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ABSTRACT2

The increasing scale of the injection of renewable energy has brought about great uncertainty3
to the operation of power grid. In this situation, probabilistic power flow (PPF) calculation has4
been introduced to mitigate the low accuracy of traditional deterministic power flow calculation in5
describing the operation status and power flow distribution of power systems. Polynomial chaotic6
expansion (PCE) method has become popular in PPF analysis due to its high efficiency and7
accuracy, and sparse PCE has increased its capability of tackling the issue of dimension disaster.8
In this paper, we propose a principal component analysis-based compressive sensing (PCA-CS)9
algorithm solve the PPF problem. The l1-optimization of CS is used to tackle the dimension10
disaster of sparse PCE, and PCA is included to further increase the sparsity of expansion11
coefficient matrix. Theoretical and numerical simulation results show that the proposed method12
can effectively improve the efficiency of PPF calculation in the case of random inputs with higher13
dimensions.14

Keywords: probabilistic power flow, principal component analysis, compressive sensing, renewable energy15

1 INTRODUCTION

In face of the global energy crisis and environmental pollution issues, countries are vigorously promoting16
the development and utilization of clean and renewable energy. However, the power of renewable energy17
generation devices, such as photovoltaics (PV) and wind turbines (WT), is usually affected by many18
uncertain factors, showing strong randomness and intermittence (Hua et al., 2021). With the increasing19
scale of PVs and WTs connected to the power grid, the uncertainty encountered by power systems will also20
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increase Hua et al. (2022b). As a result, the deterministic power flow analysis methods used to determine21
the operation status of interconnected power networks will no longer be applicable, and probabilistic power22
flow (PPF) emerge as the times require (Dalton et al., 2021). By effectively considering various uncertain23
factors of the energy system, PPF calculation is of great significance to help with system fault diagnosis,24
maintain system stability, and ensure system safety.25

The essence of PPF is to obtain the statistical characteristics satisfied by the state variables of a power26
system by solving stochastic equations with random variables input. At present, mature methods of27
solving PPF equations mainly include simulation method, analytical method, approximation method, and28
polynomial chaotic expansion (PCE) method. Seeing the fact that analytical method and approximation29
method have difficulty in ensuring the calculation accuracy when the fluctuation of random inputs is30
large (Liang et al., 2021), we only provide details of simulation method and PCE method here:31

• Simulation method stands for Monte Carlo (MC) method, as well as its improved versions (Constante-32
Flores and Illindala, 2019). It works as follows. First, a fairly large sample of input variables is obtained.33
Then, the corresponding solution is calculated based on the sample. Finally, subsequent statistical34
analysis on the solution is performed. Although this method has simple principle and convenient35
operation, it has low computational efficiency due to large amount of sampling, slow convergence36
speed and low computational efficiency (Liang et al., 2022).37

• Recently, PCE method has been extensively adopted to solve PPF due to its great importance in38
uncertain quantization theory (Shen et al., 2020). Its first step is to expand random variables under a set39
of standard orthogonal basis made up by random polynomial functions. It then obtain the expansion40
coefficients and random variables by solving equations. The efficiency and accuracy of PCE method41
are relatively higher compared to other methods, but it needs to solve large-scale equations. Therefore,42
it is affected by the dimension disaster and is not satisfactory when solving problems with higher43
dimensions.44

Sparse PCE is a common method to overcome the dimension disaster of traditional PCE method by45
reducing the number of bases in the polynomial expansion. In the calculation of probabilistic load flow,46
(Ma et al., 2021) proposes a sparse PCE method that reduces the number of basis functions of polynomial47
expansion by only preserving significant polynomial bases. To reduce the computational complexity of48
wideband configuration for periodic-grating wideband filters applied in optical devices under uncertain49
conditions, Papadopoulos et al. (2019) develops a sparse PCE method based on orthogonal matching50
pursuit. The principle of the proposed method is derived from compressive sensing (CS), which is very51
popular in the field of signal and image processing (Blanco-Solano et al., 2021). When the PCE coefficients52
are sparse, combined with the principle of compressive sensing, the expression of random state variables53
by constructing the information matrix can be accurately reconstructed with the number of samples far54
lower than that of MC method. A similar idea is adopted in (Sun et al., 2019) when analyzing system55
sensitivity by solving PPF equations. Although PCE method is formally applied, PCE coefficients are56
solved by sampling to avoid solving large complicated equations, thus mitigating the issue of dimension57
disaster. At the same time, this method significantly reduces the sample size and enhances the operation58
efficiency compared with the traditional MC method.59

Principal component analysis (PCA) method is widely used in the field of data dimensionality reduction60
by extracting the main features of data. By retaining only the principal components that contain most of the61
variance of the original data, PCA preserves the important information in the original data and reduces the62
components of redundancy or noise (Jaramillo et al., 2020). There have been some existing works that63
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use PCA in PPF analysis. To deal with the limitation of PPF calculation using traditional point estimation64
method, Li et al. (2020) uses PCA to reduce the correlation of original input random variables and improve65
the efficiency of the point estimate method. Considering the uncertainty in users’ consumption behavior,66
the PPF analysis in (Memon et al., 2020) combines PCA method and PCE method to compress the number67
of output variables in the surrogate models of the least-squares support vector machine. In addition, the68
PPF calculation in (Le et al., 2021) also uses PCA to reduce the dimensionality of the dataset before it is69
partitioned into clusters by particle swarm optimization.70

This paper extends the work of our previous conference paper (Liang et al., 2021). In a power grid with71
loads, PVs, and WTs that causes power flow fluctuation, this paper proposes a PPF calculation algorithm72
called Principal Component Analysis-based Compressive Sensing (PCA-CS). First, PCA-CS integrates73
the PCA theory in the decomposition of the covariance matrix of random state variables, and obtains a74
set of standard orthogonal bases composed of eigenvectors. Then, it transforms the PCE coefficients of75
random state variables to obtain a sparser expansion coefficient matrix. Moreover, we test our PCA-CS76
method on IEEE 118-bus system to show that PCA-CS has significantly improved the solution accuracy77
and computational efficiency compared with the original CS method and the traditional MC method.78
Compared with existing works, this paper adopt the idea of CS that reduces the number of expansion basis79
functions via l1-optimization to overcome the dimensionality issue of PCE method. In addition, this paper80
theoretically proves that the expansion coefficient matrix is sparser after performing PCA-CS. According81
to the error theory of compressive sensing (Candes and Wakin, 2008), the sparser the expansion coefficient82
matrix is, the fewer samples are required to restore to the same accuracy. Therefore, our PCA-CS method83
can largely enhance the efficiency of PPF calculation while preserving the accuracy.84

The remainder of this paper is arranged as follows: Section 2 explains in detail the PPF model of the85
power grid system we look into; Section 3 first introduces the traditional CS algorithm and then proposes86
the improved version, PCA-CS, with a detailed algorithm workflow; Section 4 provides numerical results87
and correlation analysis by simulation; Finally, Section 5 summarizes this paper and describes our future88
work plans.89

2 MODEL OF PROBABILISTIC POWER FLOW

In this paper, we consider a power grid systems containing load nodes, PV nodes, and WT nodes, which90
are the main origins of the fluctuation in the power flow. This section describes the probabilistic models of91
loads, PVs, WTs, and the corresponding PPF equations.92

2.1 Load Power Fluctuation Model93

Due to many unpredictable factors such as geographical environment, time, and user behavior, the power94
fluctuation of load nodes could bring randomness to the power grid. This randomness is usually described95
by normal distribution, and its probability density function is as follows (Liu et al., 2017):96 

f (PL) =
1√

2πσPL
exp

{
−(PL−µPL)

2

2σ2
PL

}
,

f (QL) =
1√

2πσQL

exp

{
−(QL−µQL)

2

2σ2
QL

}
,

(1)

where:97

• PL is the load active power,98
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• µPL
is the expectation of PL,99

• σPL
is the stadard deviation of PL,100

• QL is the load reactive power,101

• µQL
is the expectation of QL,102

• σQL
is the standard deviation of QL.103

2.2 Photovoltaic Power Fluctuation Model104

PV power mainly depends on the intensity of solar irradiation, and its distribution roughly follows the105
beta distribution. Therefore, we use the beta distribution to describe the fluctuation of PV power, and the106
corresponding probability density function is (Rawat and Vadhera, 2018):107

f (rPV ) =
Γ(α + β)

Γ(α)Γ(β)
rα−1
PV (1− rPV )

β−1 , (2)

where:108

• rPV is the ratio of PPV , the PV active output, to Pmax
PV , the maximum active power of PV power,109

• Γ(·) is the gamma function,110

• α and β are parameters of the beta distribution.111

Generally speaking, PVs are connected to the power grid by means of constant power factor control. In112
other words, if we use φPV to represent the PV phase angle, then the power factor of PV cosφPV can be113
regarded as a constant. Then QPV , the PV reactive power, is therefore calculated by:114

QPV = PPV tanφPV . (3)

2.3 Wind Turbine Power Fluctuation Model115

Similar to PV power, the randomness of WT power is mainly affected by wind speed, which is usually116
described by 2-parameter Weibull distribution. The corresponding probability density function is as117
follows (Gugliani et al., 2021):118

f(v) =
k

c

(v
c

)k−1
exp

{
−
(v
c

)}
, (4)

where:119

• v is the wind speed,120

• k is the shape parameter of Weibull distribution,121

• c is the scale parameter of Weibull distribution.122

According to the technical principle of WT power generation, when the wind speed is less than a certain123
value or greater than a certain threshold, the WT power generation is zero. Therefore, the WT can work124
normally only within a reasonable wind speed range. Specifically, the active power and wind speed of wind125
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power generation meet the following piecewise function relationship:126

PWT (v) =


0 v < vci
Pr(v−vci)
vr−vci

vci ≤ v ≤ vr

Pr vr ≤ v ≤ vco

0 v ≥ vco

(5)

where127

• PWT (v) is the active power when the wind speed is v,128

• Pr is the rated power of the WT,129

• vci is the cut-in wind speed,130

• vr is the rated wind speed,131

• vco is the cut-out wind speed.132

By substituting (5) into (4), the probability distribution of PWT can be obtained by:133

f (PWT ) =


1− exp

{
−
(vci

c

)k}
+ exp

{
−
(
vco
c

)k}
PWT = 0

k
k1c

(
PWT−k2

k1c

)k−1
exp

{
−
(
PWT−k2

k1c

)k
}

0 ≤ PWT ≤ Pr

exp
{
−
(
vr
c

)k}
+ exp

{
−
(
vco
c

)k}
PWT = Pr

(6)

where k1 and k2 can be calculated as follows:134

k1 =
Pr

vr − vci
(7)

135
k2 = −k1vci. (8)

Similar to PV power generation, the reactive power of WT power generation QWT can be obtained by:136

QWT = PWT tanφWT , (9)

where φWT represents the phase angle of WT power generation. Since WTs are also connected to the137
power grid by constant power factor control, the power factor of WT power generation cosφWT is a138
constant as well.139

2.4 Probabilistic Power Flow Model140

Maintaining power balance at all times is fundamental for the normal operation of the power grid, which141
requires the power of each node i (= 1, 2, . . . ,m, where m represents the total number of grid nodes) to142
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meet the following power flow equation (Li et al., 2020):143 
Pi = Vi

m∑
j=1

Vj (Gij cos δij +Bij sin δij)

Qi = Vi

m∑
j=1

Vj (Gij sin δij +Bij cos δij)

(10)

where:144

• i can be a load, PV, or WT node,145

• Pi is the active power of node i,146

• Qi is the reactive power of node i,147

• Vi is the voltage amplitude of node i148

• δij represents the phase difference between node i and adjacent node j,149

• Gij and Bij are parameters related to the transmission line that connects node i and node j.150

Since the injected power of system nodes includes the randomness caused by loads, PV power generation,151
and WT power generation, Pi and Qi are also regarded random variables. Therefore, (10) is the required152
PPF equation. By specifying the active and the reactive power of the node, it is possible to obtain the153
statistics of the node voltage amplitude and the phase angle, and then the corresponding line power flow is154
accordingly obtained.155

For the sake of convenience, (10) will be condensed as follows:156

X = F (Y ), (11)

where157

• X consists of Pi and Qi for all i,158

• Y contains Vi and δij for all i and j,159

• F (·) is the function that maps X to Y determined by (10).160

3 PRINCIPAL COMPONENT ANALYSIS-BASED COMPRESSIVE SENSING

The adoption of compressive sensing in PPF analysis aims to expand the random state variables by PCE,161
and then compress and restore them by using the sparsity of expansion coefficients. The PCA-CS algorithm162
proposed in this paper is to obtain a set of eigen-basis functions by decomposing the covariance of random163
variables before compression reduction, so as to make the random variables sparser under the expression of164
this set of basis functions, and then compress and restore under this set of basis functions. According to the165
error theory of compressive sensing, improving the sparsity can reduce the number of sample solutions166
required for restoration, and then improve the solution efficiency.167

To sum up, this section will describe the proposed algorithm in detail from the following three parts:168

1. Traditional PCE method of random variables in probability space;169

2. The covariance matrix of random variables is decomposed to obtain the eigen-basis functions;170
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3. The sparse expression of random variables is obtained by compression reduction under the expansion171
of eigen-basis functions.172

3.1 Traditional PCE Method173

Assume that the input variable Y = [y1, y2, . . . , yd], the power distribution of all nodes, is a d-dimensional174
variable with all entries following independent normal distribution. Otherwise, we can mitigate the175
correlation by Nataf transform (see (Lin et al., 2020) for more details). Then, we expand (11) with Hermite176
orthogonal polynomials:177

X ≈
∑
|I|≤p

sIψI(Y ), (12)

where:178

• multilevel index I = (i1, i2, . . . , id) ∈ Nd
0 satisfies |I| = i1 + i2 + . . .+ id,179

• p is the expansion order of polynomials,180

• ψI is a multivariable orthogonal Hermite basis function calculated by:181

ψI(Y ) = hi1(y1)hi2(y2) . . . hid(yd), (13)

• hi(·) is a univariate Hermite functions.182

Orthogonal polynomial ψI satisfies:183

E [ψI(Y )ψJ (Y )] =

∫
ψI(Y )ψJ (Y )ρ(Y )dY = γIχIJ , (14)

where:184

• χIJ is the Kronecker function (i.e., 1 at that time I = J and 0 in other cases),185

• ρ(Y ) is the joint probability density of Y ,186

• γI is a constant.187

The goal is to obtain the expansion coefficient sI in (12), and the number of terms in sI is:188

P =
(p+ d)!

p!d!
. (15)

According to the Askey scheme, Hermite orthogonal basis functions are efficient in approximating inde-189
pendent normal random variables (Son and Du, 2021). Next, the moment and probability distributions of190
random variables are calculated by obtaining the expansion coefficients.191

3.2 PCA for Extracting Eigen-Basis Functions192

At present, the existing methods for solving the coefficients of PCE, such as Garrerkin projection193
method (Wu et al., 2017) and collocation point method (Tang et al., 2016), will face problems such as194
complicated operation and dimension disaster. Because the expansion of random variables is usually sparse,195
compressive sensing algorithm can be used to restore the expansion coefficients. By introducing PCA,196
PCA-CS further improves the application of traditional compressive sensing algorithm in PPF solution. It197
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overcomes the dimensional problem of the PCE method while inheriting the feature that the MC method is198
easy to operate.199

In more detail, PCA method is used to map random variables to their eigen-space, so that the expansion200
of random variables is sparser in the expression of eigen-space.201

First, the eigen-basis function {ϕj}mj=1 is obtained by solving the following eigen-decomposition problem:202

C(X,XT)ϕj = µjϕj , (16)

where:203

• C(X,XT) represents the covariance matrix of random variable X and XT (the transpose of X) that204
can be calculated as follows:205

C(X,XT) = E
[
(X − EX)

(
XT − EXT

)]
; (17)

• {µj}mj=1 represents the eigenvalues corresponding to the eigenvectors {ϕj}mj=1.206

During calculation, the eigenvalues are arranged in descending order by default. Because the covariance207
matrix is symmetric and positive definite, the eigenvalues {µj}mj=1 are nonnegative real numbers.208

After obtaining the eigen-basis function {ϕj}mj=1, expand the random variable X under this set of basis209
functions, then:210

X ≈
P∑
i=1

siψi ≈
P∑

k=1

m∑
j=1

Sijψiϕj . (18)

3.3 Improved Compressive Sensing Algorithm211

After the expansion of X is obtained, the expansion coefficient S = (Sij)P×m of X can be restored212
through the sparse restoration algorithm of CS.213

3.3.1 Solution Flow of Traditional Compressive Sensing Algorithm214

Since the coefficient matrix S in expansion (12) is sparse, according to the sparse reduction theory (Mar-215
ques et al., 2019), the expansion coefficient S can be restored by sampling. The specific process is as216
follows: select H random sample points [Y (1),Y (2), . . . ,Y (H)] of Y , and then bring them into PPF217
equation (11) respectively to obtain corresponding sample solutions u = [X(1),X(2), . . . ,X(H)]T, which218
meet the equation:219

u = Ψs̄, (19)

where Ψ is called the measurement matrix, which is obtained by bringing multiple Hermite orthogonal220
polynomials from random sample points [Y (1),Y (2), . . . ,Y (H)], namely:221

Ψ =


ψ1(Y

(1)) ψ2(Y
(1)) · · · ψP (Y

(1))

ψ1(Y
(2)) ψ2(Y

(2)) · · · ψP (Y
(2))

...
... . . . ...

ψ1(Y
(H)) ψ2(Y

(H)) · · · ψP (Y
(H))

 , (20)

and s̄ = [s1, s2, . . . , sP ]
T.222
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The dimension of Ψ is H × P . When P > H , the system of (19) is an underdetermined system of223
equations, and the coefficients s̄ have infinite solutions. Additional constraints need to be imposed in224
order to guarantee the uniqueness of s̄. It is usually hoped to reduce the number of expansion terms (and225
therefore increase the coefficient sparsity). Therefore, the constraint on increasing sparsity becomes:226

min ∥s̄∥0 s.t. Ψs̄ = u, (21)

where ∥ · ∥0 refers to the l0-norm, which is calculated as the element count in s̄ that are not zero.227

Seeing the fact that the l0-norm is discontinuous, optimization problem (21) is NP hard to solve, so it228
needs to be relaxed. Among them, l1-norm represents the sum of the absolute values of all elements in the229
matrix and is the most commonly used relaxation method. Thus, problem (21) becomes :230

min ∥s̄∥1 s.t. Ψs̄ = u, (22)

which is also called an l1-optimization problem.231

It has been shown that the solution of problem (21) can be accurately approximated by solving pro-232
blem (22), and the solution of l1-optimization problem is more convenient (Wang et al., 2020). It can be233
solved by the orthogonal matching pursuit (OMP) algorithm (Papadopoulos et al., 2019).234

3.3.2 PCA-CS235

The proposed PCA-CS algorithm is based on the traditional CS algorithm. Through the PCA theory, the236
random variables are transformed to make their expression coefficients sparser, and then compressed and237
restored. According to (18), sample solutions u = [X(1),X(2), . . . ,X(H)]T are written by:238

u ≈ ΨSΦ, (23)

where:239

• Ψ is the measurement matrix in the same form as (20),240

• Φ is the eigen-matrix composed of eigen-basis function,241

• S is the expansion coefficient to be solved.242

Furthermore, the coefficient S can be reduced through the following l1-optimization problem:243

min ∥S∥1 s.t. ΨSΦ = u. (24)

The sparsity of S is given by the following theorem:244

THEOREM 1. The expansion coefficient S of X and eigenvalues {µ}mj=1 satisfy the following245
relationship:246

P∑
i=2

|Sij |2 ≈ µj , j = 1, 2, . . . ,m, (25)

where µj represents the j-th eigenvalue of the eigen-decomposition problem.247
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PROOF OF THEOREM 1. Hermite polynomial ψi satisfies248

E(ψi) =

{
1 i = 1

0 i ̸= 1
(26)

so249

EX ≈ E

 P∑
i=1

m∑
j=1

Sijψiϕj

 =
m∑
j=1

S1jϕj . (27)

Combining (27) and (17), we can get:250

C(X,XT) = E
[
(X − EX)

(
XT − EXT

)]
=

 P∑
i=2

m∑
j=1

Sijψiϕj

 P∑
i=2

m∑
j′=1

Sij′ψiϕj′


≈

P∑
i=2

 m∑
j=1

Sijϕj

 m∑
j′=1

Sij′ϕj′

 (28)

By introducing (28) into eigen-decomposition equation (16):251

µjϕj ≈
P∑
i=2

 m∑
j=1

Sijϕj

 m∑
j′=1

Sij′ϕj′

ϕj =
P∑
i=2

|Sij |2ϕj . (29)

Then the theorem is proved.252

Theorem 1 shows that the value of each column of the expanded coefficient matrix of random variables can253
be roughly controlled by the corresponding eigenvalue. In addition, in practical application, the eigenvalues254
in descending order decline very fast. Therefore, when the eigenvalues tend to 0, the component element255
values of the corresponding columns of the coefficient matrix tend to 0. In other words, the faster the256
eigenvalue decreases, the sparser the coefficient matrix is represented by this set of eigen-basis functions.257
This will also be proved in the following numerical examples.258

To sum up, the whole PPF solution process is as follows:259

1. Perform the PCE on input variable X according to (12);260

2. Randomly select H sample points [Y (1), . . . ,Y (H)] based on normal distribution and obtain corre-261
sponding solutions u = [X(1), . . . ,X(H)]T according to the Newton-Raphson method described262
in (Liu et al., 2020);263

3. Solve the eigen-decomposition problem (16) and obtain eigen-basis functions {ϕj}mj=1;264

4. Under the expression of eigen-basis functions, construct the compression reduction problem (22);265

5. Obtain the coefficient matrix S by OMP algorithm;266

6. Bring the coefficient S back to the expansion (18) to obtain the statistics of Y , the state variable, and267
then analyze it.268
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Table 1. Parameters of random loads.
Load µPL

(MW) µQL
(MW) σPL

(MW) σQL
(MW)

1 3.2 2.3 0.16 0.115
2 4.4 4.2 0.22 0.210
3 7.5 6.5 0.375 0.325
4 2.8 1.6 0.140 0.080
5 8.3 4.4 0.415 0.220
6 4.7 1.8 0.235 0.090
7 5.8 2.7 0.290 0.135
8 6.3 5.2 0.315 0.260

Table 2. Parameters of WTs.
WT Pr (MW) vci vr vco c k cosφWT

1 13 3 20 10 8 3 0.9
2 20 3 16 11 8 3 0.9
3 25 2.4 19 12.4 8 3 0.9
4 15 3.5 23 13.6 8 3 0.9
5 10 2 15 11.9 8 3 0.9
6 16 4 22 10.7 8 3 0.9

Table 3. Parameters of PVs.
PV Pmax

PV (MW) α β cosφPV

1 50 0.9 0.8 0.95
2 60 0.8 0.85 0.95
3 55 0.85 0.75 0.95
4 70 0.7 0.9 0.95
5 45 0.8 0.8 0.95
6 80 0.75 0.9 0.95

4 NUMERICAL ANALYSIS

In this section, the PCA-CS algorithm for PPF proposed in Section 3 is verified on IEEE 118 node. We use269
MATLAB r2020 as the develop tool of our program, and we perform PPF calculation on a laptop with Intel270
i7-8586u CPU with the help of Matpower package.271

4.1 Simulation Settings272

In this example, on the basic grid of IEEE 118 node, WTs are connected at nodes 6, 15, 42, 60, 92, 115273
respectively, PVs are connected at nodes 2, 7, 27, 41, 58, 98, and nodes 3, 11, 23, 50, 57, 75, 84, 88, 93,274
102 are selected as load nodes. The parameter settings of loads, WTs, and PVs are listed in Table 1, 2, and275
3 respectively.276

4.2 Simulation Results277

In order to verify the effectiveness of PCA-CS algorithm in solving PPF equation, this section makes278
numerical analysis of PCA-CS from the aspects of algorithm accuracy and calculation efficiency, and279
compares it with MC method and traditional CS method. We use the results of traditional MC method with280
a sampling scale of 100,000 times as the error reference standard.281
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Table 4. Relative errors of three methods with 30 sample points.
Method VĒ Vσ̄ δĒ δσ̄

PCA-CS 7.23× 10−8 5.29× 10−9 2.95× 10−4 2.61× 10−3

CS 8.45× 10−7 3.93× 10−9 1.13× 10−4 2.08× 10−3

MC 6.42× 10−3 5.27× 10−4 1.76× 10−2 9.34× 10−2
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Figure 1. Probability density function (PDF) of node voltage amplitude (V ) and phase angle δ.

4.2.1 Algorithm Accuracy282

In order to evaluate the accuracy of PCA-CS, we need to select performance indicators to measure the283
accuracy first. Table 4 shows the relative error values of the mean (with subscription Ē) and standard284
deviation (with subscription δ̄) of V and δ obtained by PCA-CS, CS, and MC under 30 sample points.285
We can see from the data in Table 4 that when the number of samples is relatively small, the output286
state variables of PPF obtained by PCA-CS and traditional CS algorithm have higher accuracy, while the287
accuracy of MC method is lower. This is because MC method is half-order convergent and requires a288
large number of sample solutions to achieve the corresponding accuracy, which is also the defect of MC289
algorithm.290

Specifically, three representative random nodes 50, 58, and 60 are selected here to visualize the probability291
distribution of output state variables of random load, PV, and WT node respectively. Figure 1 shows the292
probability density functions of V and δ of nodes 50, 58, and 60 obtained by PCA-CS algorithm and CS293
algorithm, and compares them with the standard reference obtained by MC method with 100,000 sample294
solutions. It can be seen from the figure that the distribution functions calculated by PCA-CS and CS295
algorithm basically coincide with each other and are consistent with the standard reference solution, which296
further shows the accuracy of PCA-CS.297
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From the numerical analysis of accuracy, we can see that although PCA-CS performs a basis function298
transformation through principal component extraction based on the traditional CS method, it does not299
affect the accuracy of the results. This is because PCA-CS algorithm only obtains a set of orthogonal300
eigen-basis functions through the eigen-decomposition of PCA, but does not abandon the basis functions301
corresponding to small eigenvalues when expanding random variables, thus ensuring the accuracy of302
transformation to the greatest extent. On the contrary, after the transformation, the sparsity of the expansion303
is improved. According to the error theory of compressive sensing (Candes and Wakin, 2008), the sparsity is304
improved and the number of sample solutions required to achieve the same accuracy is reduced. Therefore,305
compared with the traditional CS method, PCA-CS can further improve the operation efficiency under the306
same accuracy.307

4.2.2 Computational Efficiency308

After verifying the accuracy, we further explains the advantages of PCA-CS algorithm in computational309
efficiency through experimental data. First, we introduce the concept of sparse ratio λ that can be calculated310
as follows:311

λ =
#{|S| ≥ τ}
P × 118

(30)

where:312

• #{|S| ≥ τ} is the element counts in matrix S whose elements are greater than or equal to the threshold313
τ ,314

• p represents the dimension equal to the random basis function.315

In other words, sparse ratio λ indicates the proportion of the coefficients in S that are greater than or316
equal to a reference value τ . The highest order of the truncated basis here is p = 2, and the dimension of317
the random variable d = 40. The number of basis is therefore calculated by:318

P =
(p+ d)!

p!d!
=

(40 + 2)!

40!2!
= 881.

The dimension of the expansion coefficient S is 881× 118-dimensional. The smaller the sparse ratio λ is,319
the sparser the sparse matrix is.320

Figure 2 and 3 respectively show the visual display of the sparsity of PCE coefficients of V and δ of 118321
nodes calculated by PCA-CS and traditional CS algorithm and the value of total sparsity ratio.322

From Figure 2 and 3, we can see the sparsity of V and δ of each node under the Hermite orthogonal323
expansion. The average sparsity of the two methods is less than 1%, which shows the applicability of324
compressed sensing idea. By comparison, after the introduction of principal component analysis, the325
sparsity of the expansion coefficient of voltage amplitude V decreases from 3.14% to 2.41%, the sparsity326
increases by 23.2%, the sparsity of phase angle δ decreases from 9.34% to 5.58%, and the sparsity increases327
by 40.3%. It is proved that the sparsity of the results of PCA-CS algorithm is significantly improved328
compared with CS algorithm, and the results accord with the analysis of Theorem 1. Therefore, PCA-CS329
algorithm can achieve the same calculation accuracy as CS algorithm through a smaller number of sample330
solutions. The error convergence comparison and calculation time comparison data of the two methods are331
given in Figure 4 and Table 5 respectively.332
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Figure 2. Sparsity of coefficient matrix of CS method.
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Figure 3. Sparsity of coefficient matrix of PCA-CS method.

Table 5. Comparison of computational efficiency of PCA-CS, CS, and MC methods.
Method VĒ Sample number Computation time (s)

PCA-CS 7.85× 10−7 15 10.43
CS 7.93× 10−7 40 20.69
MC 8.42× 10−7 10000 4328.47

According to Figure 4, the errors of both PCA-CS and CS fall as the number of sample points increases333
at the beginning, and then the errors are basically unchanged after the sample scale reaches a certain level.334
However, at the same sample level, the error of PCA-CS algorithm is lower than that of CS algorithm.335
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Figure 4. Error estimation of PCA-CS and CS.

According to the data in Table 5, to reach the same accuracy level, the running time of PCA-CS is roughly336
10 s less than CS, and the time consumption of the two methods is much less than that of MC. Like MC, the337
PCA-CS uses sample solution in PPF calculation to simplify the implementation process of the algorithm.338

To sum up, PCA-CS can significantly enhance the solution efficiency with little compromise in accuracy.339

5 CONCLUSION

In this paper, we study the PPF calculation problem with the consideration of the input uncertainty caused340
by the injection of PVs and WTs into the power grid system. We propose a PCA-CS algorithm for PPF341
calculation uses the principle of PCA to perform eigen-transformation on the result of PCE expansion.342
This method is similar to the traditional CS method and MC method. It inherits the advantage of simple343
principle, easy implementation, and more suitable for practical application. In our future research, we will344
consider continuing to improve the PCA-CS algorithm by using the principles of weighted l1-optimization345
in optimization theory to further enhancing the solution efficiency (Sun et al., 2016). Moreover, given the346
excellent performance of artificial intelligence (AI) in dealing with dimensional disasters, we can also347
consider solving PPF equations using AI-based methods (Hua et al., 2022a). Based on PPF analysis, we348
can further consider studying probabilistic stability control of microgrid systems (Hua et al., 2019).349
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