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Abstract—As cloud computing becomes more and more popular, understanding the economics of cloud computing becomes
critically important. To maximize the profit, a service provider should understand both service charges and business costs, and
how they are determined by the characteristics of the applications and the configuration of a multiserver system. The problem
of optimal multiserver configuration for profit maximization in a cloud computing environment is studied. Our pricing model takes
such factors into considerations as the amount of a service, the workload of an application environment, the configuration of a
multiserver system, the service level agreement, the satisfaction of a consumer, the quality of a service, the penalty of a low
quality service, the cost of renting, the cost of energy consumption, and a service provider’s margin and profit. Our approach is
to treat a multiserver system as an M/M/m queueing model, such that our optimization problem can be formulated and solved
analytically. Two server speed and power consumption models are considered, namely, the idle-speed model and the constant-
speed model. The probability density function of the waiting time of a newly arrived service request is derived. The expected
service charge to a service request is calculated. The expected net business gain in one unit of time is obtained. Numerical
calculations of the optimal server size and the optimal server speed are demonstrated.
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1 INTRODUCTION

C LOUD computing is quickly becoming an effec-
tive and efficient way of computing resources

and computing services consolidation [9]. By central-
ized management of resources and services, cloud
computing delivers hosted services over the Inter-
net, such that accesses to shared hardware, software,
databases, information, and all resources are provided
to consumers on-demand. Cloud computing is able
to provide the most cost-effective and energy-efficient
way of computing resources management and com-
puting services provision. Cloud computing turns in-
formation technology into ordinary commodities and
utilities by using the pay-per-use pricing model [3],
[5], [16]. However, cloud computing will never be
free [8], and understanding the economics of cloud
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computing becomes critically important.
One attractive cloud computing environment is a

three-tier structure [13], which consists of infrastruc-
ture vendors, service providers, and consumers. The
three parties are also called cluster nodes, cluster
managers, and consumers in cluster computing sys-
tems [19], and resource providers, service providers,
and clients in grid computing systems [17]. An in-
frastructure vendor maintains basic hardware and
software facilities. A service provider rents resources
from the infrastructure vendors, builds appropriate
multiserver systems, and provides various services
to users. A consumer submits a service request to a
service provider, receives the desired result from the
service provider with certain service level agreement,
and pays for the service based on the amount of
the service and the quality of the service. A service
provider can build different multiserver systems for
different applications domains, such that service re-
quests of different nature are sent to different mul-
tiserver systems. Each multiserver system contains
multiple servers, and such a multiserver system can
be devoted to serve one type of service requests
and applications. The configuration of a multiserver
system is characterized by two basic features, i.e., the
size of the multiserver system (the number of servers)
and the speed of the multiserver system (execution
speed of the servers).

Like all business, the pricing model of a service
provider in cloud computing is based on two com-
ponents, namely, the income and the cost. For a
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service provider, the income (i.e., the revenue) is the
service charge to users, and the cost is the renting
cost plus the utility cost paid to infrastructure ven-
dors. A pricing model in cloud computing includes
many considerations, such as the amount of a service
(the requirement of a service), the workload of an
application environment, the configuration (the size
and the speed) of a multiserver system, the service
level agreement, the satisfaction of a consumer (the
expected service time), the quality of a service (the
task waiting time and the task response time), the
penalty of a low quality service, the cost of renting, the
cost of energy consumption, and a service provider’s
margin and profit. The profit (i.e., the net business
gain) is the income minus the cost. To maximize
the profit, a service provider should understand both
service charges and business costs, and in particular,
how they are determined by the characteristics of the
applications and the configuration of a multiserver
system.

The service charge to a service request is deter-
mined by two factors, i.e., the expected length of
the service and the actual length of the service. The
expected length of a service (i.e., the expected service
time) is the execution time of an application on a
standard server with a baseline or reference speed.
Once the baseline speed is set, the expected length of
a service is determined by a service request itself, i.e.,
the service requirement (amount of service) measured
by the number of instructions to be executed. The
longer (shorter, respectively) the expected length of
a service is, the more (less, respectively) the service
charge is. The actual length of a service (i.e., the
actual service time) is the actual execution time of an
application. The actual length of a service depends
on the size of a multiserver system, the speed of
the servers (which may be faster or slower than the
baseline speed), and the workload of the multiserver
system. Notice that the actual service time is a random
variable, which is determined by the task waiting time
once a multiserver system is established.

There are many different service performance met-
rics in service level agreements [2]. Our performance
metric in this paper is the task response time (or the
turn around time), i.e., the time taken to complete a
task, which includes task waiting time and task execu-
tion time. The service level agreement is the promised
time to complete a service, which is a constant times
the expected length of a service. If the actual length
of a service is (or, a service request is completed)
within the service level agreement, the service will
be fully charged. However, if the actual length of
a service exceeds the service level agreement, the
service charge will be reduced. The longer (shorter,
respectively) the actual length of a service is, the
more (less, respectively) the reduction of the service
charge is. In other words, there is penalty for a service
provider to break a service level agreement. If the

actual service time exceeds certain limit (which is
service request dependent), a service will be entirely
free with no charge. Notice that the service charge of
a service request is a random variable, and we are
interested in its expectation.

The cost of a service provider includes two com-
ponents, i.e., the renting cost and the utility cost. The
renting cost is proportional to the size of a multiserver
system, i.e., the number of servers. The utility cost
is essentially the cost of energy consumption and
is determined by both the size and the speed of a
multiserver system. The faster (slower, respectively)
the speed is, the more (less, respectively) the utility
cost is. To calculate the cost of energy consumption,
we need to establish certain server speed and power
consumption models.

To increase the revenue of business, a service
provider can construct and configure a multiserver
system with many servers of high speed. Since the
actual service time (i.e., the task response time) con-
tains task waiting time and task execution time, more
servers reduce the waiting time and faster servers
reduce both waiting time and execution time. Hence,
a powerful multiserver system reduces the penalty
of breaking a service level agreement and increases
the revenue. However, more servers (i.e., a larger
multiserver system) increase the cost of facility renting
from the infrastructure vendors and the cost of base
power consumption. Furthermore, faster servers in-
crease the cost of energy consumption. Such increased
cost may counterweight the gain from penalty reduc-
tion. Therefore, for an application environment with
specific workload which includes the task arrival rate
and the average task execution requirement, a service
provider needs to decide an optimal multiserver con-
figuration (i.e, the size and the speed of a multiserver
system), such that the expected profit is maximized.

In this paper, we study the problem of optimal
multiserver configuration for profit maximization in
a cloud computing environment. Our approach is
to treat a multiserver system as an M/M/m queue-
ing model, such that our optimization problem can
be formulated and solved analytically. We consider
two server speed and power consumption models,
namely, the idle-speed model and the constant-speed
model. Our main contributions are as follows. We
derive the probability density function of the waiting
time of a newly arrived service request. This result
is significant in its own right and is the base of our
discussion. We calculate the expected service charge to
a service request. Based on these results, we get the
expected net business gain in one unit of time, and
obtain the optimal server size and the optimal server
speed numerically. To the best of our knowledge, there
has been no similar investigation in the literature.

One related research is user-centric and market-
based and utility-driven resource management and
task scheduling, which have been considered for
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cluster computing systems [7], [18], [19] and grid
computing systems [4], [11], [17]. To compete and bid
for shared computing resources through the use of
economic mechanisms such as auctions, a user can
specify the value (utility, yield) of a task, i.e., the
reward (price, profit) of completing the task. A utility
function, which measures the value and importance
of a task as well as a user’s tolerance to delay and
sensitivity to quality of service, supports market-
based bidding, negotiation, and admission control. By
taking an economic approach to providing service-
oriented and utility computing, a service provider
allocates resources and schedules tasks in such a way
that the total profit earned is maximized. Instead of
traditional system-centric performance optimization
such as minimizing the average task response time,
the main concern in such computational economy is
user-centric performance optimization, i.e., maximiz-
ing the total utility delivered to the users (i.e., the total
user-perceived value).

The rest of the paper is organized as follows. In
Section 2, we describe our queueing model for mul-
tiserver systems. In Section 3, we present our server
speed and power consumption models. In Section 4,
we derive the probability density function of the wait-
ing time of a newly arrived service request. In Section
5, we define a service charge function and calculate
the expected service charge to a service request. In
Section 6, we obtain the expected net business gain in
one unit of time. In Section 7, we show how to obtain
the optimal server size and the optimal server speed
numerically. In Section 8, we demonstrate simulation
data to validate our analytical results and to find more
effective queueing disciplines. We conclude the paper
in Section 9.

2 A MULTISERVER MODEL

Throughout the paper, we use P[e] to denote the
probability of an event e. For a random variable x, we
use fx(t) to represent the probability density function
(pdf) of x, and Fx(t) to represent the cumulative
distribution function (cdf) of x, and x̄ to represent the
expectation of x.

A cloud computing service provider serves users’
service requests by using a multiserver system, which
is constructed and maintained by an infrastructure
vendor and rented by the service provider. The ar-
chitecture detail of the multiserver system can be
quite flexible. Examples are blade servers and blade
centers where each server is a server blade [14],
clusters of traditional servers where each server is an
ordinary processor [7], [18], [19], and multicore server
processors where each server is a single core [15].
We will simply call these blades/processors/cores as
servers. Users (i.e., customers of a service provider)
submit service requests (i.e., applications and tasks)
to a service provider, and the service provider serves

the requests (i.e., run the applications and perform the
tasks) on a multiserver system.

Assume that a multiserver system S has m identical
servers. In this paper, a multiserver system is treated
as an M/M/m queueing system which is elaborated
as follows. There is a Poisson stream of service re-
quests with arrival rate λ, i.e., the inter-arrival times
are independent and identically distributed (i.i.d.)
exponential random variables with mean 1/λ. A mul-
tiserver system S maintains a queue with infinite
capacity for waiting tasks when all the m servers
are busy. The first-come-first-served (FCFS) queueing
discipline is adopted. The task execution requirements
(measured by the number of instructions to be exe-
cuted) are i.i.d. exponential random variables r with
mean r̄. The m servers (i.e., blades/processors/cores)
of S have identical execution speed s (measured by
the number of instructions that can be executed in one
unit of time). Hence, the task execution times on the
servers of S are i.i.d. exponential random variables
x = r/s with mean x̄ = r̄/s.

Let µ = 1/x̄ = s/r̄ be the average service rate, i.e.,
the average number of service requests that can be
finished by a server of S in one unit of time. The
server utilization is

ρ =
λ

mµ
=

λx̄

m
=

λ

m
· r̄

s
,

which is the average percentage of time that a server
of S is busy. Let pk denote the probability that there
are k service requests (waiting or being processed) in
the M/M/m queueing system for S. Then, we have
([12], p. 102)

pk =


p0

(mρ)k

k!
, k ≤ m;

p0
mmρk

m!
, k ≥ m;

where

p0 =

(
m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!
· 1
1− ρ

)−1

.

The probability of queueing (i.e., the probability that
a newly submitted service request must wait because
all servers are busy) is

Pq =
∞∑

k=m

pk =
pm

1− ρ
= p0

(mρ)m

m!
· 1
1− ρ

.

The average number of service requests (in waiting or
in execution) in S is

N =
∞∑

k=0

kpk = mρ +
ρ

1− ρ
Pq.

Applying Little’s result, we get the average task re-
sponse time as

T =
N

λ
= x̄

(
1 +

Pq

m(1− ρ)

)
= x̄

(
1 +

pm

m(1− ρ)2

)
.
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The average waiting time of a service request is

W = T − x̄ =
pm

m(1− ρ)2
x̄.

The waiting time is the source of customer dissatisfac-
tion. A service provider should keep the waiting time
to a low level by providing enough servers and/or
increasing server speed, and be willing to pay back
to a customer in case the waiting time exceeds certain
limit.

3 POWER CONSUMPTION MODELS

Power dissipation and circuit delay in digital CMOS
circuits can be accurately modeled by simple equa-
tions, even for complex microprocessor circuits.
CMOS circuits have dynamic, static, and short-circuit
power dissipation; however, the dominant component
in a well designed circuit is dynamic power consump-
tion p (i.e., the switching component of power), which
is approximately P = aCV 2f , where a is an activity
factor, C is the loading capacitance, V is the supply
voltage, and f is the clock frequency [6]. In the ideal
case, the supply voltage and the clock frequency are
related in such a way that V ∝ fφ for some constant
φ > 0 [20]. The processor execution speed s is usually
linearly proportional to the clock frequency, namely,
s ∝ f . For ease of discussion, we will assume that
V = bfφ and s = cf , where b and c are some constants.
Hence, we know that power consumption is P =
aCV 2f = ab2Cf2φ+1 = (ab2C/c2φ+1)s2φ+1 = ξsα,
where ξ = ab2C/c2φ+1 and α = 2φ + 1. For instance,
by setting b = 1.16, aC = 7.0, c = 1.0, φ = 0.5,
α = 2φ+1 = 2.0, and ξ = ab2C/cα = 9.4192, the value
of P calculated by the equation P = aCV 2f = ξsα is
reasonably close to that in [10] for the Intel Pentium
M processor.

We will consider two types of server speed and
power consumption models. In the idle-speed model,
a server runs at zero speed when there is no task
to perform. Since the power for speed s is ξsα, the
average amount of energy consumed by a server in
one unit of time is

ρξsα =
λ

m
r̄ξsα−1,

where we notice that the speed of a server is zero
when it is idle. The average amount of energy con-
sumed by an m-server system S in one unit of time,
i.e., the power supply to the multiserver system S, is

P = mρξsα = λr̄ξsα−1,

where mρ = λx̄ is the average number of busy servers
in S. Since a server still consumes some amount
of power P ∗ even when it is idle (assume that an
idle server consumes certain base power P ∗, which
includes static power dissipation, short circuit power

dissipation, and other leakage and wasted power [1]),
we will include P ∗ in P , i.e.,

P = m(ρξsα + P ∗) = λr̄ξsα−1 + mP ∗.

Notice that when P ∗ = 0, the above P is independent
of m.

In the constant-speed model, all servers run at the
speed s even if there is no task to perform. Again,
we use P to represent the power allocated to mul-
tiserver system S. Since the power for speed s is
ξsα, the power allocated to multiserver system S is
P = m(ξsα + P ∗).

4 WAITING TIME DISTRIBUTION

Let W denote the waiting time of a new service
request that arrives to a multiserver system. In this
section, we find the pdf fW (t) of W . To this end,
we consider W in different situations, depending on
the number of tasks in the queueing system when
a new service request arrives. Let Wk denote the
waiting time of a new task that arrives to an M/M/m
queueing system under the condition that there are k
tasks in the queueing system when the task arrives.

We define a unit impulse function uz(t) as follows:

uz(t) =


z, 0 ≤ t ≤ 1

z
;

0, t >
1
z
.

The function uz(t) has the following property,∫ ∞

0

uz(t)dt = 1,

namely, uz(t) can be treated as a pdf of a random
variable with expectation∫ ∞

0

tuz(t)dt = z

∫ 1/z

0

tdt =
1
2z

.

Let z →∞ and define

u(t) = lim
z→∞

uz(t).

It is clear that any random variable whose pdf is u(t)
has expectation 0.

The following theorem gives the pdf of the waiting
time of a newly arrived service request.

Theorem 1: The pdf of the waiting time W of a
newly arrived service request is

fW (t) = (1− Pq)u(t) + mµpme−(1−ρ)mµt,

where Pq = pm/(1− ρ) and pm = p0(mρ)m/m!.

Sketch of the Proof. Let Wk be the waiting time of a new
service request if there are k tasks in the queueing
system when the service request arrives. We find the
pdf of Wk for all k ≥ 0. Then, we have

fW (t) =
∞∑

k=0

pkfWk
(t).
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Actually, Wk can be found for two cases, i.e., when
k < m and when k ≥ m. A complete proof of the
theorem is given in the appendix.

5 SERVICE CHARGE

If all the servers have a fixed speed s, the execution
time of a service request with execution requirement r
is known as x = r/s. The response time to the service
request is

T = W + x = W +
r

s
.

(Note: The above equation implies that the pdf of T
is simply the convolution of the pdf’s of W and x.
However, we will not pursue this direction to avoid
unnecessary mathematical complication. In fact, we
will only use the pdf of W .) The response time T is
related to the service charge to a customer of a service
provider in cloud computing.

To study the expected service charge to a customer,
we need a complete specification of a service charge
based on the amount of a service, the service level
agreement, the satisfaction of a consumer, the quality
of a service, the penalty of a low quality service, and
a service provider’s margin and profit.

Let s0 be the baseline speed of a server. We define
the service charge function for a service request with
execution requirement r and response time T to be

C(r, T ) =



ar, if 0 ≤ T ≤ c

s0
r;

ar − d

(
T − c

s0
r

)
,

if
c

s0
r < T ≤

(
a

d
+

c

s0

)
r;

0, if T >

(
a

d
+

c

s0

)
r.

The above function is defined with the following
rationals.
• If the response time T to process a service request

is no longer than (c/s0)r = c(r/s0) (i.e., a constant
c times the task execution time with speed s0),
where the constant c is a parameter indicating
the service level agreement, and the constant s0

is a parameter indicating the expectation and
satisfaction of a consumer, then a service provider
considers that the service request is processed
successfully with high quality of service and
charges a customer ar, which is linearly propor-
tional to the task execution requirement r (i.e.,
the amount of service), where a is the service
charge per unit amount of service (i.e., a service
provider’s margin and profit).

• If the response time T to process a service request
is longer than (c/s0)r but no longer than (a/d +
c/s0)r, then a service provider considers that
the service request is processed with low quality

of service and the charge to a customer should
decrease linearly as T increases. The parameter
d indicates the degree of penalty of breaking the
service level agreement.

• If the response time T to process a service re-
quest is longer than (a/d + c/s0)r, then a service
provider considers that the service request has
been waiting too long, so there is no charge and
the service is free.

Notice that the task response time T is compared with
the task execution time on a server with speed s0 (i.e.,
the baseline or reference speed). The actual speed s of
a server can be decided by a service provider, which
can be either lower or higher than s0, depending on
the workload (i.e., λ and r̄) and system parameters
(e.g., m, α, and P ∗) and the service charge function
(i.e., a, c, and d), such that the net business gain to be
defined below is maximized.

To build our discussion upon our earlier result on
task waiting time, we notice that the service charge
function can be rewritten equivalently in terms of r
and W as

C(r, W ) =



ar, if 0 ≤ W ≤
(

c

s0
− 1

s

)
r;

(
a +

cd

s0
− d

s

)
r − dW,

if
(

c

s0
− 1

s

)
r < W ≤

(
a

d
+

c

s0
− 1

s

)
r;

0, if W >

(
a

d
+

c

s0
− 1

s

)
r.

The following theorem gives the expected charge to a
service request.

Theorem 2: The expected charge to a service request
is

C = ar̄

(
1− Pq

((ms− λr̄)(c/s0 − 1/s) + 1)

× 1
((ms− λr̄)(a/d + c/s0 − 1/s) + 1)

)
,

where Pq = pm/(1− ρ) and pm = p0(mρ)m/m!.

Sketch of the Proof. The proof is actually a detailed
calculation of C, which contains two steps. In the
first step, we calculate C(r), i.e., the expected charge
to a service request with execution requirement r,
based on the pdf of W obtained from Theorem 1. In
the second step, we calculate C based on the pdf of
r. A complete proof of the theorem is given in the
appendix.

In Figure 1, we consider the expected charge to a
service request with execution requirement r, i.e.,

C(r) = ar − dPq

(1− ρ)mµ

(
e−(1−ρ)mµ(c/s0−1/s)r

−e−(1−ρ)mµ(a/d+c/s0−1/s)r

)
.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. YY, MONTH 201Z 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

0
3
6
9

12
15
18
21
24
27
30

C
(r

)

......................
.................

...............
..............

...............
...............

...............
...............

..............
...............

...............
...............

...............
................

................
...............

................
................

................
................

................
................

................
...............

................
................

................
................

................
................

................
................

...............
................

....

.......................
.................

................
...............

..............
...............

...............
...............

...............
...............

..............
...............

...............
...............

...............
..............

...............
................

................
................

................
................

................
...............

................
................

................
................

................
................

................
................

...............
................

....

...........................
...................

.................
................

...............
...............

...............
..............

...............
...............

...............
...............

..............
...............

...............
...............

...............
...............

..............
...............

...............
...............

...............
...............

..............
...............

................
................

................
................

................
...............

................
................

.....

...................................
.....................

..................
.................

.................
................

................
..............

...............
...............

...............
...............

...............
..............

...............
...............

...............
...............

...............
..............

...............
...............

...............
...............

..............
...............

...............
...............

...............
...............

..............
...............

...............
........

.............................................................................
......................................

..............................
.........................

........................
.......................

......................
......................

....................
...................

...................
..................

..................
.................

.................
.................

..................
.................

.................
.................

.................
............

λ = 6.15
λ = 6.35
λ = 6.55
λ = 6.75

λ = 6.95

Fig. 1. Service charge C(r) vs. r and λ.
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Fig. 2. Normalized service charge C(r)/ar vs. r and
λ.

We assume that r̄ = 1 billion instructions, m = 7
servers, s0 = 1 billion instructions per second, s = 1
billion instructions per second, a = 10 cents per one
billion instructions (Note: The monetary unit “cent”
in this paper may not be identical but should be
linearly proportional to the real cent in US dollars.),
c = 3, and d = 1 cents per second. For λ =
6.15, 6.35, 6.55, 6.75, 6.95 service requests per second,
we show C(r) for 0 ≤ r ≤ 3. It can be seen that
the service charge is a decreasing function of λ, since
the waiting time and lateness penalty increase as λ
increases. It can also be seen that the service charge is
an increasing function of r, i.e., large service requests
generate more revenue than small service requests.

In Figure 2, we further display C(r)/ar using the
same parameters in Figure 1. Since ar is the ideal
(maximum) charge to a service request with execution
requirement r, C(r)/ar is considered as the normalized
service charge. For λ = 6.15, 6.35, 6.55, 6.75, 6.95 service
requests per second, we show C(r)/ar for 0 ≤ r ≤ 3.
It can be seen that the normalized service charge is
a decreasing function of λ, since the waiting time
and lateness penalty increase as λ increases. It can
also be seen that the normalized service charge is an
increasing function of r, i.e., the percentage of lost
service charge due to waiting time decreases as service
requirement r increases. In other words, it is more
likely to make profit from large service requests and

it is more likely to give free services to small service
requests. It can be verified that as r approaches 0, the
normalized service charge is

lim
r→0

C(r)
ar

= 1− Pq,

where Pq increases (and 1 − Pq decreases) as λ in-
creases. It can also be verified that as r approaches
infinity, the normalized service charge is

lim
r→∞

C(r)
ar

= 1,

for all λ.

6 NET BUSINESS GAIN

Since the number of service requests processed in one
unit of time is λ in a stable M/M/m queueing system,
the expected service charge in one unit of time is λC,
which is actually the expected revenue of a service
provider. Assume that the rental cost of one server
for unit of time is β. Also, assume that the cost of
energy is γ per Watt. The cost of a service provider
is the sum of the cost of infrastructure renting and
the cost of energy consumption, i.e., βm + γP . Then,
the expected net business gain (i.e., the net profit) of a
service provider in one unit of time is

G = λC − (βm + γP ),

which is defined as the revenue minus the cost. The
above equation is

G = λC − (βm + γ(λr̄ξsα−1 + mP ∗)),

for the idle-speed model, and

G = λC − (βm + γm(ξsα + P ∗)),

for the constant-speed model.
In Figures 3 and 4, we demonstrate the revenue λC

and the net business gain G in one unit of time as a
function of λ for the two power consumption models
respectively, using the same parameters in Figures 1
and 2. Furthermore, we assume that P ∗ = 2 Watts,
α = 2.0, ξ = 9.4192, β = 1.5 cents per second,
and γ = 0.1 cents per Watt. For 0 ≤ λ ≤ 7, we
show λC and G. The cost of infrastructure renting is
βm = 14 cents per second, and the cost of energy
consumption is 0.5λ + 7 cents per second for the
idle-speed model and 10.5 cents per second for the
constant-speed model. We observe that both λC and
G increase with λ almost linearly and drop sharply
after certain point. In other words, more service re-
quests bring more revenue and net business gain;
however, after the number of service requests per unit
of time reaches certain point, the excessive waiting
time causes increased lateness penalty, so that there is
no revenue and negative business gain.

There are two situations that cause negative busi-
ness gain. In the first case, there is no enough business
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Fig. 3. Revenue and net business gain vs. λ (idle-
speed model).
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Fig. 4. Revenue and net business gain vs. λ (constant-
speed model).

(i.e., service requests). In this case, a service provider
should consider reducing the number of servers m
and/or server speed s, so that the cost of infrastruc-
ture renting and the cost of energy consumption can
be reduced. In the second case, there is too much
business (i.e., service requests). In this case, a service
provider should consider increasing the number of
servers and/or server speed, so that the waiting time
can be reduced and the revenue can be increased.
However, increasing the number of servers and/or
server speed also increases the cost of infrastructure
renting and the cost of energy consumption. There-
fore, we have the problem of selecting the optimal
server size and/or server speed so that the profit is
maximized.

7 PROFIT MAXIMIZATION

To formulate and solve our optimization problems
analytically, we need a closed-form expression of C.
To this end, let us use the following closed-form
approximation,

m−1∑
k=0

(mρ)k

k!
≈ emρ,

which is very accurate when m is not too small
and ρ is not too large [15]. We also need Stirling’s

approximation of m!, i.e.,

m! ≈
√

2πm
(m

e

)m

.

Therefore, we get the following closed-form approxi-
mation of p0,

p0 ≈
(

emρ +
(eρ)m

√
2πm

· 1
1− ρ

)−1

,

and the following closed-form approximation of pm,

pm ≈
(eρ)m

√
2πm

emρ + (eρ)m
√

2πm
· 1

1−ρ

,

namely,

pm ≈ 1− ρ√
2πm(1− ρ)(eρ/eρ)m + 1

,

and the following closed-form approximation of Pq,

Pq ≈
1√

2πm(1− ρ)(eρ/eρ)m + 1
.

By using the above closed-form expression of Pq,
we get a closed-form approximation of the expected
service charge to a service request as

C ≈ ar̄

(
1− 1

(
√

2πm(1− ρ)(eρ/eρ)m + 1)

× 1
((ms− λr̄)(c/s0 − 1/s) + 1)

× 1
((ms− λr̄)(a/d + c/s0 − 1/s) + 1)

)
.

For convenience, we rewrite C as

C = ar̄

(
1− 1

D1D2D3

)
,

where

D1 =
√

2πm(1− ρ)(eρ/eρ)m + 1,

D2 = (ms− λr̄)(c/s0 − 1/s) + 1,

D3 = (ms− λr̄)(a/d + c/s0 − 1/s) + 1.

Our discussion in this section is based on the above
closed-form expression of C.

7.1 Optimal Size

Given λ, r̄, s, P ∗, α, β, γ, a, c, and d, our first problem
is to find m such that G is maximized. To maximize
G, we need to find m such that

∂G

∂m
= λ

∂C

∂m
− (β + γP ∗) = 0,

for the idle-speed model, and

∂G

∂m
= λ

∂C

∂m
− (β + γ(ξsα + P ∗)) = 0,
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for the constant-speed model, where

∂C

∂m
=

ar̄

(D1D2D3)2

×
(

D2D3
∂D1

∂m
+ D1D3

∂D2

∂m
+ D1D2

∂D3

∂m

)
.

To continue the calculation, we rewrite D1 as

D1 =
√

2πm(1− ρ)R + 1,

where
R = (eρ/eρ)m.

Notice that

lnR = m ln(eρ/eρ) = m(ρ− ln ρ− 1).

Since
∂ρ

∂m
= − λr̄

m2s
= − ρ

m
,

we get

1
R

∂R

∂m
= (ρ− ln ρ− 1) + m

(
1− 1

ρ

)
∂ρ

∂m
= − ln ρ,

and
∂R

∂m
= −R ln ρ.

Now, we have

∂D1

∂m
=

√
2π

(
1

2
√

m
(1− ρ)R +

√
m

(
− ∂ρ

∂m

)
R

+
√

m(1− ρ)
∂R

∂m

)
=

√
2π

(
1

2
√

m
(1− ρ)R +

√
m

ρ

m
R

−
√

m(1− ρ)R ln ρ

)
=

√
2π

(
1

2
√

m
(1− ρ)R +

1√
m

ρR

−
√

m(1− ρ)(ln ρ)R
)

=
√

2π

(
1

2
√

m
(1 + ρ)R−

√
m(1− ρ)(ln ρ)R

)
.

Furthermore, we have

∂D2

∂m
= cs/s0 − 1,

and
∂D3

∂m
= as/d + cs/s0 − 1.

Although there is no closed-form solution to m,
we notice that ∂G/∂m is a decreasing function of m.
Therefore, m can be found numerically by using the
standard bisection method.

In Figures 5 and 6, we demonstrate the net busi-
ness gain G in one unit of time as a function of
m and λ for the two power consumption models
respectively, using the same parameters in Figures 1–
4. For λ = 2.9, 3.9, 4.9, 5.9, 6.9, we display G for m

1 2 3 4 5 6 7 8 9 10 11 12
m

−20

−10

0

10

20

30

40

50

G

............
............
............
............
..........................................................................................................................................................................................................................................................................................................................

..........
..........
..........
..........
..........
..........................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
....................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
................................................................................................................................................................ λ = 6.9

λ = 5.9

λ = 4.9

λ = 3.9

λ = 2.9

Fig. 5. Net business gain G vs. m and λ (idle-speed
model).
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Fig. 6. Net business gain G vs. m and λ (constant-
speed model).

large enough such that ρ < 1. We notice that there
is an optimal choice of m such that G is maximized.
Using our analytical results, we can find m such that
∂G/∂m = 0. The optimal value of m is 3.67479,
4.79218, 5.89396, 6.98457, 8.06655, respectively, for
the idle-speed model, and 3.54842, 4.64834, 5.73478,
6.81160, 7.88104, respectively, for the constant-speed
model.

Such server size optimization has clear physical
interpretation. When m is small such that ρ is close to
1, the waiting times of service requests are excessively
long, and the service charges and the net business
gain are low. As m increases, the waiting times are
significantly reduced, and the service charges and
the net business gain are increased. However, as m
further increases, there will be no more increase in the
expected services charge which has an upper bound
ar̄; on the other hand, the cost of a service provider
(i.e., the rental cost and base power consumption)
increases, so that the net business gain is actually
reduced. Hence, there is an optimal choice of m which
maximizes the profit.

7.2 Optimal Speed

Given λ, r̄, m, P ∗, α, β, γ, a, c, and d, our second
problem is to find s such that G is maximized. To
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maximize G, we need to find s such that

∂G

∂s
= λ

∂C

∂s
− γλr̄ξ(α− 1)sα−2 = 0,

for the idle-speed model, and

∂G

∂s
= λ

∂C

∂s
− γmξαsα−1 = 0,

for the constant-speed model, where

∂C

∂s
=

ar̄

(D1D2D3)2

×
(

D2D3
∂D1

∂s
+ D1D3

∂D2

∂s
+ D1D2

∂D3

∂s

)
.

Similar to the calculation in the last subsection, we
have

∂ρ

∂s
= − λr̄

ms2
= −ρ

s
,

and
1
R

∂R

∂s
= m

(
1− 1

ρ

)
∂ρ

∂s
=

m

s
(1− ρ),

and
∂R

∂s
=

m

s
(1− ρ)R.

Now, we have

∂D1

∂s
=

√
2πm

((
−∂ρ

∂s

)
R + (1− ρ)

∂R

∂s

)
=

√
2πm

(ρ

s
R +

m

s
(1− ρ)2R

)
=

√
2πm

(
ρ + m(1− ρ)2

) R

s
.

Furthermore, we have

∂D2

∂s
= m

(
c

s0
− 1

s

)
+ (ms− λr̄)

1
s2

=
mc

s0
− λr̄

s2
,

and

∂D3

∂s
= m

(
a

d
+

c

s0
− 1

s

)
+ (ms− λr̄)

1
s2

= m

(
a

d
+

c

s0

)
− λr̄

s2
.

Although there is no closed-form solution to s,
we notice that ∂G/∂s is a decreasing function of s.
Therefore, s can be found numerically by using the
standard bisection method.

In Figures 7 and 8, we demonstrate the net business
gain G in one unit of time as a function of s and
λ for the two power consumption models respec-
tively, using the same parameters in Figures 1–6. For
λ = 2.9, 3.9, 4.9, 5.9, 6.9, we display G for s large
enough such that ρ < 1. We notice that there is
an optimal choice of s such that G is maximized.
Using our analytical results, we can find s such that
∂G/∂s = 0. The optimal value of s is 0.63215, 0.76982,
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model).
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Fig. 8. Net business gain G vs. s and λ (constant-
speed model).

0.90888, 1.04911, 1.19011, respectively, for the idle-
speed model, and 0.57015, 0.71009, 0.85145, 0.99348,
1.13584, respectively, for the constant-speed model.

Such server speed optimization also has clear phys-
ical interpretation. When s is small such that ρ is close
to 1, the waiting times of service requests are exces-
sively long, and the service charges and the net busi-
ness gain are low. As s increases, the waiting times
are significantly reduced, and the service charges and
the net business gain are increased. However, as s
further increases, there will be no more increase in the
expected services charge which has an upper bound
ar̄; on the other hand, the cost of a service provider
(i.e., the cost of energy consumption) increases, so that
the net business gain is actually reduced. Hence, there
is an optimal choice of s which maximizes the profit.

7.3 Optimal Size and Speed
Given λ, r̄, P ∗, α, β, γ, a, c, and d, our third problem
is to find m and s such that G is maximized. To
maximize G, we need to find m and s such that
∂G/∂m = 0 and ∂G/∂s = 0, where ∂G/∂m and ∂G/∂s
have been derived in the last two subsections. The two
equations can be solved by a nested bisection search
procedure.

In Figures 9 and 10, we demonstrate the net busi-
ness gain G in one unit of time as a function of
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Fig. 9. Net business gain G vs. s and m (idle-speed
model).
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Fig. 10. Net business gain G vs. s and m (constant-
speed model).

s and m for the two power consumption models
respectively, using the same parameters in Figures 1–
8, where λ = 6.9. For m = 4, 5, 6, 7, 8, we display G for
s large enough such that ρ < 1. Using our analytical
results, we can find m and s such that ∂G/∂m = 0 and
∂G/∂s = 0. For the idle-speed model, the theoretically
optimal values are m = 5.56827 and s = 1.46819,
which result in the maximum G = 49.25361 by using
the closed-form approximation of C. Practically, m can
be either 5 or 6. When m = 5, the optimal value of s is
1.62236, which results in the maximum G = 49.16510.
When m = 6, the optimal value of s is 1.37044, which
results in the maximum G = 49.18888. Hence, the
practically optimal setting is m = 6 and s = 1.37044,
and the maximum net business gain in one unit of
time is G = 49.29273 by using the exact expression
of C. For the constant-speed model, the theoretically
optimal values are m = 5.79074 and s = 1.35667,
which result in the maximum G = 47.80769 by using
the closed-form approximation of C. Practically, m can
be either 5 or 6. When m = 5, the optimal value of s is
1.55839, which results in the maximum G = 47.63979.
When m = 6, the optimal value of s is 1.31213, which
results in the maximum G = 47.78640. Hence, the
practically optimal setting is m = 6 and s = 1.31213,
and the maximum net business gain in one unit of
time is G = 47.91830 by using the exact expression of

C.

8 SIMULATION RESULTS

Simulations have been conducted for two purposes,
namely, (1) to validate our analytical results (Theo-
rems 1 and 2); (2) and to find more effective queueing
disciplines which increase the net profit of a service
provider.

In Table 1, we show our simulation results by
using the same parameters in Figures 1–10. For each
λ = 6.05, 6.15, ..., 6.95, we trace the behavior of an
M/M/m queueing system with the FCFS queueing
discipline by generating a Poisson stream of service
requests with arrival rate λ, recording the waiting and
response times of each service request, and calculat-
ing the service charge to each service request. The
average service charge of 1,000,000 service requests
is reported in Table 1 for each λ. Notice that the
maximum 99% confidence interval of all the data
in the table is ±0.5165372%. The analytical data in
the table are obtained by Theorem 2 to calculate
the expected charge to a service request. It is easily
observed that our simulation results match with the
analytical data very well. These results validate our
theoretically predicted service charge in Theorem 2,
which is based on our analytical result on waiting
time distribution in Theorem 1.

Our analysis in this paper is based on the FCFS
queueing discipline. A different queueing discipline
may change the distribution of the waiting times, and
thus, changes the average task response time and the
expected service charge. Since the cost of a service
provider remains the same, an increased/decreased
expected service charge to a service request in-
creases/decreases the expected net business gain of
a service provider. To show the effect of queueing
disciplines on the net profit of a service provider, we
only need to show the effect of queueing disciplines
on the expected service charge to a service request. We
consider two simple queueing disciplines, namely,
• Shortest Task First (STF): Tasks (service requests)

are arranged in a waiting queue in the increasing
order of their task execution requirements;

• Largest Task First (LTF): Tasks (service requests)
are arranged in a waiting queue in the decreasing
order of their task execution requirements.

While other queueing disciplines can also be consid-
ered, these two disciplines are already very encourag-
ing.

In Table 1, we also display our simulation results for
STF and LTF by using the same parameters for FCFS.
For each λ = 6.05, 6.15, ..., 6.95, we trace the behavior
of an M/M/m queueing system with the STF and
the LTF queueing disciplines respectively. The average
service charge of 1,000,000 service requests is reported
in Table 1 for each λ. We have the following observa-
tions.
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Table 1: Simulation Results on the Expected Service Charge.

λ Analytical FCFS STF LTF
6.05 9.8245499 9.8185300 9.9792709 9.5841297
6.15 9.7798220 9.7762701 9.9651989 9.5239829
6.25 9.7193304 9.7151778 9.9565597 9.4591742
6.35 9.6351404 9.6384268 9.9514632 9.3984495
6.45 9.5136508 9.5015511 9.9015669 9.3375343
6.55 9.3298719 9.3432460 9.8674891 9.2532065
6.65 9.0334251 9.0317035 9.8038810 9.1751988
6.75 8.5084481 8.4933564 9.7186839 9.0780185
6.85 7.4277447 7.4383065 9.5750764 8.9842690
6.95 4.4400583 4.4744746 9.3974538 8.8743559

• STF performs consistently better than FCFS.
Furthermore, while the expected service charge
drops significantly for FCFS when λ is close to
the saturation point and the average waiting time
becomes very long, the expected service charge of
STF is still close to ar̄ when λ is large.

• LTF performs worse than FCFS when λ is not
very large. However, when λ is close to the
saturation point, LTF performs better than FCFS
in the sense that the expected service charge of
LTF does not drop significantly when λ is large.

Unfortunately, due to lack of an analytical result on
waiting time distribution similar to Theorem 1 for STF
and LTF, the analytical work conducted in this paper
for FCFS cannot be duplicated for STF and LTF. This
can be an interesting subject for further investigation.

9 CONCLUDING REMARKS

We have proposed a pricing model for cloud com-
puting which takes many factors into considerations,
such as the requirement r of a service, the workload
λ of an application environment, the configuration
(m and s) of a multiserver system, the service level
agreement c, the satisfaction (r and s0) of a consumer,
the quality (W and T ) of a service, the penalty d of a
low quality service, the cost (β and m) of renting, the
cost (α, γ, P ∗, and P ) of energy consumption, and a
service provider’s margin and profit a. By using an
M/M/m queueing model, we formulated and solved
the problem of optimal multiserver configuration for
profit maximization in a cloud computing environ-
ment. Our discussion can be easily extended to other
service charge functions. Our methodology can be
applied to other pricing models.

Our investigation in this paper is only an initial
attempt in this area. We would like to mention several
further research directions.
• First, in a cloud computing environment, a mul-

tiserver system can be dynamically configured
as a virtual cluster from a physical cluster, or a
virtual multicore server from a physical multi-
core processor, or a virtual multiserver system
from any elastic and dynamic resources. Our
profit maximization problem can be extended to

such virtual multiserver systems. To this end, a
queueing model that accurately describes such a
virtual multiserver system is required and needs
to be developed. Such a model should be able
to characterize a virtual multiserver system from
a partially available physical system with deter-
ministic or randomized availability.

• Second, our profit maximization problem can be
extended to multiple heterogeneous multiserver
systems of different sizes and speeds and applica-
tion environments with total power consumption
constraint. This is a multi-variable optimization
problem, which is much more complicated than
the optimization performed for a single multi-
server system in this paper. Such optimization
has significant and practical applications in de-
signing energy-efficient data centers.

• Third, when a multicore server processor is spa-
tially divided into several multicore servers, our
profit maximization problem can be defined for
multiple multiserver systems. When the cores
have a fixed speed, the optimization problem has
a total server size constraint. When the cores have
variable speeds, the optimization problem has a
total server size constraint as well as a power
consumption constraint.

• Fourth, when a physical machine is temporally
partitioned into several virtual machines, i.e.,
when we are facing a dynamic cloud configura-
tion with multi-tenant utilization, our profit max-
imization problem might be defined for multiple
multiserver systems with total server speed con-
straint. Again, this part of the research relies on
an accurate queueing model for virtual machines
which is currently not available.

We believe that the effort made in this paper should
inspire significant subsequent studies in profit maxi-
mization for cloud computing.

APPENDIX. PROOFS OF THE THEOREMS

Proof of Theorem 1. If there are k < m tasks in the
queueing system when a new service request arrives,
the waiting time of the service request is Wk = 0. The
pdf of Wk can be represented as

fWk
(t) = u(t),

for all 0 ≤ k ≤ m− 1. Furthermore, we have

W k = lim
z→∞

1
2z

= 0,

for all 0 ≤ k ≤ m− 1.
If there are k ≥ m tasks in the queueing system

when a new service request arrives, then the service
request must wait until a server is available. Notice
that due to the memoryless property of an exponential
distribution, the remaining execution time of a task
is always the same random variable as before, i.e.,
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the original task execution time x with pdf fx(t) =
µe−µt, no matter how long the task has been executed.
Let x1, x2, ..., xm be the remaining execution times of
the m tasks in execution when a new service request
arrives. Then, we have fxj (t) = µe−µt, for all 1 ≤ j ≤
m.

It is clear that y = min{x1, x2, ..., xm} is the time
until the next completion of a task. Since

P[y ≥ t] =
m∏

j=1

P[xj ≥ t] =
m∏

j=1

e−µt = e−mµt,

we get

Fy(t) = P[y ≤ t] = 1− P[y ≥ t] = 1− e−mµt,

and fy(t) = mµe−mµt, that is, y is also an exponential
random variable with mean 1/mµ. The time until the
next completion of a task is always the same random
variable y, i.e., the minimum value of m i.i.d. expo-
nential random variables with pdf fy(t) = mµe−mµt.

Notice that due to multiple servers, a task does not
need to wait until all tasks in front of it are completed.
Actually, the waiting time Wk of a task (under the
condition that there are k ≥ m tasks in the queueing
system when the task arrives) is Wk = y1 + y2 + · · ·+
yk−m+1, where y1, y2, ..., yk−m+1 are i.i.d. exponential
random variables with the same pdf fy(t) = mµe−mµt.
The reason is that after k−m + 1 completions of task
executions, a task is at the front of the waiting queue
and there is an available server, and the task will be
scheduled to be executed. It is well known that y1 +
y2 + · · ·+ yk has an Erlang distribution whose pdf is

mµ(mµt)k−1

(k − 1)!
e−mµt.

Hence, we get the pdf of Wk

fWk
(t) =

mµ(mµt)k−m

(k −m)!
e−mµt,

for all k ≥ m. Notice that ȳ = 1/mµ and

W k = (k −m + 1)ȳ =
k −m + 1

mµ
= (k −m + 1)

x̄

m
,

for all k ≥ m.
Summarizing the above discussion, we obtain the

pdf of the waiting time W of a service request as
follows:

fW (t)

=
∞∑

k=0

pkfWk
(t)

=

(
m−1∑
k=0

pk

)
u(t) +

∞∑
k=m

pk
mµ(mµt)k−m

(k −m)!
e−mµt

= (1− Pq)u(t) +
∞∑

k=m

p0
mmρk

m!
· mµ(mµt)k−m

(k −m)!
e−mµt

= (1− Pq)u(t)

+p0
mmρm

m!
mµe−mµt

∞∑
k=m

ρk−m(mµt)k−m

(k −m)!

= (1− Pq)u(t) + p0
(mρ)m

m!
mµe−mµt

∞∑
k=0

(ρmµt)k

k!

= (1− Pq)u(t) + pmmµe−mµteρmµt

= (1− Pq)u(t) + mµpme−(1−ρ)mµt.

This proves the theorem.

Proof of Theorem 2. Since W is a random variable,
C(r, W ), which is viewed as a function of W for a
fixed r, is also a random variable. The expected charge
to a service request with execution requirement r is
(in the following, dt in parenthesis is the product of
the penalty factor and the time variable)

C(r)
= C(r, W )

=
∫ ∞

0

fW (t)C(r, t)dt

=
∫ (a/d+c/s0−1/s)r

0

fW (t)C(r, t)dt

=
∫ (a/d+c/s0−1/s)r

0

((1− Pq)u(t)

+mµpme−(1−ρ)mµt)C(r, t)dt

=
∫ (a/d+c/s0−1/s)r

0

(1− Pq)u(t)C(r, t)dt

+
∫ (a/d+c/s0−1/s)r

0

mµpme−(1−ρ)mµtC(r, t)dt

= (1− Pq)ar +
∫ (c/s0−1/s)r

0

mµpme−(1−ρ)mµtC(r, t)dt

+
∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

mµpme−(1−ρ)mµtC(r, t)dt

= (1− Pq)ar +
∫ (c/s0−1/s)r

0

mµpme−(1−ρ)mµtardt

+
∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

mµpme−(1−ρ)mµt((
a +

cd

s0
− d

s

)
r − dt

)
dt

= (1− Pq)ar + mµpmar

∫ (c/s0−1/s)r

0

e−(1−ρ)mµtdt

+mµpm

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

e−(1−ρ)mµt((
a +

cd

s0
− d

s

)
r − dt

)
dt

= (1− Pq)ar + mµpmar

∫ (c/s0−1/s)r

0

e−(1−ρ)mµtdt

+mµpm

(
a +

cd

s0
− d

s

)
r

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

e−(1−ρ)mµtdt

−dmµpm

∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

te−(1−ρ)mµtdt.
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To continue the calculation, we notice that∫
ebtdt =

ebt

b
,

and ∫
tebt =

1
b

(
t− 1

b

)
ebt.

Hence, we have∫ (c/s0−1/s)r

0

e−(1−ρ)mµtdt = −e−(1−ρ)mµt

(1− ρ)mµ

∣∣∣∣∣
(c/s0−1/s)r

0

=
1− e−(1−ρ)mµ(c/s0−1/s)r

(1− ρ)mµ
,

and ∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

e−(1−ρ)mµtdt

= −e−(1−ρ)mµt

(1− ρ)mµ

∣∣∣∣∣
(a/d+c/s0−1/s)r

(c/s0−1/s)r

=
e−(1−ρ)mµ(c/s0−1/s)r − e−(1−ρ)mµ(a/d+c/s0−1/s)r

(1− ρ)mµ
,

and ∫ (a/d+c/s0−1/s)r

(c/s0−1/s)r

te−(1−ρ)mµtdt

= − 1
(1− ρ)mµ

(
t +

1
(1− ρ)mµ

)

e−(1−ρ)mµt

∣∣∣∣∣
(a/d+c/s0−1/s)r

(c/s0−1/s)r

=
1

(1− ρ)mµ

(((
c

s0
− 1

s

)
r +

1
(1− ρ)mµ

)
e−(1−ρ)mµ(c/s0−1/s)r

−
((

a

d
+

c

s0
− 1

s

)
r +

1
(1− ρ)mµ

)
e−(1−ρ)mµ(a/d+c/s0−1/s)r

)
.

Based on the above results, we get

C(r)

= (1− Pq)ar + mµpmar
1− e−(1−ρ)mµ(c/s0−1/s)r

(1− ρ)mµ

+mµpm

(
a +

cd

s0
− d

s

)
r

e−(1−ρ)mµ(c/s0−1/s)r − e−(1−ρ)mµ(a/d+c/s0−1/s)r

(1− ρ)mµ

−dmµpm
1

(1− ρ)mµ(((
c

s0
− 1

s

)
r +

1
(1− ρ)mµ

)
e−(1−ρ)mµ(c/s0−1/s)r

−
((

a

d
+

c

s0
− 1

s

)
r +

1
(1− ρ)mµ

)

e−(1−ρ)mµ(a/d+c/s0−1/s)r

)
= (1− Pq)ar +

apm

1− ρ

(
r − re−(1−ρ)mµ(c/s0−1/s)r

)
+

pm

1− ρ

(
a +

cd

s0
− d

s

)
(
re−(1−ρ)mµ(c/s0−1/s)r − re−(1−ρ)mµ(a/d+c/s0−1/s)r

)
− dpm

1− ρ

((
c

s0
− 1

s

)
re−(1−ρ)mµ(c/s0−1/s)r

+
1

(1− ρ)mµ
e−(1−ρ)mµ(c/s0−1/s)r

−
(

a

d
+

c

s0
− 1

s

)
re−(1−ρ)mµ(a/d+c/s0−1/s)r

− 1
(1− ρ)mµ

e−(1−ρ)mµ(a/d+c/s0−1/s)r

)
= (1− Pq)ar + aPq

(
r − re−(1−ρ)mµ(c/s0−1/s)r

)
+Pq

(
a +

cd

s0
− d

s

)
(
re−(1−ρ)mµ(c/s0−1/s)r − re−(1−ρ)mµ(a/d+c/s0−1/s)r

)
−dPq

((
c

s0
− 1

s

)
re−(1−ρ)mµ(c/s0−1/s)r

+
1

(1− ρ)mµ
e−(1−ρ)mµ(c/s0−1/s)r

−
(

a

d
+

c

s0
− 1

s

)
re−(1−ρ)mµ(a/d+c/s0−1/s)r

− 1
(1− ρ)mµ

e−(1−ρ)mµ(a/d+c/s0−1/s)r

)
= ar − dPq

(1− ρ)mµ(
e−(1−ρ)mµ(c/s0−1/s)r − e−(1−ρ)mµ(a/d+c/s0−1/s)r

)
.

Since r is a random variable, C(r), which is viewed
as a function of r, is also a random variable. Let the
pdf of task execution requirement r to be

fr(z) =
1
r̄
e−z/r̄.

The expected charge to a service request is

C

= C(r)

=
∫ ∞

0

fr(z)C(z)dz

=
∫ ∞

0

1
r̄
e−z/r̄C(z)dz

=
1
r̄

∫ ∞

0

e−z/r̄

(
az − dPq

(1− ρ)mµ(
e−(1−ρ)mµ(c/s0−1/s)z

−e−(1−ρ)mµ(a/d+c/s0−1/s)z
))

dz
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=
1
r̄

(
a

∫ ∞

0

ze−z/r̄dz

− dPq

(1− ρ)mµ

(∫ ∞

0

e−((1−ρ)mµ(c/s0−1/s)+1/r̄)zdz

−
∫ ∞

0

e−((1−ρ)mµ(a/d+c/s0−1/s)+1/r̄)zdz

))
.

Since ∫ ∞

0

ze−bzdz = −1
b

(
z +

1
b

)
e−bz

∣∣∣∣∣
∞

0

=
1
b2

,

and ∫ ∞

0

e−bzdz = −e−bz

b

∣∣∣∣∣
∞

0

=
1
b
,

we get

C

=
1
r̄

(
ar̄2 − dPq

(1− ρ)mµ

(
1

(1− ρ)mµ(c/s0 − 1/s) + 1/r̄

− 1
(1− ρ)mµ(a/d + c/s0 − 1/s) + 1/r̄

))

= ar̄ − dPq

(1− ρ)mµ

(
1

r̄(1− ρ)mµ(c/s0 − 1/s) + 1

− 1
r̄(1− ρ)mµ(a/d + c/s0 − 1/s) + 1

)

= ar̄ − dPq

(1− ρ)mµ
· r̄(1− ρ)mµ(a/d)
(r̄(1− ρ)mµ(c/s0 − 1/s) + 1)

× 1
(r̄(1− ρ)mµ(a/d + c/s0 − 1/s) + 1)

= ar̄ − ar̄Pq

(r̄(1− ρ)mµ(c/s0 − 1/s) + 1)

× 1
(r̄(1− ρ)mµ(a/d + c/s0 − 1/s) + 1)

= ar̄

(
1− Pq

((ms− λr̄)(c/s0 − 1/s) + 1)

× 1
((ms− λr̄)(a/d + c/s0 − 1/s) + 1)

)
.

The theorem is proven.
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