
ar
X

iv
:a

st
ro

-p
h/

06
08

60
6 

v2
   

21
 S

ep
 2

00
6

Searching for a Stochastic Background of Gravitational Waves

with LIGO

B. Abbott12, R. Abbott12, R. Adhikari12, J. Agresti12, P. Ajith2, B. Allen42, R. Amin16,

S. B. Anderson12, W. G. Anderson42, M. Araya12, H. Armandula12, M. Ashley3, S Aston34,

C. Aulbert1, S. Babak1, S. Ballmer13, B. C. Barish12, C. Barker14, D. Barker14, B. Barr36,

P. Barriga41, M. A. Barton12, K. Bayer13, K. Belczynski22, J. Betzwieser13, P. Beyersdorf26,

B. Bhawal12, I. A. Bilenko19, G. Billingsley12, E. Black12, K. Blackburn12, L. Blackburn13,

D. Blair41, B. Bland14, L. Bogue15, R. Bork12, S. Bose43, P. R. Brady42, V. B. Braginsky19,

J. E. Brau39, A. Brooks33, D. A. Brown12, A. Bullington26, A. Bunkowski2, A. Buonanno37,

R. Burman41, D. Busby12, R. L. Byer26, L. Cadonati13, G. Cagnoli36, J. B. Camp20,

J. Cannizzo20, K. Cannon42, C. A. Cantley36, J. Cao13, L. Cardenas12, M. M. Casey36,

C. Cepeda12, P. Charlton12, S. Chatterji12, S. Chelkowski2, Y. Chen1, D. Chin38, E. Chin41,

J. Chow3, N. Christensen7, T. Cokelaer6, C. N. Colacino34, R. Coldwell35, D. Cook14,

T. Corbitt13, D. Coward41, D. Coyne12, J. D. E. Creighton42, T. D. Creighton12,

D. R. M. Crooks36, A. M. Cruise34, A. Cumming36, C. Cutler5, J. Dalrymple27,

E. D’Ambrosio12, K. Danzmann31,2, G. Davies6, G. de Vine3, D. DeBra26, J. Degallaix41,

V. Dergachev38, S. Desai28, R. DeSalvo12, S. Dhurandar11, A. Di Credico27, M. Díaz29,
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ABSTRACT

The Laser Interferometer Gravitational-wave Observatory (LIGO) has per-

formed the fourth science run, S4, with significantly improved interferometer sen-

sitivities with respect to previous runs. Using data acquired during this science

run, we place a limit on the amplitude of a stochastic background of gravitational

waves. For a frequency independent spectrum, the new limit is ΩGW < 6.5×10−5.

This is currently the most sensitive result in the frequency range 51-150 Hz, with

a factor of 13 improvement over the previous LIGO result. We discuss comple-

mentarity of the new result with other constraints on a stochastic background of

gravitational waves, and we investigate implications of the new result for different

models of this background.

Subject headings: gravitational waves

1. Introduction

A stochastic background of gravitational waves (GWs) is expected to arise as a super-

position of a large number of unresolved sources, from different directions in the sky, and

31Universität Hannover, D-30167 Hannover, Germany

32Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

33University of Adelaide, Adelaide, SA 5005, Australia

34University of Birmingham, Birmingham, B15 2TT, United Kingdom

35University of Florida, Gainesville, FL 32611, USA

36University of Glasgow, Glasgow, G12 8QQ, United Kingdom

37University of Maryland, College Park, MD 20742 USA

38University of Michigan, Ann Arbor, MI 48109, USA

39University of Oregon, Eugene, OR 97403, USA

40University of Rochester, Rochester, NY 14627, USA

41University of Western Australia, Crawley, WA 6009, Australia

42University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

43Washington State University, Pullman, WA 99164, USA



– 5 –

with different polarizations. It is usually described in terms of the GW spectrum:

ΩGW(f) =
f

ρc

dρGW

df
, (1)

where dρGW is the energy density of gravitational radiation contained in the frequency range

f to f + df (Allen & Romano 1999), ρc is the critical energy density of the Universe, and

f is frequency (for an alternative and equivalent definition of ΩGW(f) see, for example,

(Baskaran et al. 2006)). In this paper, we will focus on power-law GW spectra:

ΩGW(f) = Ωα

(

f

100 Hz

)α

. (2)

Here, Ωα is the amplitude corresponding to the spectral index α. In particular, Ω0 denotes

the amplitude of the frequency-independent GW spectrum.

Many possible sources of stochastic GW background have been proposed and several

experiments have searched for it (see (Maggiore 2000; Allen 1996) for reviews). Some of the

proposed theoretical models are cosmological in nature, such as the amplification of quantum

vacuum fluctuations during inflation (Grishchuk 1975), (Grishchuk 1997), (Starobinsky 1979),

pre-big-bang models (Gasperini & Veneziano 1993), (Gasperini & Veneziano 2003), (Buonanno et al. 1997),

phase transitions (Kosowsky et al. 1992), (Apreda et al. 2002), and cosmic strings (Caldwell & Allen 1992),

(Damour & Vilenkin 2000), (Damour & Vilenkin 2005). Others are astrophysical in nature,

such as rotating neutron stars (Regimbau & de Freitas Pacheco 2001), supernovae (Coward et al. 2002)

or low-mass X-ray binaries (Cooray 2004).

A number of experiments have been used to constrain the spectrum of GW background

at different frequencies. Currently, the most stringent constraints arise from large-angle cor-

relations in the cosmic microwave background (CMB) (Allen & Koranda 1994; Turner 1997),

from the arrival times of millisecond pulsar signals (Jenet et al. 2006), from Doppler tracking

of the Cassini spacecraft (Armstrong et al. 2003), and from resonant bar GW detectors, such

as Explorer and Nautilus (Astone et al. 1999). An indirect bound can be placed on the total

energy carried by gravitational waves at the time of the Big-Bang Nucleosynthesis (BBN)

using the BBN model and observations (Kolb & Turner 1990; Maggiore 2000; Allen 1996).

Similarly, (Smith et al. 2006a) used the CMB and matter spectra to constrain the total

energy density of gravitational waves at the time of photon decoupling.

Ground-based interferometer networks can directly measure the GW strain spectrum in

the frequency band 10 Hz - few kHz, by searching for correlated signal beneath uncorrelated

detector noise. LIGO has built three power-recycled Michelson interferometers, with a Fabry-

Perot cavity in each orthogonal arm. They are located at two sites, Hanford, WA, and

Livingston Parish, LA. There are two collocated interferometers at the WA site: H1, with
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4km long arms, and H2, with 2km arms. The LA site contains L1, a 4km interferometer,

similar in design to H1. The detector configuration and performance during LIGO’s first

science run (S1) was described in (Abbott et al. 2004a). The data acquired during that run

was used to place an upper limit of Ω0 < 44.4 on the amplitude of a frequency independent

GW spectrum, in the frequency band 40-314 Hz (Abbott et al. 2004b). This limit, as well as

the rest of this paper, assumes the present value of the Hubble parameter H0 = 72 km/s/Mpc

or, equivalently, h100 = H0/(100 km/s/Mpc) = 0.72 (Bennet et al. 2003). The most recent

bound on the amplitude of the frequency independent GW spectrum from LIGO is based on

the science run S3: Ω0 < 8.4× 10−4 for a frequency-independent spectrum in the 69-156 Hz

band (Abbott et al. 2005).

In this paper, we report much improved limits on the stochastic GW background around

100 Hz, using the data acquired during the LIGO science run S4, which took place between

February 22, 2005 and March 23, 2005. The sensitivity of the interferometers during S4,

shown in Figure 1, was significantly better as compared to S3 (by a factor 10× at certain

frequencies), which leads to an order of magnitude improvement in the upper limit on the

amplitude of the stochastic GW background: Ω0 < 6.5 × 10−5 for a frequency-independent

spectrum over the 51-150 Hz band.

This limit is beginning to probe some models of the stochastic GW background. As

examples, we investigate the implications of this limit for cosmic strings models and for

pre-big-bang models of the stochastic gravitational radiation. In both cases, the new LIGO

result excludes parts of the parameter space of these models.

The organization of this paper is as follows. In Section 2 we review the analysis procedure

and present the results in Section 3. In Section 4, we discuss some of the implications of our

results for models of a stochastic GW background, as well as the complementarity between

LIGO and other experimental constraints on a stochastic GW background. We conclude

with future prospects in Section 5.

2. Analysis

2.1. Cross-Correlation Method

The cross-correlation method for searching for a stochastic GW background with pairs

of ground-based interferometers is described in (Allen & Romano 1999). We define the fol-

lowing cross-correlation estimator:

Y =

∫ +∞

0

df Y (f)
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Fig. 1.— Typical strain amplitude spectra of LIGO interferometers during the science run

S4 (solid curves top-to-bottom at 70 Hz: H2, L1, H1). The black dashed curve is the LIGO

sensitivity goal. The gray dashed curve is the strain amplitude spectrum corresponding to the

limit presented in this paper for the frequency-independent GW spectrum Ω0 < 6.5 × 10−5.
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=

∫

+∞

−∞

df

∫

+∞

−∞

df ′ δT (f − f ′) s̃1(f)∗ s̃2(f
′) Q̃(f ′) , (3)

where δT is a finite-time approximation to the Dirac delta function, s̃1 and s̃2 are the Fourier

transforms of the strain time-series of two interferometers, and Q̃ is a filter function. As-

suming that the detector noise is Gaussian, stationary, uncorrelated between the two inter-

ferometers, and much larger than the GW signal, the variance of the estimator Y is given

by:

σ2
Y =

∫

+∞

0

df σ2
Y (f)

≈ T

2

∫ +∞

0

dfP1(f)P2(f) | Q̃(f) |2 , (4)

where Pi(f) are the one-sided power spectral densities (PSDs) of the two interferometers and

T is the measurement time. Optimization of the signal-to-noise ratio leads to the following

form of the optimal filter (Allen & Romano 1999):

Q̃(f) = N γ(f)SGW(f)

P1(f)P2(f)
, (5)

where

SGW(f) =
3H2

0

10π2

ΩGW(f)

f 3
, (6)

and γ(f) is the overlap reduction function, arising from the different locations and orien-

tations of the two interferometers. As shown in Figure 2, the identical antenna patterns of

the collocated Hanford interferometers imply γ(f) = 1. For the Hanford-Livingston pair the

overlap reduction is significant above 50 Hz. In Equations 5 and 6, SGW(f) is the strain

power spectrum of the stochastic GW background to be searched. Assuming a power-law

template GW spectrum with index α (see Equation 2), the normalization constant N in

Equation 5 is chosen such that < Y >= ΩαT .

In order to deal with data non-stationarity, and for purposes of computational feasibility,

the data for an interferometer pair are divided into many intervals of equal duration, and YI

and σYI
are calculated for each interval I. The data in each interval are decimated from 16384

Hz to 1024 Hz and high-pass filtered with a 40 Hz cut-off. They are also Hann-windowed

to avoid spectral leakage from strong lines present in the data. Since Hann-windowing

effectively reduces the interval length by 50%, the data intervals are overlapped by 50% to

recover the original signal-to-noise ratio. The effects of windowing are taken into account as

discussed in (Abbott et al. 2004b).

The PSDs for each interval (needed for the calculation of QI(f) and of σYI
) are calculated

using the two neighboring intervals. This approach avoids a bias that would otherwise exist
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due to a non-zero covariance between the cross-power Y (f) and the power spectra estimated

from the same data (Bendat & Piersol 2000). It also allows for a stationarity cut, which we

will describe in more detail below.

We consider two interval durations and frequency resolutions:

• 60-sec duration with 1/4 Hz resolution: the PSDs are calculated by averaging 58 50%

overlapping periodograms (based on the two neighboring 60-sec intervals) in Welch’s

modified periodogram method.

• 192-sec duration with 1/32 Hz resolution: the PSDs are calculated by averaging 22 50%

overlapping periodograms (based on the two neighboring 192-sec intervals) in Welch’s

modified periodogram method.

As we will discuss below, the 60-sec intervals allow better sensitivity to noise transients

and are better suited for data-stationarity cuts, while the 192-sec intervals allow higher

frequency resolution of the power and cross-power spectra and are better suited for removing

sharp lines from the analysis.

The data for a given interval I are Fourier transformed and rebinned to the frequency

resolution of the optimal filter to complete the calculation of YI (Eq. 3). Both the PSDs and

the Fourier transforms of the data are calibrated using interferometer response functions,

determined for every minute of data using a measurement of the interferometer response

to a sinusoidal calibration force. To maximize the signal-to-noise ratio, the intervals are

combined by performing a weighted average (with weights 1/σ2
YI

), properly accounting for

the 50% overlapping as discussed in (Lazzarini & Romano 2004).

2.2. Identification of Correlated Instrumental Lines

The results of this paper are based on the Hanford-Livingston interferometer pairs,

for which the broadband instrumental correlations are minimized. Nevertheless, it is still

necessary to investigate if there are any remaining periodic instrumental correlations. We

do this by calculating the coherence over the whole S4 run. The coherence is defined as:

Γ(f) =
|s∗1(f)s2(f)|2
P1(f)P2(f)

. (7)

The numerator is the square of the cross-spectral density (CSD) between the two interfer-

ometers, and the denominator contains the two power spectral densities (PSDs). We average
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uncorrelated spectra. The line at 376 Hz is one of the simulated pulsar lines.
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the CSD and the PSDs over the whole run at two different resolutions: 1 mHz and 100 mHz.

Figure 3 shows the results of this calculation for the H1L1 pair and for the H2L1 pair.

At 1 mHz resolution, a forest of sharp 1 Hz harmonic lines can be observed. These

lines were likely caused by the sharp ramp of a one-pulse-per-second signal, injected into the

data acquisition system to synchronize it with the Global Positioning System (GPS) time

reference. After the S4 run ended, the sharp ramp signal was replaced by smooth sinusoidal

signals, with the goal of significantly reducing the 1 Hz harmonic lines in future LIGO data

runs. In addition to the 1 Hz lines, the 1 mHz coherence plots in Figure 3 also include

some of the simulated pulsar lines, which were injected into the differential-arm servo of

the interferometers by physically moving the mirrors. Both the 1 Hz harmonics and the

simulated pulsar lines can be removed in the final analysis, and we will discuss this further

in Section 3. Figure 4 shows that the histogram of the coherence at 1 mHz resolution follows

the expected exponential distribution, if one ignores the 1 Hz harmonics and the simulated

pulsar lines.

2.3. Data Quality Cuts

In our analysis, we include time periods during which both interferometers are in low-

noise, science mode. We exclude:

• Time-periods when digitizer signals saturate.

• 30-sec intervals prior to each lock loss. These intervals are known to be particularly

noisy.

We then proceed to calculate YI and σYI
for each interval I, and define three data-quality

cuts. First, we reject intervals known to contain large glitches in one interferometer. These

intervals were identified by searching for discontinuities in the PSD trends over the whole

S4 run. Second, we reject intervals for which σYI
is anomalously large. In particular, for the

192-sec analysis, we require σYI
< 1 sec for the H1L1 pair, and σYI

< 2 sec for the H2L1 pair

(recall that Y is normalized such that < Y >= ΩαT , with T = 192 sec in this case). The

glitch cut and the large-sigma cut largely overlap, and are designed to remove particularly

noisy time-periods from the analysis. Note, also, that due to the weighting with 1/σ2
YI

, the

contribution of these intervals to the final result would be suppressed, but we reject them from

the analysis nevertheless. Third, we reject the intervals for which ∆σ = |σYI
− σ′

YI
|/σYI

> ζ .

Here, σYI
is calculated using the two intervals neighboring interval I, and σ′

YI
is calculated

using the interval I itself. The optimization of threshold ζ is discussed below. The goal of
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follows the expected exponential distribution, with exponent coefficient Navg (the number of

time-periods over which the average is made).
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this cut is to capture noise-transients in the data, and reject them from the analysis. Figure

5 shows the impact of these cuts for the H1L1 pair, analyzed with 192-sec segments, 1/32

Hz resolution, and with ζ = 0.3. This Figure also shows daily variation in the sensitivity

to stochastic GW background, arising from the variation in the strain sensitivity of the

interferometers, which is typically worse during the week-days than during the weekends or

nights.

Figure 6 shows the distribution of the residuals for the same analysis. For a given

interval I, the residual is defined as

YI− < Y >

σYI

. (8)

Note that the data quality cuts remove outliers from the residual distribution, hence making

the data more stationary. After the cuts, the Kolmogorov-Smirnov test indicates that the

residual distribution is consistent with a Gaussian, for both H1L1 and H2L1 analyses with

192-sec intervals, 1/32 Hz resolution, and ζ = 0.3.

3. Results

3.1. New Upper Limit

We performed a “blind” analysis for the H1L1 and the H2L1 pairs with 60-sec intervals,

1/4 Hz resolution, and ζ = 0.2. To avoid biasing the results, all data-quality cuts were

defined based on studies done with a 0.1 sec time-shift between the two interferometers in

a pair. Such a time-shift removes any GW correlations, without significantly affecting the

instrumental noise performance. After the data quality cuts were finalized, we made one

last pass through the data, with zero time-shift, and obtained the final results of the blind

analysis.

The results from the blind analysis for the frequency-independent template spectrum

(α = 0) are listed in the first row of Table 1 for H1L1 and in the first row of Table 2 for

H2L1. These results show no evidence of a stochastic GW background. After completing

the blind analysis, we discovered that the instrumental 1 Hz harmonic lines, discussed in

Section 2.2, are correlated between the two sites. We felt compelled on scientific grounds not

to ignore these correlations, even though they had been discovered after our initial, blind,

analysis was complete.

In order to remove from our results any possible influence of the correlated lines, we

repeated our analysis with refined frequency resolution of 1/32 Hz. We increased the interval
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length from 60-sec to 192-sec, which implies that the PSDs are estimated by averaging 22

50% overlapping periodograms. These changes allowed us to exclude the 1 Hz harmonics

from the analysis while losing only ∼ 3% of the bandwidth. The drawback, however, was

that the 192-sec analysis was less able to identify and exclude the noise-transients than the

60-sec analysis, as shown in Figure 7. As a result, the ∆σ cut was retuned for the 192-sec

analysis after the 60-sec analysis with zero time-shift was completed.

We examined several methods of defining the data quality cuts for the 192-sec analysis.

First, we calculated the ∆σ cut in the 60-sec analysis with ζ = 0.2 (along with large sigma

and glitch cuts), and then declared 192-sec intervals “bad” if they overlapped with the “bad”

60-sec intervals. This approach has the advantage that the 60-sec analysis is more sensitive

to transients, and the disadvantage that a significant fraction of the data is rejected. The

results of this approach are summarized in the second row of Tables 1 and 2. Second, we

defined all cuts directly on 192-sec intervals. We varied the value of ζ (0.2, 0.3, and 0.4) and

selected ζ = 0.3 as the optimal parameter choice. This choice represents the best compromise

between data loss and data quality: it rejects the least amount of data, while still excluding

all residual outliers and preserving the Gaussianity of the data. The last three rows of Tables

1 and 2 summarize the results for the three values of ζ .

The 192-sec analysis was not performed blindly. However, it agrees with our blind

60-sec analysis very well, because the contribution of the correlated 1 Hz harmonic lines is

only about 1.5σ. It is also more conservative than the blind analysis since the value of the

theoretical error is larger due to a smaller amount of data available in the form of acceptable

192-sec intervals (as compared to the 60-sec intervals). It also properly handles the known

instrumental correlations at 1 Hz harmonics. Hence, in the remaining part of the paper we

will focus on the 192-sec analysis with ζ = 0.3.

Figures 8 and 9 show the results of the 192-sec analysis with ζ = 0.3 for H1L1 and

H2L1 respectively. The top plots in these two Figures show the cummulative estimates for

the frequency-independent GW template (α = 0) as a function of time. They indicate that

there is no particular time during the run that dominates the result. Moreover, the ±1.65σ

bounds converge as ∼ 1/
√

T , as expected. The middle plots of the two Figures show the

cross-correlation spectra (i.e. the integrand of Equation 3). They indicate that there is no

particular frequency that dominates the result.

We perform a weighted average of the H1L1 and H2L1 results at each frequency bin (with

inverse variances as weights). The resulting cross-correlation spectrum and the theoretical

error are shown in Figure 10. The frequency range 51-150 Hz contributes 99% of the full

sensitivity, as determined by the inverse combined variance. Integrating over this frequency

range, we obtain the final estimate for the frequency-independent spectrum: Ω0 = (−0.8 ±
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Analysis ζ Fraction of Data Ω0(×10−5) Ω0(×10−5) 90% UL

Excluded before notching after notching (×10−5)

50-500 Hz 51-150 Hz

60-sec (blind) 0.2 7.1% 6.4 ± 4.3 - 13.0

192-sec conversion 21.0% 3.4 ± 4.9 −2.4 ± 5.0 7.0

192-sec 0.2 10.9% 6.1 ± 4.7 0.1 ± 4.8 8.0

192-sec 0.3 6.5% 4.8 ± 4.6 −0.7 ± 4.7 7.3

192-sec 0.4 5.0% 4.8 ± 4.6 −0.7 ± 4.7 7.3

Table 1: H1L1 results, for h100 = 0.72 and for a frequency-independent template spectrum

(α = 0). The first two columns define the analysis (interval duration and ∆σ cut). For the

192-sec analysis with ζ denoted as “conversion” (second row), the ∆σ cut was defined using

the 60-sec analysis listed in the first row: the 192-sec segments are declared “bad” if they

overlap with a “bad” 60-sec segment. The third column shows the fraction of the data lost

to data-quality cuts. The fourth column lists the estimates of Ω0 for the 50-500 Hz range

before notching the 1 Hz harmonics and the simulated pulsar lines. The fifth column lists

the estimates of Ω0 for the 51 − 150 Hz range after notching the 1 Hz harmonics and the

simulated pulsar lines - this frequency range was determined to be optimal for the combined

H1L1+H2L1 analysis (see text). The sixth column gives the 90% upper limit based on the

result in the fifth column. For all analyses presented here, the distribution of the residual

outliers was consistent with a Gaussian distribution (c.f. Figure 6; the Kolmogorov-Smirnov

test statistic for comparing the two distributions was greater than 85% in all cases).

Analysis ζ Fraction of Data Ω0(×10−5) Ω0(×10−5) 90% UL

Excluded before notching after notching (×10−5)

50-500 Hz 51-150 Hz

60-sec (blind) 0.2 4.1% −8.2 ± 10.6 - 13.0

192-sec conversion 10.7% −3.9 ± 11.9 −7.2 ± 12.1 16.1

192-sec 0.2 6.1% −1.7 ± 11.6 −4.2 ± 11.8 17.1

192-sec 0.3 4.6% −0.6 ± 11.5 −3.3 ± 11.7 17.5

192-sec 0.4 3.8% −3.1 ± 11.5 −6.1 ± 11.7 15.9

Table 2: H2L1 results, for h100 = 0.72 and for a frequency-independent template spectrum

(α = 0). The columns are as in Table 1. For all analyses presented here, the distribution of

the residual outliers was consistent with a Gaussian distribution (the Kolmogorov-Smirnov

test statistic for comparing the two distributions was greater than 52% in all cases).

4.3) × 10−5.
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The dominant systematic uncertainty of this result comes from the amplitude calibra-

tion uncertainty of the interferometers. This uncertainty is estimated to be 5% (L1) and 8%

(H1 and H2), and it is frequency-independent. The uncertainty in the phase of the interfer-

ometer strain response is negligible compared to the magnitude and statistical uncertainties.

Similarly, the effect of timing errors, measured to be . 4 µs, is negligible. Using hardware

injections, we estimate that the effect of the timing errors on our point estimate is . 0.2%.

We then construct the Bayesian posterior distribution for Ω0 using the above estimate,

following (Loredo 1990). We assume a Gaussian distribution for the amplitude calibration

uncertainty (with mean 1 and standard deviation
√

0.052 + 0.082 = 0.093), and we marginal-

ize over it. We assume the prior distribution for Ω0 to be the posterior distribution obtained

in our previous analysis of the S3 data (Abbott et al. 2005). The 90% upper limit is the

value of Ω0 for which 90% of the posterior distribution lies between 0 and the upper limit.

This procedure yields the Bayesian 90% UL on Ω0 of 6.5 × 10−5. This is an improvement

by a factor 13× over the previous result in the same frequency band, established based

on the science run S3 (Abbott et al. 2005). To investigate robustness of our result under

different priors, we repeated the calculation using flat priors for the amplitude calibration

uncertainties, and using a flat prior for Ω0 between 0 and 8.4 × 10−4 (previous 90% UL by

LIGO, (Abbott et al. 2005)). We found that these different choices of priors have less than

3% effect on the 90% upper limit.

Once the estimate is made for the frequency-independent spectrum, one can perform

appropriate frequency-dependent scalings of Y (f) and σY (f), recalculate the posterior distri-

butions, and re-marginalize to obtain upper limits for other templates, such as the power-law

templates with different spectral indices α (see Equation 2). Figure 11 shows the 90% UL as

a function of the spectral index α obtained for this analysis. Similar results for the S3 run of

LIGO, as well as the expected sensitivities of H1L1 and H1H2 pairs assuming 1 year of expo-

sure and design interferometer sensitivities, are also shown. The frequency range of interest

is defined to include 99% of the full sensitivity, as determined by the inverse variance. For

the S4 result, the frequency range varies between (50 − 107) Hz for α = −3 and (73 − 288)

Hz for α = +3, as shown in the bottom plot of Figure 11. Note that the expected sensitivity

of the collocated Hanford interferometer pair (H1H2) is significantly better than that of the

H1L1 pair due to the better antenna pattern overlap (see Figure 2). However, this pair is

also more susceptible to instumentally correlated noise. New analysis methods are being

pursued to estimate and suppress these instrumental correlations (Fotopoulos 2006).
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3.2. Signal Injections

We exercise the analysis procedure described above using simulated stochastic signals

injected into the data both in software and in hardware - see (Bose et al. 2003). In particular,

we verify that the recovery of the injected signals is not affected by the data-quality cuts we

impose. The hardware injections are performed by physically moving the mirrors to simulate

a stochastic GW signal. Three hardware injections were performed during the S4 run, all

using a frequency-independent GW spectrum (α = 0). Table 3 summarizes the recovery of all

of the hardware injections. Figure 12 shows the cross-correlation spectrum for injection 3. It

also shows the inverse Fourier transform of the spectrum, which is equivalent to the estimate

of Ω0 for different values of time-lag between two interferometers (for short time-lags).

Injection H1L1 Expected H1L1 Recovered H2L1 Expected H2L1 Recovered

(×10−2) (×10−2) (×10−2) (×10−2)

1 9.1 7.9 ± 0.2 ± 0.8 7.9 6.9 ± 0.4 ± 0.6

2 2.5 2.5 ± 0.4 ± 0.2 2.3 1.5 ± 0.6 ± 0.2

3 1.1 0.95 ± 0.04 ± 0.10 - -

Table 3: Summary of the hardware injection amplitudes during S4. The second and fourth

columns indicate the expected injection amplitudes for H1L1 and H2L1 respectively, based

on the signal injected into the differential-arm servo. The third and the fifth columns list

the recovered values using the H1L1 and H2L1 pairs respectively. The recovered values are

listed with statistical errors (as defined in Equation 4), and with systematic errors (estimated

using 5% calibration uncertainty in L1 and 8% calibration uncertainty in H1 and H2, added

in quadrature). For injection 3, the data of H2 interferometer were compromised due to a

failure of the interferometer’s laser.

We performed a sequence of software injections, where the injected signal is simply added

to the interferometer data in the analysis. We performed 10 trials for 4 injection amplitudes

using about 1/3 of the S4 H1L1 data. Figure 13 shows that the signal is successfully recovered

down to 1 × 10−4 in Ω0. Moreover, the theoretical error bars agree well with the standard

deviation over the 10 trials. All injections were performed assuming a frequency-independent

GW spectrum (α = 0).

4. Implications

In this Section, we investigate the implications of the new upper limit for some of the

models of the stochastic GW background. We also discuss the complementarity of our result

with various other experimental constraints on the stochastic GW background.
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4.1. Complementarity with Other Measurements and Observations

Figure 14 compares different experiments and some of the theoretical models. For

wavelengths larger than the horizon size at the surface of last scattering (redshifted to today,

this corresponds to frequencies below ∼ 10−16 Hz), the COBE observations of the CMB place

an upper limit on the stochastic gravitational wave background of ΩGW(f) < 1.3 × 10−13

(Allen & Koranda 1994). In standard inflationary models (Turner 1997), the GW spectrum

is expected to be (almost) flat at frequencies above ∼ 10−16 Hz.

The fluctuations in the arrival times of millisecond pulsar signals can be used to place

a bound at ∼ 10−8 Hz (Jenet et al. 2006): ΩGW(f) < 3.9 × 10−8 (assuming frequency

independent GW spectrum). Similarly, Doppler tracking of the Cassini spacecraft can be

used to arrive at yet another bound, in the 10−6 − 10−3 Hz band (Armstrong et al. 2003):

ΩGW(f) < 0.027.

If the energy density carried by the gravitational waves at the time of Big-Bang Nucle-

osynthesis (BBN) were large, the amounts of the light nuclei produced in the process could

be altered. Hence, the BBN model and observations can be used to constrain the total

energy carried by gravitational waves at the time of nucleosynthesis (Kolb & Turner 1990;

Maggiore 2000; Allen 1996):
∫

ΩGW(f) d(ln f) < 1.1 × 10−5 (Nν − 3), (9)

where Nν is the effective number of relativistic species at the time of BBN. Measurements of

the light-element abundances, combined with the WMAP data, give the following 95% upper

bound: Nν − 3 < 1.4 (Cyburt et al. 2005). This limit translates into
∫

ΩGW(f) d(ln f) <

1.5 × 10−5. This bound applies down to ∼ 10−10 Hz, corresponding to the horizon size at

the time of BBN.

Gravitational waves are also expected to leave a possible imprint on the CMB and matter

spectra, similar to that of massless neutrinos. (Smith et al. 2006a) used recent measurements

of the CMB anisotropy spectrum, galaxy power spectrum, and of the Lyman−α forest, to

constrain the energy density carried by gravitational waves to
∫

ΩGW(f) d(ln f) < 1.3×10−5

for homogeneous initial conditions. This bound is competitive with the BBN bound and

it extends down to ∼ 10−15 Hz, corresponding to the horizon size at the time of CMB

decoupling. It is also expected to improve as new experiments come online (such as Planck

or CMBPol).

The LIGO results apply to the frequency region around 100 Hz. The result discussed in

this paper is an improvement by a factor 13× over the previous LIGO result in the 100 Hz

region, for a frequency-independent spectrum of GW background. A one-year run at design
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sensitivity of LIGO (the S5 run, which began in November of 2005) is expected to improve

the sensitivity by another factor 10× - 100×, while Advanced LIGO is expected to achieve

sensitivities better by yet another factor 100× - 1000×, eventually reaching 10−9 − 10−8 for

Ω0. The uncertainty in the final reach of LIGO and of Advanced LIGO comes from the

potential instrumental correlations that could be present between the collocated Hanford

interferometers and from the uncertainty in the final optical configurations of interferometers

in Advanced LIGO. The result discussed in this paper is still weaker than the indirect BBN

bound, but the future runs by LIGO and Advanced LIGO are expected to surpass this

bound.

The standard inflationary models are most stringently constrained by the CMB bound

at lowest frequencies. Although they are most likely out of range of LIGO and of Advanced

LIGO, they may be accessible to future GW interferometers (Smith et al. 2006b). However,

there are models of stochastic GW background that LIGO is beginning to explore. We

illustrate this with examples of cosmic string and pre-big-bang models.

4.2. Implications for Cosmic Strings Models

Cosmic strings can be formed as linear defects during symmetry breaking phase transi-

tions in the early Universe as well as in string theory inspired inflation scenarios. In the latter

case they have been dubbed cosmic superstrings. CMB data is not consistent with cosmic

strings as the predominant source of density fluctuations in the Universe. Their existence,

however, is not ruled out below the GUT scale and cosmic strings may still lead to a myriad

of detectable astrophysical signatures such as gravitational radiation, gamma-ray bursts and

ultra-high energy cosmic rays. For a review, see (Vilenkin & Shellard 2000).

(Damour & Vilenkin 2005) investigated the stochastic background of gravitational waves

produced by cusps on cosmic strings, integrated over all redshifts and all directions on the

sky. They find that three parameters define the gravitational-wave spectrum due to cosmic

strings:

• String tension µ: This parameter is usually expressed as a dimensionless quantity Gµ

(assuming speed of light c = 1), where G is Newton’s constant. String-theory inspired

inflation scenarios prefer the range 10−11 ≤ Gµ ≤ 10−6.

• Reconection probability p: While ordinary, field-theoretic strings reconnect when-

ever they intersect (p = 1), the reconnection probability for superstrings is typi-

cally smaller than 1. In particular, the theoretically favored range is 10−3 ≤ p ≤ 1

(Jackson et al. 2005).
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• ǫ: This parameter describes the typical size of the closed loops produced in the string

network. The value of this parameter is uncertain, and it can span several orders of

magnitude. We will consider the range 10−13 < ǫ < 10−2, which is both theoretically

viable and most interesting from the point of view of LIGO.

These parameters determine both the amplitude and the shape of the gravitational-

wave spectrum. In particular, parameters ǫ and Gµ determine the lowest frequency (at a

given redshift) at which a string loop could emit gravitational radiation. Since there is a

low-frequency cut-off to the predicted gravitational-wave spectrum, it is possible to have

a cosmic string model that would avoid the low-frequency bounds due to CMB or pulsar

timing measurements, but still be within reach of LIGO (c.f. Figure 14).

Figure 15 shows the region of the parameter space (for p = 10−3) excluded by the result

discussed in this paper and by the S3 result (Abbott et al. 2005), as well as the expected

reach of LIGO and Advanced LIGO in future runs. As shown in this Figure, LIGO is most

sensitive to the regions of large Gµ and small ǫ. Moreover, LIGO results are complementary

to the pulsar timing limit, which is most sensitive to models with large Gµ and large ǫ, and to

the indirect BBN limit. In particular, the population of models with p = 10−3, ǫ . 5×10−11,

and 5×10−9 . Gµ . 7×10−8 are excluded by the result discussed in this paper, but are not

accessible to other current experimental bounds. To produce this Figure, we used Equations

4.1-4.7 from (Damour & Vilenkin 2005).

We note that as p increases toward 1, the bounds/reach of all experiments in the

Gµ − ǫ plane weaken because the amplitude of the gravitational-wave spectrum scales with

1/p. We also note that there are significant uncertainties in the calculation discussed by

(Damour & Vilenkin 2005), mostly due to incomplete understanding of the string network

behavior. For example, the size of loops is usually assumed to be given by the scale

of gravitational back reaction. Recent numerical simulations of cosmic string networks

(Martins & Shellard 2006), (Vanchurin et al. 2005), and (Ringeval et al. 2005) instead sug-

gest that loop sizes are related to the large scale dynamics of the network. If this is the case

then the expected stochastic background at the frequencies of pulsar timing experiments

could be subtantially larger (Hogan 2006). Additionally, the treatment of (Damour & Vilenkin 2005)

did not account for the effects of late-time acceleration. Thus a more detailed analysis of

the stochastic background produced by cosmic strings is necessary.
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Fig. 15.— The ǫ - Gµ plane for the cosmic string models with p = 10−3. The shaded

regions are excluded by the LIGO S3 limit (darker) and by the LIGO S4 limit presented

here (lighter). The hatched regions are accessible to future LIGO runs: expected LIGO

sensitivity for the H1L1 pair, assuming design interferometer strain sensitivity, and 1 year of

exposure (’−’); expected LIGO sensitivity for the H1H2 pair, assuming design interferometer

strain sensitivity, and 1 year of exposure (’\’); expected Advanced LIGO sensitivity for the

H1H2 pair, assuming interferometer strain sensitivity tuned for the binary neutron star

inspiral search and 1 year of exposure (’/’). The dash-dotted black curve is the exclusion

curve based on the pulsar limit (Jenet et al. 2006) (the excluded region is above the curve).

The solid black curve is the exclusion curve based on the indirect big-bang-nucleosynthesis

bound (the excluded region is to the right of the curve).
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4.3. Implications for Pre-Big-Bang Models

Pre-big-bang models are cosmology models motivated by string theory (Gasperini & Veneziano 1993),

(Gasperini & Veneziano 2003). In these models, the Universe evolves through several phases:

“dilaton” phase in which the Universe is large and shrinking; “stringy” phase in which the

curvature of the Universe is high; and standard radiation and matter dominated phases. The

GW spectrum is generated by amplification of vacuum fluctuations as the Universe transi-

tions from one phase to another. The shape and amplitude of the spectrum are determined

by the states of the Universe in the different phases. Although the “stringy phase” of the

model and the transition to the radiation phase are not well understood, some models have

been proposed in the literature that may partially describe it. In the formalism developed

by (Buonanno et al. 1997), the GW spectrum produced by the model can be described as:

• ΩGW(f) ∼ f 3 for f < fs, where fs is essentially unconstrained.

• ΩGW(f) ∼ f 3−2µ for fs < f < f1, where µ < 1.5 defines the evolution of the Universe in

the “stringy” phase. The cutoff frequency f1 is determined by string-related parameters

and its most natural value is expected to be 4.3 × 1010 Hz.

Following the analysis in (Mandic & Buonanno 2006), we scan the parameter space

(fs, µ, f1). For each set of values of these parameters, we calculate the GW spectrum following

(Buonanno et al. 1997) and check whether the model is accessible to the current (and past)

LIGO results. We also project the sensitivity of initial and Advanced LIGO to these models.

Figure 16 shows the f1 − µ plane for fs = 30 Hz. Note that the LIGO S3 and S4 results are

beginning to explore the parameter space of these models, although the indirect BBN bound

is still a stronger constraint. Future runs of LIGO and of Advanced LIGO are expected

to explore significantly larger parts of the parameter space, eventually surpassing the BBN

bound (in some parts of the parameter space) and even reaching the most natural value of

f1 = 4.3 × 1010 Hz.

5. Conclusions

LIGO data acquired during the science run S4 yield a new Bayesian 90% upper limit

on the amplitude of the stochastic GW background: Ω0 < 6.5 × 10−5 for the frequency-

independent GW spectrum (α = 0) in the frequency band 51-150 Hz. Similar limits are

obtained for other values of α, as shown in Figure 11. This result is an improvement by a

factor 13× over the previous upper limit in the same frequency range, obtained by LIGO in

the science run S3.
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Fig. 16.— The f1 − µ plane for the pre-big-bang models with fs = 30 Hz. The shaded

regions are excluded by the LIGO S3 limit (darker) and by the LIGO S4 limit presented

here (lighter). The hatched regions are accessible to future LIGO runs: expected LIGO

sensitivity for the H1L1 pair, assuming design interferometer strain sensitivity, and 1 year of

exposure (’−’); expected LIGO sensitivity for the H1H2 pair, assuming design interferometer

strain sensitivity, and 1 year of exposure (’\’); expected Advanced LIGO sensitivity for the

H1H2 pair, assuming interferometer strain sensitivity tuned for the binary neutron star

inspiral search and 1 year of exposure (’/’). The solid black curve is the exclusion curve

based on the BBN limit (the excluded region is above the curve). The horizontal dashed line

denotes the most natural value of f1 = 4.3 × 1010 Hz.
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This result is obtained using 192-sec long intervals of data with 1/32 Hz frequency

resolution of the spectra, and it properly excludes the known instrumental correlations at 1

Hz harmonics. It is fully consistent with the blind result that uses 60-sec long intervals of

data with 1/4 Hz frequency resolution, which is slightly contaminated by the instrumental

1 Hz harmonics. It is also more conservative than the blind result, as the theoretical error is

larger due to the smaller amount of data available in the form of acceptable 192-sec intervals

(as compared to the 60-sec intervals).

This result is complementary to the constraints on the gravitational-wave spectrum,

based on the measurements of the CMB spectrum and pulsar timing. It is still weaker

than the indirect BBN bound in the relevant frequency range. The ongoing 1-year long

run of LIGO at the design sensitivity, and the future runs of Advanced LIGO, are expected

to surpass the BBN bound. Furthermore, this result is already exploring the parameter

space of some models of the stochastic GW background, such as cosmic strings models and

pre-big-bang models.
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