A Transaction Definition Language for Java Application Response
Measurement

J.D. TurnerT, D.P. SpoonerT, J. CaoT, S.A. JarvisT, D.N. DiIIenberger*, G.R. Nudd®
Dept. Computer Science, University of Warwick, Coventry, UK'
IBM TJ Watson Research Center, New York, USA¥
Email: {jdt,dps, junwei,saj,grn}edcs.warwick.ac.uk’ engdeus.ibm.com*

Abstract

This paper describes a technique for automatically ARMing Java applications in accordance with the ARM 3.0 standard for
Java (submitted to the Open Group February 2001). An XML-based Transaction Definition Language is defined, which allows
a developer to semantically define performance critical components of Java applications. An application is instrumented with
ARM method calls through a bytecode transformer prior to execution, providing ARM compliance while removing the necessity

to modify (or even possess) the original Java source code.

Keywords: Java, ARM, Transaction Definition Language, Performance

1 Introduction

1.1 High Performance Computing

Ever since computing resources have been used to allow sci-
entific and engineering problems to be addressed more effi-
ciently, application developers have spent a great deal of time
developing the infrastructures necessary to achieve the great-
est performance possible. In the early days, the methodol-
ogy and philosophy behind such high performance computing
was to create massively parallel supercomputers, resulting in
expensive, high maintenance systems with hundreds of pro-
cessors and gigabytes of local storage. The software for such
systems often included highly optimized applications written
specifically for the architecture upon which they were to run.

It may be necessary for these computationally-intensive
applications to be executed on another architecture other than
that for which they were specifically written. Where a choice
of architectures is available, it is often that which results in the
greatest performance which is preferable, although this choice
is not necessarily an easy one to make.

Over the last ten years, the High Performance Systems
Group (HPSG) at Warwick have developed a wealth of tools
allowing application developers to predict the performance of
such a class of applications. The main contribution of this re-
search, the Performance Analysis and Characterization Envi-
ronment (PACE) [NUDDO00O, CAOQQ], allows a parallel appli-
cation to be characterized and then mapped to a variety of
architectures; the performance estimates which result allow a

Journal of Computer Resource Management, Issue 105, Winter 2002

user (or scheduling system) to predict the optimum execution
behavior over the available hardware.

PACE operates by constructing a theoretical time-line for a
given application, based on the timings of individual machine
code instructions and their organization as subtasks described
within parallel templates. The resulting model is parameterized
so that factors such as input data size, number of processors
and available memory can be adjusted. Observations can then
be made as to the predicted effect on the behavior of the ap-
plication over a number of different architectures and under a
number of performance-critical situations.

PACE adopts a layered approach for application characteri-
zation (see Figure 1, part (i)). PACE associates each layer with
a set of specified interfaces, allowing objects of the same class
to be exchanged without affecting the overall structure of the
model. The sequential tasks, the parallelization strategy and
the hardware elements of the given application are described
using a modeling language known as CHIP’s [PAPA95]. This
is subsequently compiled and linked to form a single applica-
tion object which is later evaluated to obtain performance esti-
mates.

A distributed resource scheduler (named TITAN), has also
been developed for the allocation of applications on a static
set of known hardware resources. TITAN uses PACE perfor-
mance models of scheduled applications to predict their execu-
tion time and behavior and therefore achieve greater schedul-
ing efficiency. A genetic algorithm is employed to allow the
choices involved in task allocation to ‘evolve’ over time, such

Pages5

Page56

(i) PACE Approach

Model Parameters User and System Policies

| |

(ii) Transaction Approach

{Predicted Execution Time} {Predicted Execution Strategy}
Figure 1: (i) The original PACE layered approach. (ii) The
transaction-based approach, used for rapid application characteriza-
tion.

that when the application is eventually scheduled, the most
suitable target architecture is chosen.

1.2 Computational GRIDs

More recently the methodology behind high performance com-
puting has changed. With the vast performance increase of
the desktop computer, larger network bandwidth, and the de-
crease in price for such components, distributed environments
have become the favored infrastructure for high performance
applications. This interest in geographically dispersed net-
works such as GRIDs [FOST98, LEIN99] has stimulated the
demand for high performance resource allocation services with
the ability to adapt to the continuous variations in user de-
mands and resource availability.

Building on the experience with using PACE for the predic-
tion and scheduling of massively parallel scientific applications,
a new scheduling environment [SPOOO01] is being developed
at Warwick to manage more data-intensive business applica-
tions running on these GRID-type architectures. Built on top
of the Globus infrastructure [FOSTO01], applications are sched-
uled according to a wider set of metrics, including communica-
tion requirements, quality of service, and according to resource
restrictions including software license domains. Resource dis-
covery and advertisement is achieved using an in-house agent
system [CAOO01, CAO02], and an application’s performance is
predicted prior to its execution to increase the effectiveness of
scheduling software.

PACE is well-suited to the prediction of computationally-
intensive, scientific applications, however it is less well-suited
to many GRID-type applications; many of the problems derive
from the level at which the prediction data is gathered. It has
been possible to abstract away from the more machine level
details involved in performance prediction by defining the lower
level atomic units of work as ‘transactions’ (see Figure 1, part

(ii)). Applications consist of a number of transactions which
are related to each other through a ‘transaction map’. This ap-
proach to application characterization allows a broader class
of problems to be addressed, including data- and input-driven
business applications.

A system for performance prediction and scheduling of such
jobs on GRID architectures has been developed (see Figure
2). On submission, the user presents an application stub to
the scheduling environment that describes static performance
information about the application. This information contains a
transaction map and scheduling metrics, such as the priority
of the application, the quality of service required and particular
service policies, etc.. Using this information, the current re-
source load is collected from the environment and compared
with the predicted resources deemed necessary for the appli-
cation to run at its most efficient. Once an optimum resource
has been found for a particular application, the application is
scheduled for execution on the target architecture.

System Policies

Application
Application Stub

Scheduled Environment

gt

Hardware models

Histories

New Candidate Systems

L

Resources

Figure 2: A metric-based scheduling environment incorporating pre-
diction of applications, resource allocation, system policies, perfor-
mance histories, and quality of service. Feedback of information dur-
ing the application’s execution aids the prediction and scheduling of
similar applications in the future.

1.3 Application Response Measurement

Using the Application Response Measurement (ARM) stan-
dard [JOHNOO, ARMO01], applications are split into transactions
corresponding to performance-critical components. The ARM
standard usefully imposes a unified measure over the perfor-
mance statistics recorded, these are calculated at runtime by
instrumenting applications with ARM procedure calls. The use
of application stubs and performance histories allows informa-
tion regarding performance-critical components of applications
to be bootstrapped and then ‘tuned’ over time.

In order to bridge the gap between service policies and
performance-critical ARM measurements, a Transaction Def-
inition Language (TDL) has been defined. This provides an

Journal of Computer Resource Management, Issue 105, Winter 2002

XML-based descriptor language in which developers can de-
fine the key performance-critical transactions in their applica-
tions, and then relate these components back to system ser-
vice policies. The implementation of the TDL automatically
ARMSs the applications according to the TDL descriptors. Au-
tomating such a process has a number of advantages, includ-
ing that of not needing to access to the source code, and not
requiring the need to re-compile or re-link the application dur-
ing the ARMing process.

The TDL description for each application forms part of the
service policy document, which itself is a constituent part of
the application stub shown in Figure 2. An ARM consumer im-
plementation has been implemented for use with the schedul-
ing environment, which stores the information in a local LDAP
server [HOWE97].

The remaining sections of this paper describe:

¢ An ARM compliant Transaction Definition Language that
allows a developer to semantically define performance
critical components of Java applications (see Sections 2
& 3).

e An automated method for the manipulation of Java ob-
ject code using a Java bytecode transformer, used in the
implementation of the TDL (see Section 3).

¢ The demonstration of the feasibility of this approach on
a number of Java applications (see Section 4).

2 Application Response Measurement

With the increasingly complex computer infrastructures present
within the industry today, it has become more difficult to an-
alyze the performance of modern applications. Such appli-
cations involve separate programs distributed across multiple
systems, processes and threads. Each one of these transac-
tions may communicate with a number of data storage devices,
application servers or web services.

Analyzing the performance of such a distributed architec-
ture can be problematic and application administrators are faced
with a number of difficult questions:

e Are transactions succeeding?

If a transaction fails, what is the cause of the failure?

What is the response time experienced by the end user?

Which sub-transactions are taking too long?
o Where are the bottlenecks?

e How many of which transactions are being used?

Journal of Computer Resource Management, Issue 105, Winter 2002

e How can the application and environment be tuned to be
more robust and to perform better?

The Application Response Measurement (ARM) standard
allows these questions to be answered. ARM allows the ap-
plication developer to define individual units of work within an
application as ‘transactions’. The performance of these trans-
actions are then measured during the application’s execution;
analyzing the results allows some of the above questions to be
answered. Which transactions are monitored is up to the de-
veloper, although they are normally the areas of an application
that are considered performance critical.

The standard is employed by ARMing an application; ie. by
inserting ARM interface library calls within an application (see
Figure 3). These calls define where a transaction begins and
ends, and the performance of the application between those
points is measured and reported through the consumer imple-
mentation of this interface. Via this interface, ARMed applica-
tions can communicate with a number of consumer implemen-
tations without any change to the source instrumentation. This
allows a variety of information to be retrieved according to the
implementation used.

start() Reporting

» ARM Classes
Application update) Consumer
Interface

stop()

Figure 3: A schematic of the communication between an application,
an ARM consumer interface and the reporting classes.

2.1 Java 3.0 Binding

In February of this year, a Java binding version of the ARM
specification was proposed to the Open Group [OPNG]; this
specification introduced a number of new features not found
in previous versions of the standard. The specification defines
a set of Java interfaces, allowing the methods defined within
each interface to be invoked by a Java application, and a Java
consumer implementation to be developed.

One of the most notable features of these interfaces is the
‘ArmTransaction’. This interface allows the application to de-
fine where transactions occur, which is done by invoking ‘start’
and ‘stop’ methods at the beginning and end of each transac-
tion. According to the specification, each transaction records a
mandatory set of information, including how long it took for the
transaction to complete (the response time), a time-stamp of
when that transaction finished (the stop time), and whether the
transaction was successful or not (the status). Other optional

Page57

Page58

information can be associated with all transactions, either by
associating a User and Transaction Definition class, or by uti-
lizing a number of metrics which may be passed to the transac-
tion when instantiated. Figure 4 presents the ‘ArmTransaction’
data model in more detail.

ArmTransaction ArmUserDefinition

ArmUserDefinition UUID
Status

uuID

start()
User Name

Response Time

updated| stop Time

Transaction Handle ArmTranDefinition

Current Correlator

stop(),

uuiD
Application Name

Parent Correlator
ArmTranDefinition UUID
Metric Value(s) [7]

Transaction Name
ArmMetricDefinition UUID(s) [7]

0.n

0.7 PR
ArmMetricDefinition

ArmMetricGroup

ArmMetric

uuID

Metric Name

Value

Format

0.n 0.7

Figure 4: The ARM 3.0 Transaction Data Model.

It is possible to create an understanding of how transac-
tions relate to each other within an application with the use of
correlators. Current and parent correlators can be associated
with each transaction. Many transactions can have the same
parent and therefore a transaction map can be created from
the relation of correlators reported by the ARM implementa-
tion during execution. It is this transaction map which is cre-
ated and used within the scheduling environment to aid in the
distribution of applications over GRIDs architectures.

2.2 An Example

The following example describes how an application communi-
cates with an ARM consumer interface, and how descriptive in-
formation concerning the performance-critical transactions de-
fined within an application is processed.

In a web server application, a transaction is defined in such
a way that every page request that occurs during the web
server’s lifecycle is monitored according to the consumer im-
plementation that is used. The developer instruments the ap-
plication source code with method calls to the ARM consumer
interface as shown in Figure 5.

The developer associates the optional transaction and user
definition objects with the ARM transaction. Association of
such information within ARM is achieved with the use of Uni-
versally Unique Identifier (UUID) 16-byte arrays, which uniquely
identify each Java object used. Using UUIDs also allows the
descriptive information to be kept separate from the actual
transaction measurements until the information is reported at
some time after the transaction completes its execution.

ArmDefinitionFactory]

new() new()

ArmMetricDefinition
% ArmTranDefinition

ArmUserDefinition

report()

copyMetricUUIDFrom()

copyMetricUUIDFrom()

report()
process() H

Reporting

Application
PP Classes

process) !

report()

new()

ArmTransaction

ARM Consumer Interface

update() 1

roport)

Figure 5: All ARM transactions have (optional) definition information
associated with them via ArmMetricDefinition, ArmTranDefinition, and
ArmUserDefinition objects. Each of these objects are populated with
information describing the transaction; when the application invokes
a process call, the consumer interface reports the data to the report-
ing classes. The application then creates a new instantiation of an
ArmTransaction object, and defines the location of the transaction by
invoking the start and stop transaction calls.

The three definition objects are each associated a UUID
by the application. When the application invokes a process
call to the definition objects used, report information is then
passed by the consumer interface and handled by the report-
ing classes. As extra metric information is held within the met-
ric definition object, whose UUIDs are referenced by the trans-
action definition, the application has to associate those metrics
which are connected with the transaction definition before its
information can be processed.

Once the transaction definition information has been com-
pleted and processed, a new transaction is created using the
transaction factory, which associates the definition UUIDs with
the transaction. A ‘start’ is sent to the instantiation of the trans-
action when a transaction begins and a ‘stop’ sent when the
transaction ends. Ending the transaction then automatically
reports the measurements made during the transaction to the
reporting classes.

The reporting classes generate a number of tables, (see
Tables 1, 2, 3, and 4): these show the transaction measure-
ments made by the consumer implementation, and also the
transaction, user and metric definitions processed by the ap-
plication. Mapping the transaction measurements back to the
definition objects by way of the UUIDs provides detailed infor-
mation as to the transaction’s name, the application name, the
user, and the name and type of the measurement metrics used
during the monitoring process.

Journal of Computer Resource Management, Issue 105, Winter 2002

[[TranUUID [UserUUID | Status [Response Time [Metric1 ||
[64E14 | 72536 | GOOD | 5.638 | 632
Table 1: Transaction Measurements.

[[TranUUID | ApplName [Transaction Name | MetricUUID 1
[64E14 | WebServer | Page Request | B6115 I

Table 2: Transaction Definitions.

2.3 Asynchronous Data Reporting

Version 3.0 of the ARM specification allows an application to
measure performance data and report the data asynchronously
via the ‘ArmTranReport’ interface. Instead of the ARM imple-
mentation measuring the performance information of transac-
tions, the application measures the information and populates
an ‘ArmTranReport’. When complete, the application sends a
‘process’ call to the interface which then reports the data at
that time.

For most distributed applications it is possible to use either
method of measuring the performance information. However,
in situations where it is not feasible to place the ‘start’ and ‘stop’
calls at the exact location at which the transaction is defined,
it is necessary for an application to populate the ‘ArmTranRe-
port’ instance in order for accurate results to be reported.

3 Transaction Definition Language

ARM provides an efficient and convenient way of measuring
the performance of distributed applications during their execu-
tion. The ARM standard therefore provides an effective mech-
anism for the performance monitoring of applications within the
PACE-based scheduling environment described in Section 1.
In particular, the performance information which the ARMing of
applications provides can be used to increase the accuracy of
performance prediction and provide the basis for efficient task
allocation by the scheduler.

The ARMing of an application can however prove difficult.
It requires that an application developer define the performance-
critical components of application and therefore where trans-
actions will take place. The application need then be instru-
mented so that ARM calls to the consumer interface are made
appropriately. We will show that it is possible to reduce the
overhead involved in ARMing applications and in so doing pro-
vide the application developer with a high-level mechanism by
which application service level agreements can be modeled.

Another potential disadvantage to the current scheme is
the necessity for the developer to possess and be able to mod-
ify the application’s source code. With modern business envi-
ronments and the complexity of license agreements this may
not be possible. Even worse, the source code may not be avail-

Journal of Computer Resource Management, Issue 105, Winter 2002

UserUUID |

I User Name ||
[72536 |

Administrator ||

Table 3: User Definitions.

[[MetricUUID | Name [Format ||
[B6115 [Serverload | Guage32 ||

Table 4: Metric Definitions.

able. It is quite possible that a remote GRID location submits
just an application object code into the distributed GRID infras-
tructure. In the past, ARMing an application without source
code has only been made possible through the use of man-
agement monitoring techniques [HAWO97].

An effective solution to these problems is for a user to
provide as part of the service policy a description of where
performance-critical components of an application are likely to
exist. To achieve this, an XML-based Transaction Definition
Language (TDL) has been developed. Transactions can be de-
fined at a number of abstract levels in the application, whether
it be at a low-level through method calls and areas delimited
by source code line numbering, or at a high level in terms of
operational units such as database accesses or remote proce-
dure calls. An application is then ARMed accordingly, invoking
transaction method calls to a pre-defined consumer interface,
which reports the data as appropriate.

The TDL provides a useful way of bridging the gap be-
tween a GRID-type scheduling environment and the collection
of application performance-critical measurements. The TDL
also provides a useful way of interfacing Java applications with
the ARM specification. One use of ARM is to detect where
bottlenecks appear within an application, and the TDL could
be used to ARM all methods in all classes within an applica-
tion with the aim of locating such bottlenecks. Once found, the
abstraction mechanism of the TDL allows more specific por-
tions of the application to be automatically ARMed, until the
exact area in the application where performance is lacking is
targeted and can be changed.

3.1 Specification: TDL DTD

The DTD in which the TDL syntactic rules are defined can be
found in Figure 6. The root element of all TDL files is a td1 ele-
ment, this contains one attribute that defines the Java applica-
tion to be ARMed. Within the scheduling environment all Java
applications are represented as a single Java .jar file. These
Jjar files contain all the classes necessary for the application to
execute, excluding system classes, which are contained within
the Java distribution being used".

"It is possible to ARM these classes with the TDL as the system classes
are usually held within ‘rt.jar’.

Page59

I-- T ti Definiti L DTD 1.0) -- . . .
<i77 franssction Debimition hanguage (v1.0) == e Line Number: A line number transaction states that

<!ELEMENT tdl (transactiont)> the transaction begins at a specific line number within a
IATTLIST tdl jarfile CDATA #REQUIRED . .
< jartize HREQUIRED> method and ends at a line number greater than the first,
< |ELEMENT transact%on (location, line number?, metric¥*)s as shown in Figure 9. If this type is used then both the
<!ATTLIST transaction type (method source | method call | location and line number elements are required within
line_number) #REQUIRED q
fail_on_exception (yes | no) "yes" that transaction element. If the developer has access to
CDATA #IMPLIED . . .
usex_nane # > the source code and would like to define a transaction
<!ELEMENT location EMPTY> within two specific line numbers of the source, then this
IATTLIST 1 ti 1 CDATA #REQUIRED
) e ethod CoATA #RgQUIRED type will allow this to be possible. However, this type
call CDATA #IMPLIED> is only usable if the line numbers have been included

< |ELEMENT line_number EMPTY> within the class file by the Java compiler.

<!ATTLIST line_number begin CDATA #REQUIRED
end CDATA #REQUIRED>

g
<!ELEMENT metric EMPTY> Method ARMed Method

<!ATTLIST metric type (Counter32 | Counteré4 | CounterFloat32 |
Guage32 | Guage64 | GuageFloat32 |
NumericId32 | NumericIdé4d |
String8 | String32) #REQUIRED

invokeinterface ArmTransaction.start()
1

|

1
i
1
name CDATA #REQUIRED Original Bytecode : Original Bytecode
value CDATA #REQUIRED> I
i
|
Figure 6: Transaction Definition Language DTD. o invokeinterface ArmTransaction stop(
.
Each tdl element contains one or more transaction ele- Figure 7: Method Source Transaction Type.
ments which define where transactions occur within an appli-
cation. The current TDL specification (version 1.0) allows for
three types of transaction: Method ARMed Method
1 1
1 1
e Method Source: A method source transaction states ! Original Bytecode : Original Bytecode
that the transaction starts at the beginning of that method ' invokeinterface ArmTransaction.start()
. . . invokevirtual Class.method() invokevirtual Class.method()
and ends when the method returns, as depicted in Fig- \ invokeinteriace ArmTransation stop(
. . B ! P
ure 7. For this transaction type to be permitted, the class 1 Original Bytecode ! original Bytecede
1 1 1 1 1
and method described by the location element associ- | reun otum

ated with this transaction must be found within the jar
file being ARMed. If the method being ARMed calls it-
self anywhere throughout the method, ie. the method is
recursive, then the method is not ARMed, because the

Figure 8: Method Call Transaction Type.

same transaction instantiation can not be in use more s
. . i) Method ARMed Method
than once according to the ARM specification. In this . .
situation, the method call type must be used. ! Original Bytecode 1 Orlginal Bytecode
A ir}vol;eigterface ArmTransaction.start()
L\ aloaa_(
e Method Call: A method call transaction states that the 1 Original Bytecode — | ! onginal Bytecode
1
transaction starts where that method is called, as de- fstore_1 ot e .
. invokeinterface ArmTransaction.sto
picted in Figure 8. If this type of transaction is used, ! Original Bytecode ! original Bytscode P
1 1
then the optional call attribute within the location ele- retum return
ment must be used. This transaction type has many
advantages over the method source type, including the Figure 9: Line Number Transaction Type.
ability to report the performance of recursive methods
and also methods not included within the jar file speci- Each transaction can include ‘fail on exception’ and ‘user

fied by the tdl element attribute. However, the overhead hame’ attributes. Detecting whether a transaction has failed
incurred by the Java Virtual Machine (JVM) to invoke o not is done by observing whether an exception is thrown by
the method is included within the transaction’s response the area of code in which the transaction is defined. If an ex-
time. ception is thrown, then by default the transaction is reported

Page60 Journal of Computer Resource Management, Issue 105, Winter 2002

as failing. The ‘fail on exception’ attribute is used when trans-
actions, which despite throwing exceptions, are reported as
succeeding.

The ‘user name’ attribute allows the optional ArmUserDef-
inition object to be associated with the corresponding named
transaction. This attribute is reported to the implementation
together with the ArmTranDefinition prior to starting the trans-
action. ArmUserDefinition objects are not created by default,
but if the developer requires a user name to be reported then
this attribute should be used.

Up to seven optional metrics can also be associated with
each transaction, with their name, format and start value de-
fined within a metric element. If used, an ArmMetricDefinition
object is created and associated with the ArmTranDefinition
before being reported.

There is also a keyword ANY which can be substituted into
all attributes of the location class. If this keyword is used, all
classes or methods that satisfy the location requirement are
defined as transactions and ARMed accordingly.

3.2 Implementation: Bytecode Transformer

The implementation of the TDL specification described above
is achieved with the use of an automated instrumentation tech-
nique [LEE96, DAHM99, COHE98]. Automated instrumenta-
tion involves the manipulation of either source or object code
in a pre-defined fashion, such that the execution of the instru-
mented application fulfills a number of requirements. Such a
technique can be used to instrument an application so that it
directly interfaces with an ARM consumer implementation.

The automated instrumentation of Java applications is made
possible through the use of a Java bytecode transformer. Each
Java class consists of a number of fields, methods and at-
tributes and a constant pool (a lookup table of strings and
method references etc., which is used within the class to im-
prove efficiency). The bytecode transformer reads the data
encoded within a class file and parses the information into a
number of Java objects, each of which represents one of these
specific elements of the class. These objects can then be pro-
cessed, modified as required, and then written back to a file,
resulting in a Java class whose execution is different from the
original.

By using the bytecode transformer to parse objects within
a Java application, it is possible to match transactions defined
within the TDL to the location within the application. The ap-
plication can then be transformed so that ARM method invo-
cations are made at the appropriate locations within the byte-
code. Once instrumented, the application is executed; the ex-
ecution behavior of the application being exactly that of the
original other than the reporting of the performance statistics
of the defined transactions via the ARM consumer interface.

Journal of Computer Resource Management, Issue 105, Winter 2002

3.2.1 The Automated ARMing Process

At the start of the automated ARMing process the TDL file
is processed and checked for errors. This includes checking
for errors in the TDL DTD and any other errors that may be
present even though the TDL file itself is syntaxically correct.
The TDL file is parsed using a standard XML parser [XML].

When the application is processed, the manifest of the jar
file is decoded so that the entry level main class of the jar file
is located. Using the transformer, a new static field array of
type ArmTransaction is inserted. The static main method (the
entry method to the application) is then instrumented in such a
way that the array is initialized at the beginning of the method,
with a size equal to the number of transactions defined within
the TDL file. This creates the pool of ArmTransaction objects
necessary for all the ARM transactions which may be added
throughout the execution of the application?.

After the initialization is achieved, all the transactions that
are defined within the TDL file are processed and mapped to
specific methods within the application. If a current mapping
is achieved, the method is instrumented with the transaction
initialization code and start and stop calls surrounding the rel-
evant bytecode are inserted.

The initialization code is dependent on the definition of the
transactions within the TDL file. If a user name and metrics
are associated with a transaction, then both ArmUserDefinition
and ArmMetricDefinition objects are created and a process call
is sent to the ARM implementation. An ArmTranDefinition ob-
ject is associated with every transaction: the application name
set to the path and file name of the jar file and the transaction
name set to a description of the location of the transaction.

When instrumenting a method with ARM calls, the ARM
package is fixed (comp.opengroup.arm3.application) as
stated within the ARM specification. With this assumption, the
only doubt as to the location of a class is with the four ARM
factory classes. This information is normally retrieved from
the JVM system properties, which an administrator maintains.
However, the philosophy behind the TDL is that it bridges the
gap between GRID scheduling middleware and the gathering
of performance metrics. To solve this, the ARMing process re-
quires that an ArmFactory class is created in the same pack-
age as the other ARM interfaces, which points the four ARM
factories to the ARM consumer implementation being used.
An example of such a file can be seen in Figure 10.

When instrumenting Java bytecode care has to be taken so
that the execution of the original bytecode is not affected. The
execution of bytecode within the JVM is based on an operand
stack and a number of local variables, and the majority of op-
codes defined by the JVM specification [JVM99] alter the cur-
rent state of the memory owned by the method. It is beneficial

2|t was decided not to initialize the field array within the class init method
due to the extra overhead and larger class file which would result.

Page61

Page62

package org.opengroup.arm3.application;
import org.opengroup.arm3.implementation.*

public abstract class ArmFactory

{

public static ArmDefinitionFactory createArmDefinitionFactory()

return new ImplDefinitionFactory();

public static ArmTransactionFactory createArmTransactionFactory()

return new ImplTransactionFactory();

}

public static ArmTranReportFactory createArmTranReportFactory ()

{

return new ImplTranReportFactory();

}

public static ArmMetricFactory createArmMetricFactory ()

{

return new ImplMetricFactory();

}

Figure 10: An example ArmFactory class.

that instrumented code does not alter the data held within the
method’s stack and local variables. To achieve this, a number
of local variables are associated with the method and used by
the instrumented code. This means that the original local vari-
ables remain unaffected, and any objects left on the stack are
popped prior to re-entering the original bytecode.

Once a maitch is found for all transactions defined within
the TDL file, and each transaction is instrumented accordingly,
the jar file is output, resulting in an application which is ARMed
as the TDL file describes.

3.3 Using the TDL

The following three examples show how a developer would use
the TDL to ARM specific parts of an application. They range
in complexity, so as to present the range of ARM functionality
that is available to a developer using the TDL.

3.3.1 TDL Example 1

Figure 11 shows a simple TDL XML file which defines one
transaction of type method source, held within examplel. jar,
which surrounds the source of the method examplelmethod
contained within the class examplelclass. The fail on excep-
tion attribute is not defined and so is preset by default. No user
name or metrics are associated with the transaction.

<?xml version="1.0"?>
<!DOCTYPE tdl SYSTEM "tdl.dtd">

<tdl jarfile="examplel.jar">

<transaction type="method source">
<location class="examplelclass" method="examplelmethod"/>
</transaction>

</tdl>

Figure 11: TDL Example 1 XML file.

3.3.2 TDL Example 2

Figure 12 shows a more complex TDL XML file defining two
transactions of type method source and line number for the jar
file example2.jar. The first transaction has the user name
admin associated with it, and defaults to failing if the method
example2method contained within the example2class class
throws an exception. Two metrics are also associated with the
transaction.

The second transaction is of type line number, and places
a transaction around the bytecode compiled between lines 32
and 208 of the original source of the method example2method2
in class example2class2. The transaction does not fail if an
exception is thrown during the execution of the transaction, and
has a user name of root associated with it, along with one
metric of type Strings.

<?xml version="1.0"?>
<!DOCTYPE tdl SYSTEM "tdl.dtd"s

<tdl jarfile="example2.jar"s

<transaction type="method source" user name="admin">
<location class="example2class" method="example2method"/>
<metric type="GuageFloat32" name="example2metricl" value="4.1"/>
<metric type="String8" name="example2metric2" value="Load"/>
</transaction>

<transaction type="line number" fail on_exception="no"
user_name="root">
<location class="example2class2" method="example2method2"/>
<line_number begin="32" end="208"/>
<metric type="String8" name="example2metric3" value="MemUsage"/>
</transaction>

</tdl>

Figure 12: TDL Example 2 XML file.

3.3.3 Using the TDL within a Service Policy

Figure 13 shows an example service policy document which
includes a reference to an external TDL description along with
other quality of service requirements. Notable features include
a number of service classes that describe the policy require-
ments of the application for which this service policy is as-
sociated. These include a priority level, a constraint on the

Journal of Computer Resource Management, Issue 105, Winter 2002

response time, and a reference to the TDL file defining the
performance-critical transactions within the application.

<AServicePolicy PolicyName="PACE Scheduling Application Submission"
PolicyVersion="Version 1.0">
<Workloads>
<Workload WorkloadName="SCIMARK"

WorkloadDescription="SCIMark Java Benchmark Suite"/>
WorkloadName="ADMIN"
WorkloadDescription="Environment Maintenance"/>
WorkloadName="SYSTEM"
WorkloadDescription="System work"/>
WorkloadName="OTHER"
WorkloadDescription="Unimportant work"/>

<Workload

<Workload

<Workload

</Workloads>
<ReportClasses>
<AReportClass ReportClassName="ARMREPORT"
ReportClassDescription="ARM Reporting Classes"/>
</ReportClasses>
<ServiceClasses>
<ServiceClass ServiceClassName="SCNO1"

ServiceClassDescription="SCIMark Small Dataset"
WorkloadName="SCIMARK" Priority="2">
<Application JarFile="jnt.jar" Arguments=""
TDLFile="jnt.tdl"/>
<Goal GoalType="Average" ResponseTime="30000"/>
</ServiceClass>
<ServiceClass ServiceClassName="SCNO2"
ServiceClassDescription="SCIMark Large Dataset"
WorkloadName="SCIMARK" Priority="3">
<Application JarFile="jnt.jar"
Arguments="-large" TDLFile="jnt.tdl"/>
<Goal GoalType="Discretionary" ResponseTime="75000"/>
</ServiceClass>
<ServiceClass ServiceClassName="SYSTEM"
ServiceClassDescription="System"
WorkloadName="System" Priority="0">
<Goal GoalType="System"/>
</ServiceClass>
</ServiceClasses>
<ClassificationRules>
<Subsystem Platform="Linux" InstrumentationType="ARM"
ProcessOrSubsystemType="GRID"
DefaultServiceClassName="SCN1"
DefaultReportClassName="ARMREPORT" >
<ClassificationRule TransactionClass="Gold"
ServiceClass="SCNO1" ReportClass="">
<ClassificationRule TransactionClass="Silver"
ServiceClass="SCN02" ReportClass=""/>
<ClassificationRule>
<Filters UUID="" URL="" ObjectName="jnt/scimark2/kernel"
MethodName="" TransactionalQOSToken=""
ApplicationProfileName="" TransactionClass=""
TransactionName="" SubsystemInstance=""
NetworkQOSClassName="" SourceIPAddress=""
SourcePort="" TargetIPAddress="" TargetPort=""/>
</ClassificationRule >
</Subsystem>
</ClassificationRules>
</AServicePolicy>

Figure 13: An example service policy.

4 Case Study: Java Benchmark

To illustrate the use of the TDL in a real world example, the
SciMark benchmarking suite [SCI] is selected as an example
application. SciMark 2.0 is a composite Java benchmark which
measures the performance of five floating-point intensive ker-

Journal of Computer Resource Management, Issue 105, Winter 2002

nels which are popular within scientific and engineering appli-
cations. These include fast fourier transforms, jacobi succes-
sive over-relaxation, sparse matrix-multiply, monte carlo inte-
gration, and dense LU matrix factorization.

On execution of the benchmark, the individual calculations
are performed one after the other, with the results of each ker-
nel and a composite score reported at the end in mega floating
point operations per second (Mflops). Each kernel performs its
calculation against a random data set, the size of which is de-
termined by the user. Larger data sets can be chosen such
that the memory accesses are guaranteed to be out of cache
space, so that the performance of the virtual machine’s mem-
ory allocation can be discussed.

4.1 Transaction Definition

The benchmark application is ARMed so that five transactions
surrounding the source of each kernel are measured by the
ARM implementation. A simple ARM consumer implementa-
tion is used that measures the data necessary to meet the
ARM specification. The data reported includes the response
time of each transaction. Each transaction is defined as a
method source type by the TDL, and a number of different
user names are associated in order to illustrate the changes
that occur within the reporting of the ArmUserDefinition ob-
jects. The TDL file is shown in Figure 14.

<?xml version="1.0"?>
<!DOCTYPE tdl SYSTEM "tdl.dtd">
<tdl jarfile="jnt.jar"s

<transaction type="method source" user_name="James">
<location class="jnt/scimark2/kernel"
method="measureFFT"/>
</transaction>

<transaction type="method source" user name="James">
<location class="jnt/scimark2/kernel"
method="measureSOR"/>
</transaction>

<transaction type="method source" user_name="Dan'">
<location class="jnt/scimark2/kernel"
method="measureMonteCarlo"/>
</transaction>

<transaction type="method source" user_name="Steve'"s>
<location class="jnt/scimark2/kernel"
method="measureSparseMatmult"/>
</transaction>

<transaction type="method source">
<location class="jnt/scimark2/kernel"
method="measureLU" />
</transaction>

</tdl>

Figure 14: Scimark Benchmark Transaction Definition File.

Page63

TranUUID UserUUID Status Response Time TranUUID UserUUID Status Response Time
[B@45d741aa | [B@45d441aa | GOOD 5100 [B@5c2141dc [B@5c2641dc | GOOD 21429
[B@4960c1aa | [B@4961ctaa | GOOD 4284 [B@26f801dc [B@26f901dc GOOD 7265
[B@7dacO1aa | [B@7dad0iaa | GOOD 6038 [B@26e401dc | [B@26e501dc | GOOD 6048
[B@7d7241aa | [B@7d7341aa | GOOD 7557 [B@2083c1dc [B@2080cidc | GOOD 6452
[B@605e81aa NULL GOOD 5449 [B@587501dc NULL GOOD 30706

TranUUID Appl Name Transaction Name TranUUID Appl Name Transaction Name
B@45d741aa ar/jnt.jar jnt/scimark2/kernel/measureFFT [B@5c2141dc ar/jnt.jar jnt/scimark2/kernel/measureFFT
B@4960c1aa ar/jnt.jar jnt/scimark2/kernel/measureSOR [B@26f801dc ar/jnt.jar jnt/scimark2/kernel/measureSOR
B@7dacO1aa ar/jnt.jar jnt/scimark2/kernel/measureMonteCarlo B@26e401dc ar/jnt.jar jnt/scimark2/kernel/measureMonteCarlo
B@7d7241aa ar/jnt.jar jnt/scimark2/kernel/measureSparseMatmult B@2083c1dc ar/jnt.jar jnt/scimark2/kernel/measureSparseMatmult
B@605e81aa ar/jnt.jar jnt/scimark2/kernel/measureLU B@587501dc ar/jnt.jar jnt/scimark2/kernel/measureLU

UserUUID User Name UserUUID User Name
B@45d441aa James B@5c2641dc James
B@4961cl1aa James B@26f901dc James
B@7dad01aa Dan B@26e501dc Dan

[B@7d7341aa Steve [B@2080c1dc Steve

Table 6: Transaction measurements and associated definitions from
the Scimark large dataset.

Table 5: Transaction measurements and associated definitions from
the Scimark small dataset.

4.2 Results by the user including a Transaction Definition Language docu-

ment with the application’s service policy at submission. The
TDL is processed and the application is automatically instru-
mented so that performance information can be retrieved dur-
ing its execution. This is made possible by instrumenting the
application with Application Response Measurement method
invocations, allowing an ARM consumer implementation to mea-
sure the performance of the defined transactions, and report-
ing this data to a set of reporting classes. Java bytecode is
instrumented with the use of a Java bytecode transformer.

The TDL specification provides a method of bridging the
gap between the service policies associated with GRID-based
applications and lower-level ARM-based performance moni-
toring. The TDL allows developers to experiment with per-
formance monitoring techniques without the necessity to re-
compile or even possess the application source code. The
performance overhead incurred in automatically ARMing and
monitoring applications was measured and found to be in the
order of 0.1%.

The TDL ARMed Scimark benchmark is executed using both
the small and large benchmark datasets®. The reported results
from the ARM implementation can be seen in Table 5 for the
smaller data set, and Table 6 for the larger set. Metric definition
data was not reported because no metrics were associated
with any of the transactions.

The reported data from the ARM consumer implementa-
tion includes the response time of each transaction in millisec-
onds. Each transaction completed successfully and the trans-
action and user definition data describes the optional data as-
sociated with each transaction. The overhead incurred by ARM-
ing the application over the original benchmarking suite was in
the order of 0.1%.

5 Conclusion

This paper describes a new environment for the scheduling of
distributed applications running on GRID architectures. Appli-
cations are submitted to the environment with an application
stub, which includes a service policy describing workload, per-
formance and quality of service requirements. Efficient task
allocation is achieved with the use of a resource discovery and
advertisement agent hierarchy, and by predicting the perfor-
mance of an application prior to its execution. This is achieved
by comparing performance-critical components of the applica-
tion with previously executed transactions.

Transactions within an application are semantically defined

6 Acknowledgments

The authors would like to express their gratitude to IBM’s T J
Watson Research Center, NY. for the contribution towards this
research.

The work is sponsored in part by a grant from the NASA AMES
Research Center, and administered by USARDSG, contract
no. N68171-01-C-9012.

3The benchmark is executed on a Pentium |1l 450 MHz with 256 Mb RAM,
running Redhat Linux 7.1 and kernel 2.4.9, IBM JVM 1.3.7.

Journal of Computer Resource Management, Issue 105, Winter 2002

References

[ARMO1] The Open Group, “Application Response Mea-
surement (Issue 3.0 - Java Binding)”, Open Group
Technical Specification, (2001). Available from
regions.cmg.org/regions/cmgarmw/index . html

[CAOO00] J. Cao, D.J. Kerbyson, E. Papaefstathiou and
G.R. Nudd, “Modeling of ASCI High Performance Ap-
plications using PACE”, 19th IEEE International Per-
formance, Computing and Communication Conference,
Phoenix USA. 485-492 (2000).

[CAOO01] J. Cao, D.J. Kerbyson, G.R. Nudd, “Peformance
Evaluation of an Agent-Based Resource Management In-
frastructure for GRID Computing”, Proceedings of 1st
IEEE/ACM Int. Symposium on Cluster Computing and the
Grid, Brisbane Australia. 311-318 (2001).

[CAO02] J. Cao, D.P. Spooner, J.D. Turner, S.A. Jarvis,
D.J. Kerbyson, S. Saini and G.R. Nudd, “Agent-based Re-
source Management for Grid Computing”, Invited paper
at the 2nd IEEE/ACM Int. Symposium on Cluster Com-
puting and the Grid, Berlin. 21-24 May (2002).

[COHE98] G.A. Cohen, J.S. Chase, D.L. Kaminsky, “Auto-
matic Program Transformation with JOIE”, Proceedings
of the USENIX Annual Technical Symposium (1998).

[DAHM99] M. Dahm, “Byte Code Engineering”, Proceedings
of JIT (1999).

[FOST98] I. Foster, C. Kesselman, “The Grid : Blueprint for a
New Computing Infrastructure”, Morgan Kaufmann. 279—
290 (1998).

[FOSTO1] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations”,
To be published in Intl. J. Supercomputer Applications,
(2001).

[HAWO97] M. Haworth, Service Management Using The
Application Response Measurement APl Without Ap-
plication Source Code Modification (1997). Available from
regions.cmg.org/regions/cmgarmw/shortarm. html

[HOWE97] T. Howes, M. Smith, “LDAP: Programming
Directory-Enabled Applications with Lightweight Directory
Access Protocol”, Macmillan Technical Publishing (1997).

[JOHNOO0] M.W. Johnson, J. Crowe, “Measuring the Perfor-
mance of ARM 3.0 for Java”, Proceedings of CMG2000
International Conference, Orlando USA. (2000).

Journal of Computer Resource Management, Issue 105, Winter 2002

[JVM99] SUN Microsystems, Java Virtual Machine
Specification, 2nd Edition (1999). Available from
java.sun.com/docs/books/vmspec/

[LEE96] H.B. Lee, “BIT Bytecode Instrument-
ing Tool”, Thesis for Masters of Science, Uni-
versity of Washington (1996). Available from

www.cs.colorado.edu/ “hanlee/BIT/index.html

[LEIN99] W. Leinberger, V. Kumar, “Information Power Grid :
The New Frontier in Parallel Computing?”, IEEE Concur-
rency 7(4), (1999).

[NUDDO0O] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou,
S.C. Perry, J.S. Harper, D.V. Wilcox, “PACE - A Toolset
for the Performance Prediction of Parallel and Distributed
Systems”, International Journal of High Performance
Computing Applications, Special Issues on Performance
Modelling. 14(3), 228-251 (2000).

[OPNG] The Open Group. www.opengroup.org

[PAPA95] E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd,
T.J. Atherton, “An Overview of the CHIPSS Performance
Prediction Toolset for Parallel Systems”, 8th ISCA Int.
Conf on Parallel and Distributed Computing Systems,
Florida USA. 527-533 (1995).

[SCI] SciMark v2.0 Java Benchmark Suite.
math.nist.gov/scimark2/

Available from

[SPOOO01] D.P. Spooner, J.D. Turner, J. Cao, S.A. Jarvis,
G.R. Nudd, “Application Characterisation using a
Lightweight Transaction Model”, Proceedings of 17th An-
nual UK Performance Engineering Workshop (UKPEW
’01), Leeds UK. 215-225 (2001).

[XML] XML4J: IBM Java XML Parser with DTD validation.
Available from www . alphaworks. ibm.com/tech/xml4j

Pagess

