 

According to [30], this may be one cause of self-similarity. In figure 9, the effect of such a 

phenomenon is shown. 
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Figure 9 Time cost with random large files 

Figure 9 shows the group delay of 30 former experiments with D=5K and P=1430. It reveals 

that network delay burst will affect overlay network performance, especially with an IoT 

application, as the data of an IoT application are generated periodically. As the mean value of 

RTT is not sufficient for overlay node placement optimization in IoT applications, other 

parameters such as the Hurst parameter should be imported to define the weight of edges. 

7. Conclusions 

Network delay is one of the critical issues in IoT applications. Based on both performance and 

ease of implementation, an internet based dual-layer network, which refers to the overlay network, 

is suitable for the IoT. Overlay routing has been proved to be a feasible solution to optimize the 

end-to-end delay. In this work, one of the most important issues in overlay routing, the overlay 

node placement problem (ONPP), has been discussed. The NP-hardness of multi-hop k-ONPP has 

been proven, and a theoretical boundary for k-OPNN optimization is provided.  

With defined parameter 𝜔 and α, there is no polynomial algorithm with an approximation 

ratio less then α ×  1  
𝜔− 

𝑒
 . A local search algorithm has been proposed and a theoretical 

approximation ratio bound has been provided. The approximation ratio of the local search 

algorithm is less than 
𝜔

α
. The proposed local search algorithm has been tested and compared with 

a genetic algorithm and the TAG algorithm with MATLAB tools. The results illustrate that the 

local search algorithm obtains better performance than the TAG algorithm, and the time cost is 

linear with the problem scale.  

The local search algorithm is finally tested with the network simulator EstiNet. The 

experimental results show a stable benefit from the proposed method. Moreover, an additional 

discussion about measuring network edge weight is provided, which reveals a future research 

direction for ONPP. 
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