
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll0?/??llpp???-???
Volume 18, Number 2, April 2013

TIFAflow: Enhancing Traffic Archiving System with Flow Granularity
for Forensic Analysis in Network Security

Zhen Chen, Ling-Yun Ruan, Junwei Cao, Yifan Yu, Xin Jiang
Department of Automation

Department of Computer Science
Department of Electronic engineering

Research Institute of Information Technology (RIIT)
Tsinghua National Laboratory for Information Science and Technology (TNList)

Tsinghua University, Beijing, China

Abstract: The archiving of Internet traffic is an essential function for retrospective network event analysis and

forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves

storage and analysis of network flow statistic. However, this approach loses much valuable information within

the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices

and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now

possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk.

Also with the advancement of Distributed File System(such as Hadoop, ZFS etc.) and Open Cloud Computing

platform(such as OpenStack, CloudStack and Eucalyptus etc.), it is practical to store such large volume of traffic

data and fully in-depth analyse the inside communication within a acceptable latency. In this paper, based on

well-known TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and

querying network flows. Firstly, we enhance the traffic archiving system named TIFA with flow granularity, i.e. supply

the system with flow table and flow module. Secondary, based on real network traces, we conduct performance

comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine

and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance

improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.

Key words: Network Security, Traffic Archival, Forensic Analysis, Phishing Attack, Bitmap Database, Hadoop
Distributed File System, Cloud Computing, NoSQL.

1 Introduction

With the rapid development of the Internet over the
last forty years, the Internet has played an increasing
important role in our daily lives. Meanwhile, the
openness of the Internet has also led to a large
number of attacks. It is therefore very important to
secure networks by analyzing the network traffic. The
misconfiguration of routers can result in disastrous
consequences, and network attacks can cause network

breakdown, service crashes, and even communication
interruptions. The dissemination of unsolicited
information and illegal behaviour also affects Internet
users normal activities, and there is an underground
economy that is based on Internet Scamming and Fraud.
These attackers conduct more and more e-crimes, such
as spams and phishing attacks on innocent victims etc.

For example, phishing attacks [1-3] are practical
problems due to the sensitive information stolen (e.g.
monetary user account name and password) and it is



2 Tsinghua Science and Technology, August 2013, 18(4): 000-000

•Zhen Chen* and Junwei Cao are with Research Institute of
Information Technology and Tsinghua National Laboratory
for Information Science and Technology (TNList), Tsinghua
University, Beijing 100084, P. R. China.
E-mail:zhenchen, jcao@tsinghua.edu.cn

•Linyun Run was with Department of Automation, Research
Institute of Information Technology and Tsinghua National
Laboratory for Information Science and Technology (TNList),
Tsinghua University, Beijing 100084, P. R. China. Now he is
with Department of Computer Science of Purdue University,
West Lafayette, IN, USA.
E-Mail: rlyswf@gmail.com

•Yifan Yu is with Department of Electronic Engineering and
Tsinghua National Laboratory for Information Science and
Technology (TNList), Tsinghua University, Beijing 100084,
China.
E-mail: yuyf10@gmail.com

•Xin Jiang is with Department of Computer Science &
Technologies, Research Institute of Information Technology
and Tsinghua National Laboratory for Information Science and
Technology (TNList), Tsinghua University, Beijing 100084, P.
R. China.
E-Mail: jiangxin thu@sina.cn

∗To whom correspondence should be addressed.
Manuscript received: 2013-1-15; revised: 2013-7-15;
accepted: 2013-7-15.

estimated that there is about one billion dollars in
accumulated losses annually. The operations of both
users and financial institutions such as e-banks and e-
pay systems have been impaired by phishing attacks.

Research on the life cycle of phishing web sites
shows that phishing URLs are temporary, which makes
the collection of forensics difficult [4]. The problem
is worsened because most innocent Internet users are
unaware of a phishing attack that is taking place.

Traffic measurement and real-time analysis [5-7]

are basic methods used to detect and prevent such
attacks. However, as these attacks became increasingly
sophisticated, new attacks are often undetected in time;
therefore, traffic archiving technologies[8-13] for future
forensic analysis are key to identifying and deterring the
attackers.

The implementation of practical traffic archiving
technology has encountered some challenges[14].
Currently, the speed of Internet access links is up to
10100 Gbps. This means that the amount of data
generated per second may be about 110 GB per link.
To record high speed flows, the cost will be rather high,
which is a big challenge for most network operators.

Meanwhile, many companies either maintain their own
networks or delegate their servers to IDCs (Internet
Data Centers). Real data traces have shown that there
exist a large number of companies whose Internet
access bandwidths vary from 100 Mbps to 10 Gbps.
The management of these local networks is also a
big problem. Therefore, it is necessary to design and
implement a low-cost network-traffic archiving system
for such enterprise networks.

The other challenge of such system design is how to
speed up the traffic query function as a large volume of
traffic data needs to be explored. TimeMachine[12,13,15],
TM for short, is a traffic collection and indexing system,
which can collaborate with IDS like Bro to scan the
collected traffic in the past to find the former attack
which has not been detect at that time. It works as if
it can travel in the time as the name suggested.

In the previous work TIFA[16] is a system where
TM is complemented with FastBits packet indexing
[17] to provide more flexible query functions, and
TMs packet capture and storage management module
remain unchanged, this is why the name TIFA
(TImemachine+FAstbit) origins.

The main contribution of this paper is to present
TIFAflow, a flow granularity archiving and querying
system, and introduce its design and implementation.
We enhance flow granularity in TMs storage/indexing
management by rewriting TMs indexing and storage
module. Based on real network trace, compared
with TM and TIFA, we conduct several groups of
experiments and detailed analysis. With the acceptable
trade-off in indexing operation, it shown that TIFAflow
can reduce the storage volume and speed up the flow
querying operation in both time and space metrics.

The rest of this paper is organized as follows: Section
II describes related works about traffic archival system
design and enabled techniques. Section III presents
the system design and implementation of TIFAflow.
Performance evaluation is conducted and the results
are analysed in section IV. Section V introduce the
TIFAflow and the experiments compared with TIFA and
TimeMachine. Finally, Section VI concludes the paper.

2 Related Work

There are two categories of studies into the recording
and storing of network flows: The first involves the
recording and querying of statistical information of
network flow, and the other is the recording and



Zhen Chen et al.: TIFAflow: Enhancing Traffic Archiving System with Flow Granularity for Forensic Analysis in Network Security 3

querying of raw network traffic.
The former focuses on recording and archiving the

statistics of network flow information, e.g., the five-
tuple (source IP address, destination IP address, source
port, destination port, and transport layer protocol), the
size of network flow, generation time, and duration.

The latter focuses on the entire network traffics in a
monitored network, and records the content of network
traffics for forensic analysis of network events. The
most challenging problem faced in this case is the
capture and storage of the packets arriving in wire-rate,
and the indexing of the traffic for further analysis.

With the advancement of large volume storage
devices, high speed network adapter cards, and multi-
core processors, it is practical to capture 10 Gbps and
beyond real-time network traffic with a commodity
computer for future traffic analysis. Table 1 presents
a summary of a traffic archiving method and system.

Table 1 A summary of traffic archiving and analysis
method and system

Scheme Raw file
Relational
database

Special designed
database

Pro
Archiving

with wire-rate
SQL query

support
High Efficiency

Con
Poor query
interactivity

Low
efficiency

Depend on
implementation

Typical
system

TM/Nfdump/
OSU

flow-tools

Neye/Combi
ning

Gigascope/Hyperion/
Bitmap Database/

Tribeca
Developm

ent
Medium Easy Hard

Method

Indexing
module need
to speedup
querying

Using
on-the-shelf

module

Storing and indexing
module need to be

implemented

2.1 Archiving Traffic Statistics Information

Currently, NetFlow [18] and sFlow [19] are the two
widely used industrial network standards used to
describe network flows. The goal is to establish a
system to record, store and query flow information,
which can work for network monitoring application.

Generally, relevant research can be divided into three
categories according to the method of storing traffic
information:

a) Raw file
The advantage of using the raw file-based scheme is

the increased speed with which raw traffic is recorded.
The disadvantage is the lag behind the real-time traffic
as traffic queries in real-time are not supported by this
solution. For example, suppose that a certain event

occurs at time t, but it can only be detected event until t
+ delta, for some non-negligible delta.

Another disadvantage of this solution is the absence
of indexes of information. To analyse the traffic
information, the packets need to be individually
retrieved in the raw file, which can make the query
latency unacceptable. nfdump [20] and OSU flow-tools
[21] belong to this type of work.

b) Common relational database
The advantages of using a common database include

security, stability, and support of flexible SQL query
statements without additional development. Common
relational databases are widely used for various types
of data access. However, for specific network areas,
it may not be a good choice because it fails to fully
explore the features of the application data. Neye [22]

and Combining [23] belong to this type of work.
c) Special designed database
Designing a special database for a specific area

such as the archiving of a network flow can
optimize the performance by utilizing the time and
space characteristics for the data storage and query.
Gigascope [8] built a high-performance network flow
information database. On a dual-core server with
a 2.4 GHz CPU, it can process 1.2 million packets
per second. Besides, it provides easy, flexible, and
imitation SQL query statement syntax GSQL. Tribeca
[9] proposes its own query system and the corresponding
query statement format. Luca Deri et al. [10,24,25]

propose to use a bitmap index database for information
storage and querying. It also achieves a better
performance than the common relational database.

Francesco Fusco et al. [26] describe the design of a
novel multi-core aware packet capture kernel module
that enables monitoring applications to achieve high
performance packet capture on modern commodity
hardware. They also introduce the design and
implementation of NET-FLi[14], a high-speed on-the-fly
compression, archiving and retrieval of network traffic
information.

2.2 Archiving Raw Network Traffic

Three types of implementation are also used to
archive network traffic: hardware solution, system-level
solution, and application-level method. Table 2 presents
the implementation of these three classifications.

a) Hardware-level method
Based on specific customized hardware, such as

Cavium Networks OCTEON 58XX [27,28] and Tilera



4 Tsinghua Science and Technology, August 2013, 18(4): 000-000

Table 2 Three implementations of traffic archiving and
querying for raw network traffic

Scheme Typical system

hardware-level
Intel IXP Network Processor[5,6]/Cavium

Networks OCTEON 58XX[27,28]/
Tilera TILE Pro[29]

system-level Gigascope[8]/Tribeca[9]/Hyperion[11]

application-level tcpdump/ Nfdump [20]/OSU flow-tools[21]/TM[12,13]

TILE Pro 64 manycore Network processor [29,30], traffic
capture can be achieved with better performance with
10 Gbps and more. However, it is still required to
archive the captured traffic into persistent storage and
indexing for querying. This method has a relatively
higher cost with better performance.

b) System-level method
The system-level solution is based on the operating

system(OS), and implements network traffic archiving
and querying. As an example, Hyperion [11] can
record more than 1,000,000 packets on a common
computer, while supporting query performance, and
ensuring 200,000 packets per second for the index. The
stream-oriented file system invoked by Hyperion can
ensure continuous disk reading and writing to achieve
the highest write speed.

c) Application-level method
The application-level solution involves building a

network traffic archiving and querying system based on
common operating systems, such as Linux or FreeBSD.
This method allows the system to work well with other
compatible networking functions support by the OS.
TM is an application-level method designed for high
speed network traffic recording and queries. TM uses
a cutoff scheme to reduce the volume of the network
traffic without impairing the amount of the network flow
information, and can be deployed and work with Bro-
IDS [31].

3 System Design

A typical high speed traffic archiving and querying
system has three critical functions: packet capture,
packet indexing and storage management. Packet
capture in wire speed has previously been explored in
Refs.[10, 12, 26], while packet indexing and storage
management have also been investigated in Refs.[11-
13,17,24,25,32].

3.1 Genealogy

As indicated in the operating experience with TIFA
[16], efficiency-related problems occurred in packet
granularity based storage management in the traffic
archival system. First, maintaining an index for each
packet will cause larger space consumption; secondly,
most of the flow level queries need to aggregate the
individual packets belong to the same flow on-the-fly,
causing a much longer response delay. To address these
problems, an intuitive solution is to organize the storage
management with flow granularity.

Based on this idea, the new design is explored and
the performance evaluation is conducted to demonstrate
the benefits. The key novelty is that we re-implemented
TIFA TM with flow granularity in its indexing, storage
and query module, and indexed the flow with FastBit to
provide more flexible query functions. In addition, the
packet capture module and storage management module
of TM were reused in our design. Several groups of
experiments are conducted to show that this novelty can
reduce the cost of the storage volume and speed up the
flow querying operation. Figure 1 presents the result of
the existing initiatives in TIFA flow system.

Fig. 1 Genealogy of TIFAflow system

3.2 TM overview

TM truncates the data flow based on the heavy-
tailed characteristics of Internet traffic, which can
significantly reduce the amount of data to be stored,
while retaining enough network information.

Eight threads were implemented in TM to run the
independent function block. Figure 2 presents the
structure and work principle of TM. One thread is run
for packet capture and classification, one thread is run
for listening to the UI input and output, and one thread
is run for statistics and logging functions. Four threads
are run for four separate types of indexing function
according to the structure shown in Figure 3, which are



Zhen Chen et al.: TIFAflow: Enhancing Traffic Archiving System with Flow Granularity for Forensic Analysis in Network Security 5

Fig. 2 Structure and work principle of TM.

Singleton, Pair, Four and Five Tuple indexing thread.
It need to point out that TM is packet based indexing
and storage. The last thread then takes charge for index
aggregation.

Fig. 3 Four type of indexes in TM.

TM can cache large amounts of data flow spanning
several days. It stores the flow data after they are
truncated. It also provides an efficient query interface
to retrieve real-time data packets and automatically
manages the available storage space. It also depends on
the strict surveillance of characteristics associated with
heavy-tailed network traffic, and can record the highest
number of completed connections.

3.3 TIFA overview

TM enables the realization of traffic archiving, flow
truncation, and query operations for trace files. There
remains areas for improvements to make traffic archival
more useful and efficient.

TIFA [16] is designed to integrate TM with Fastbit
to improve query performance.TIFA provides more

flexible query functions to enhance TM with FastBits
packet indexing where TMs packet capture and storage
management module are used.

Table 3 Fileds Indexed for each packet with FastBit

Sip Dip Sport Dport Protocol Offset Time

FastBit [17] uses a bitmap index with an SQL interface
to speed up archiving and querying for large amount of
data. the vertical structure and the compressed bitmap
directory are the key for fast archiving in FastBit.

FastBit can build indices for data provided by
columns, and each column is a file. Usually, related
files are placed in the same directory. Figure 4 shows
the structure and work principle of TIFA.

Fig. 4 TIFAs structure and work principle

The indexes’ fields for each packet are indicated
in Table 3. Field sip, dip, sport and dport represent
source IP address, destination IP address, source port,
and destination port respectively. Protocol is used to
identify it as either TCP or UDP data. Each dump file is
limited to a size of 500 MB. Offset indicates the offset
of each packet in the file. Figure 5 shows the principle
of FastBits packet indexing used in TIFA, the indexes
are finally stored in tables of FastbBit.

Collection module
The collection module intercepts traffic through the

system IO. Whether the packet is captured by the
network interface or is read from the traffic trace file
is determined by the user’s configuration. When a
packet is captured by the collection module, a signal
is transferred to the flow table module updating the
flow information in the flow table. Then the collection



6 Tsinghua Science and Technology, August 2013, 18(4): 000-000

Fig. 5 Indexes with FastBit in TIFA.

module decides whether to transfer the packet to the
flow index module based on the processing results of
the flow table module.

Flow table module
The flow table module maintains all of the current

active network flow information. Once a packet
is received, it checks whether the packet belongs
to an existing network flow. If not, a new flow
record is created in the flow table and contains flow
characteristics and some statistical information, such as
the total number of bytes processed, the start time and
the arrival time of the last packet of the flow. Due to
the limitation of main memory size in practice, some
expired or stale flow records need to be deleted from
the flow table to maintain a suitable flow table size.

Index module
The index module will write each incoming packet to

a file and generate the index information of the packet
simultaneously. The index module maintains all traffic
files, and keeps each traffic file within a fixed size. Once
the file size reaches a pre-configured number, a new file
is created to store the new arriving packets.

Query Module
The query module is responsible for responding to the

user’s query by parsing the user’s query and executing
the query operation. It first parses the user’s query
request into its own query data structure. It then
sends this data structure to the query processing engine,
which searches all of the indexes to find the matched
index. Then, the query module collects all of the
files with matched indexes, extracts the corresponding
packets and merges them into a single file which will be
returned to the user.

c) TIFAflow deployment
TIFAflow implementation is running on commodity

Intel G41 based platform [34] to handle 1 Gbps-10 Gbps

network traffic with Quad Core QX9400 or E3125.
CNSMS [35-40] consists of tens of TIFAflow systems

which have been widely deployed as a collaborative
security overlay network in real network environments.
CNSMS also consists of a lot of well deployed UTM
node named NetSecu.

The backend of CNSMS is a security center [37,38]

based on cloud computing. CNSMSs cloud storage
is based on hadoop distributed file system with 40
physical servers, which accumulated volume is about
40TB.

Luca Deri et al. [41] propose a distributed architecture
that adopt a small-sized cloud to provide a consistent
data space for traffic archival. Their cloud node uses
Redis key value storage.

4 Performance Evaluation

4.1 Experimental settings

a) Data Source
TraceA, hereafter the name of experimental data, was

collected with TIFA from the IDC operated by Beijing
Capital Info Company.

The traffic anonymization and content analysis based
on cloud computing are also described in [42]. In this
evaluation, we extract the TraceA data set with a total
size about 102 GB.

Two sets of queries operations were constructed, and
were named Q1 and Q2. Each query set has 10 different
query statements. Q1 contains all the global query
operations without time intervals. The time interval
of the query operation is less than 600 seconds or 10
minutes in the Q2 set.

b) Index Field for a Packet
A packet triggers an index, and the index fields

are shown in Table 4. Each index contains five-tuple
information, a time stamp, and is stored in a packet.
The separation of each byte in an IP address will make
queries more flexible.

4.2 MySQL scheme

In this paper, we used the relational database MySQL
database version 5.1. According to the definition of
index, we used the database table, whose format is
defined in Table 5. Here the timestamp is chosen as
an index column, and we will discuss the variation in
the querying performance when indexing the timestamp
column and without indexing any columns.



Zhen Chen et al.: TIFAflow: Enhancing Traffic Archiving System with Flow Granularity for Forensic Analysis in Network Security 7

Table 4 Packet index format

Field Type Description
sip1 byte The 1st byte of Source IP Address
sip2 byte The 2nd byte of Source IP Address
sip3 byte The 3rd byte of Source IP Address
sip4 byte The 4th byte of Source IP Address
dip1 byte The 1st byte of Destination IP Address
dip2 byte The 2nd byte of Destination IP Address
dip3 byte The 3rd byte of Destination IP Address
dip4 byte The 4th byte of Destination IP Address
sport short Source Port
dport short Destination Port
time double Time Stamp
fileno int pcap File Number
offset int Offset in pcap file

protocol int Transfer protocolTCP/UDP

Table 5 The table structure stored in the MySQL database

Index Design MySQL Table Design
field type column type Y/N
sip1 byte sip1 TINYINT UNSIGNEDNOT NULL No
sip2 byte sip2 TINYINT UNSIGNEDNOT NULL No
sip3 byte sip3 TINYINT UNSIGNEDNOT NULL No
sip4 byte sip4 TINYINT UNSIGNEDNOT NULL No
dip1 byte dip1 TINYINT UNSIGNEDNOT NULL No
dip2 byte dip2 TINYINT UNSIGNEDNOT NULL No
dip3 byte dip3 TINYINT UNSIGNEDNOT NULL No
dip4 byte dip4 TINYINT UNSIGNEDNOT NULL No

sport short sport
SMALLINT UNSIGNED

NOT NULL
No

dport short dport
SMALLINT UNSIGNED

NOT NULL
No

time double time DOUBLE NOT NULL No
fileno int fileno MEDIUMINT NOT NULL No
offset int offset MEDIUMINT NOT NULL No

protocol int proto MEDIUMINT NOT NULL No

4.3 MySQL vs. TM

Two MySQL schemes, i.e., without building the
index for any column and building the index for
only timestamps column, are evaluated with TraceA.
Similarly, both query set Q1 and Q2 are still used
to measure the efficiency of the query. The system
memory consumption the time spent building the index,
and the query efficiency are determined from the
experiments, and the results are shown in Figures 7 and
8.

In Figure 7, the scheme using MySQL to store packet
index information is seen to have a poorer performance
compared with the TM scheme. Without building the
index for any column, the storage processing time is
about 4 times the value in TM. When building the
index for the timestamp column, the storage processing
requires 50% more time than that with no indexes built
for any column.

Fig. 6 Comparison of storage performance for MySQL and
TM based schemes

Figure 8, it shows that the scheme used to store packet
index information with MySQL database has poorer
query performance, and a query takes a much longer
time than does TM. In addition, it is contrary that the
query spends more time both for query sets {Q1, Q2},
even after building the index for the timestamp column.
This shows that the timestamp column is not suitable
for indexing to speed up query operations. For the TM,
executing a Q2 query is faster than executing a Q1 query
because the size of the searched space is also reduced
when the given time interval is narrowed.

For the scheme using MySQL to store packet index
information, a query in the Q2 set takes a longer time
than a query in the Q1 set, whether or not an index is
built for each column. This is because the addition of a
new query condition to the statement results in greater
time consumption in each query.

By performing the above performance evaluation,



8 Tsinghua Science and Technology, August 2013, 18(4): 000-000

Fig. 7 Querying the performance comparison of MySQL
and TM based schemes

the following conclusion can be reached: a common
relational database is not suitable for direct use in
storing the packet index information.

4.4 TM vs. TIFA FastBit

TraceA and query sets {Q1, Q2} are also used to
evaluate the processing and query performance of
the system implemented with TIFA FastBit database
(hereinafter referred to as the FastBit scheme). The
experimental results are shown in Figures 9 and 10.

Fig. 8 Storage performance comparison between TIFA
FastBit and TM schemes.

With respect to storage performance, the FastBit
scheme is about 10% faster than the TM scheme, and
establishes an index for each packet. The TM scheme
will drop a number of indexes when the processing
speed cannot keep pace with the packet arrival rate.
The storage performance of the TIFA FastBit scheme
is higher because it stores the packet index in a bitmap
database and uses a bulk data storage mechanism.

For the query performance, the TIFAs FastBit scheme
also has a higher efficiency. For query sets { Q1, Q2 },
the TIFA FastBit scheme is faster than the TM scheme,
especially for the 9th point in Q1 and Q2 sets in Figure
10. This result shows some differences from the other
points. More time is spent at the 9th point compared to
others in the Q1 set. As the query result of the 9th point
is relatively large (the generated query result is about
23MB), more time is therefore spent. In the Q2 set,
there is no matching record in the storage file with the

intended input. In this case, the worst case is evaluated.
If there are no flow records in a specified time interval,
the TM scheme will stop seeking. This is the reason
why the TM scheme is faster than the TIFA FastBit
scheme. The experimental results show that the TIFA
FastBit scheme has a higher efficiency in terms of both
the query performance and processing time when used
to store index information.

Fig. 9 Comparison of querying performance of FastBit and
TM based schemes

5 TIFAflow

5.1 Bottleneck analysis of TIFA

The time taken to build the index and query
response is greatly reduced in the TIFA FastBit scheme.
However, the index files are relatively larger than
before. In the previous scheme, each packet has an
uncompressed 32-byte index. Assuming an average
packet length of 300 bytes, the additional storage
consumption of the indexes is about 10%. On the other
hand, this scheme have the same number of the index
and packets, which is the bottleneck that occurs when
storing and querying as the redundancy.

5.2 Index for a flow

To reduce the number of indexes while not losing
high efficiency when extracting the packets that match
the query statement, another approach is needed to
store this information. An ideal approach is to store
the packets in the same flow sequentially instead of
based on the timestamp; thus, we can combine the
information of several indexes in one index. In
addition, with the reduction in the number of indexes,
the index information, which has been condensed will
be represented by the relative position information of
packets. Packets in the same flow are stored together,
with the index marking the file location of the flow.



Zhen Chen et al.: TIFAflow: Enhancing Traffic Archiving System with Flow Granularity for Forensic Analysis in Network Security 9

Therefore, this approach will speed up the efficiency
of indexing and reduce the required storage space. The
format of the index of a flow is defined in Table 6.

Table 6 Index format of a flow

Field Type Description
sip1 byte The 1st byte of Source IP Address
sip2 byte The 2nd byte of Source IP Address
sip3 byte The 3rd byte of Source IP Address
sip4 byte The 4th byte of Source IP Address
dip1 byte The 1st byte of Destination IP Address
dip2 byte The 2nd byte of Destination IP Address
dip3 byte The 3rd byte of Destination IP Address
dip4 byte The 4th byte of Destination IP Address
sport short Source Port
dport short Destination Port

time start double Flow beginning timestamp
time end double Flow ending timestamp
file no int pcap File Number
offset int offset in pcap file

flowlen int volume of flow occupied file
protocol int Transfer protocolTCP/UDP

This scheme will also be very convenient for
searching all of the packets in the same flow, and will
not impair system performance. By using the above
approach, if a flow contains n packets, these packets will
need only one index, significantly reducing the number
of indexes that needs to be stored, hence easing the
burden on the database.

5.3 TIFAflow design

TIFAflow implement storage on flow granularity, the
network flows are cached in memory, where packets in
one flow are stored together. A linked list is inserted
into the connection object in the existing flow table.
Each node in the linked list is a packet. The detailed
process is as follows: after capturing a packet, the
system does not store this packet immediately, but adds
it to the end of the linked list which has the same
flow information (discard if it is out of the truncated
boundaries). When the system deletes the time-out flow
information in the flow table, it stores the linked list
packets of the flow information into the pcap file, and
generates an index into the database.

During the querying operation, the index is searched.
When matched, the matched target index will be
extracted to retrieve the flow in a pcap file, the offset
bytes, and the number of bytes. The entire flow data will
be immediately retrieved in the appropriate file location.

5.4 TIFAflow vs. TIFA Fastbit vs. TM

We evaluated the storage and indexing time required
for TIFAflow with TraceA, and made comparisons with
the time required by the TM scheme and the TIFA

FastBit schemes, as shown in Figure 11. It is obvious
that using the flow granularity storage scheme improves
the performance of the whole system. The time taken is
reduced by 752 seconds compared with the schemes,
which do not use the flow granularity storage. That
is, TIFAflow scheme is about 16.6% faster than TIFA
Fastbit.

Fig. 10 Querying performance of the TM, TIFA and
TIFAflow.

Comparing the size of the generated index files in
Figure 12, TIFAflow uses the flow level storage with
the TIFA FastBit indexing scheme, which reduces the
entire storage size by a factor of six.

Fig. 11 The size of indexes of TM, TIFA and TIFAflow.

In all, based on flow granularity storage and
index scheme, TIFAflow improves the storage and
indexing efficiency, while reducing the index file size
significantly.

6 Conclusion

Based on the well-known TimeMachine, new design
ideas and implementations were explored for Internet
traffic archiving and querying system based on flow
granularity, and we rewrite a flow based indexing,
storage and query module in TimeMachine. Several sets
of experiments were conducted to evaluate the scheme
based on the relational database MySQL and the
FastBit bitmap index of the database, and we evaluated
the storage and query performance. Experimental
results show that this novel approach can reduce the



10 Tsinghua Science and Technology, August 2013, 18(4): 000-000

cost associated with the storage of indexes, and can
significantly speed up the flow querying operation,
Further, we combined the proposed flow granularity
storage with FastBit indexing schemes. Experimental
results show that it can further reduce indexes storage
and speed up the query operation. In addition, the
experiments show that the system is workable in 1
Gbps10 Gbps high-speed network environments for
the archiving and querying of network traffic with
commodity hardware.

Acknowledgements

This work is supported by Ministry of Science
and Technology of China under National 973
Basic Research Program Grant No.2012CB315801,
Grant No.2011CB302805, China NSFC A3 Program
(No.61161140320) and NSFC No.61233016.

This work is also support with Intel Research
Councils UPO program with title of Security
Vulnerability Analysis based on Cloud Platform
with Intel IA Architecture.

We also thanks for Shuai Ding, Fuye Han, Jun Li,
Yong Liang, Er-Long Min and Xi Shi for their work in
NSlab-Saturn team.

References

[1] B. Wardman, G. Shukla, and G. Warner, ”Identifying
vulnerable websites by analysis of common strings
in phishing URLs.” Published in eCrime Researchers
Summit, 2009. eCRIME ’09, Tacoma, WA, 2009.

[2] S. Li, R. Schmitz, A novel anti-phishing framework based
on honeypots. Published in eCrime Researchers Summit,
2009. eCRIME ’09, pp. 1-13.

[3] R. Layton, P. Watters, R.Dazeley, Automatically
determining phishing campaigns using the USCAP
methodology, Published in eCrime Researchers Summit
(eCrime), 2010. pp. 1-8.

[4] S. Sheng, B. Wardman, G. Warner, L. Cranor, J. Hong,
C. Zhang, An Empirical Analysis of Phishing Blacklists,
in Proc. Sixth Conference on Email and AntiSpam (CEAS
2009), July 16-17, Mountain View, California, USA, 2009.

[5] Zhen Chen and Chuang Lin et al., AntiWorm NPU-based
parallel bloom filters for TCP/IP content processing in
Giga-Ethernet LAN, Local Computer Networks, 2005.
30th Anniversary, Sydney, NSW, pp. 748-755.

[6] Donghua Ruan and Zhen Chen et al., Handling High
Speed Traffic Measurement Using Network Processors,
Communication Technology, 2006. ICCT ’06. Guilin, pp.
1-5.

[7] Shihai Huang and Zhen Chen et al., Proxy-based Security
Audit System for Remote Desktop Access, Computer
Communications and Networks, 2009. ICCCN 2009. San
Francisco, CA, pp. 1095-2055

[8] C. Cranor, T. Johnson, and O. Spatscheck. Gigascope:
a stream database for network applications. /textit2003
ACM SIGMOD international conference on Management
of data, NY, USA, pp. 647-651

[9] M. Sullivan and A. Heybey. Tribeca: A system
for managing large databases of network traffic.
/textitProceedings of the USENIX Annual Technical
Conference (NO 98), ew Orleans, Louisiana, June 1998

[10] L. Deri, V. Lorenzetti, and S. Mortimer, Collection and
exploration of large data monitoring sets using bitmap
databases, in Traffic Monitoring and Analysis(TMA), Jan
2010. pp. 73-86.

[11] P. Desnoyers and P. Shenoy, Hyperion: High Volume
Stream Archival for Retrospective Querying, USENIX
Annual Technical Conference, Santa Clara, CA, 2007.

[12] Stefan Kornexl, Vern Paxson, Holger Dreger, Anja
Feldmann, Robin Sommer, Building a Time Machine
for Efficient Recording and Retrieval of High-Volume
Network Traffic, Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, CA, USA, pp. 23

[13] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson,
and F. Schneider. Enriching Network Security Analysis
with Time Travel. Proceedings of the ACM SIGCOMM
2008 conference on Data communication, NY, USA, pp.
183-194.

[14] L. Deri, A. Cardigliano, F. Fusco, 10 Gbit Line Rate
Packet-to-Disk Using n2disk, Proc. of 2013 Traffic
Monitoring and Analysis workshop, TMA 2013.

[15] TimeMachine project in Bro, see
http://tracker.bro.org/time-machine/.

[16] Jun Li, Shuai Ding , Ming Xu , Fuye Han, Xin Guan
and Zhen Chen. TIFA: Enabling Real-Time Querying
and Storage of Massive Stream Data. Networking
and Distributed Computing (ICNDC), 2011 Second
International Conference on IEEE, Beijing, 2011

[17] K. Wu and others, FastBit: Interactively Searching
Massive Data, In Proc. of SciDAC 2009, 2009.

[18] B. Claise, Cisco Systems NetFlow Services Export Version
9, RFC 3954, 2004.

[19] P. Phaal, S. Panchen, N. McKee, InMon Corporations
sFlow: A Method for Monitoring Traffic in Switched and
Routed networks, RFC 3176, 2001.pp. 1-31.

[20] P. Haag, Watch your Flows with NfSen and NfDump, 50th
RIPE Meeting,Stockholm, Sweden, 2005.

[21] M. Fullmer and S. Roming, The OSU Flowtools
Packetage and Cisco NetFlow Logs, /textitIn Proc. Of
19th Intl. Conference on Scientific and Statistical Database
Management, Banff, Canada, 2007.

[22] NEye, an Open Source NetFlow collector,
http://neye.unsupported.info, 2004.

[23] J. P. Navarro, B. Nickless, L. Winkler, Combining Cisco
NetFlow Exports with Relational Database Technology
for Usage Statistics, Intrusion Detection, and Network
Forensics, Proceedings of the 14th Large Installation
Systems Administration Conference (LISA 2000). 2000. pp.
285-290.



Zhen Chen et al.: TIFAflow: Enhancing Traffic Archiving System with Flow Granularity for Forensic Analysis in Network Security 11

[24] F. Fusco, X. Dimitropoulos, M. Vlachos. pcapIndex: an
index for network packet traces with legacy compatibility.
ACM SIGCOMM Computer Communication Review,
vol.42, no.1, pp. 47-53. January 2012

[25] F. Fusco, M. Vlachos, X. Dimitropoulos, L. Deri,
Indexing million of packets per second using GPUs, Proc.
of the 13th ACM SIGCOMM conference on Internet
Measurement Conference, IMC 2013.

[26] F. Fusco and L. Deri, High speed network traffic analysis
with commodity multi-core systems, of the 10th ACM
SIGCOMM conference on Internet measurement, NY,
USA, pp. 218-224.

[27] Cavium Network Processor OCTEON 58XX,see
http://www.cavium.com/OCTEON-Plus CN58XX.html.

[28] J. Meng, X. Chen, Z. Chen, C. Lin, B. Mu, L. Ruan.
Towards High-performance IPsec on Cavium OCTEON
Platform. in Trusted Systems, 2011, pp. 37-46.

[29] Tilera manycore Network Processor, see
http://www.tilera.com/products/processors/TILEPRO64.

[30] S. Ding, Z. Chen and Z. Liu, Parallelizing FIB Lookup in
Content Centric Networking, Networking and Distributed
Computing (ICNDC). Hangzhou, China, 2012, pp. 6-10.

[31] V. Paxson, Bro: A System for Detecting Network Intruders
in Real-Time. Computer Networks, vol. 31, no. 23, pp.
2435-2463, 1998.

[32] F. Fusco, M. P Stoecklin, and M. Vlachos. ”NET-FLi: on-
the-fly compression, archiving and indexing of streaming
network traffic.” Proceedings of the VLDB Endowment
vol.3, no. 1-2 pp. 1382-1393. 2010

[33] Z. Chen et al. High speed traffic archiving system
for flow granularity storage and querying. Computer
Communications and Networks (ICCCN), Munich, 2012,
pp. 1-5.

[34] X. Chen, B. Mu, Z. Chen, NetSecu: A collaborative
network security platform for in-network security, in Proc.
the 3rd International Conference on Communications and

Mobile Computing (CMC), Qingdao, China, 2011, pp. 59-
64.

[35] Beipeng Mu, Xinming Chen and Zhen Chen. A
Collaborative Network Security Management System in
Metropolitan Area Network. Communications and Mobile
Computing (CMC), 2011 Third International Conference,
Qingdao, 2011, pp. 45-50.

[36] Deng, Fachao, et al. TNC-UTM: A holistic solution to
secure enterprise networks. Young Computer Scientists,
2008. ICYCS 2008. Hunan, 2008, pp. 2240-2245

[37] Z. Chen et al. Cloud computing-based forensic analysis
for collaborative network security management system.
Tsinghua Science and Technology vol.18, no.1, pp. 40-50.
2013

[38] F. Han, Z. Chen, H. Xu and Y. Liang. Garlic: A Distributed
Botnets Suppression System. Distributed Computing
Systems Workshops (ICDCSW), Macau, 2012, pp. 634-
639.

[39] A. Luo, L. Chuang, Z. Chen, X. Peng, and P. D. Ungsunan.
TNC-compatible NAC System implemented on Network
Processor. Local Computer Networks, Dublin, 2007. pp.
1096-1075.

[40] Z. Ying, F. Deng, Z. Chen, Y. Xue, and C. Lin. UTM-
CM: A practical control mechanism solution for UTM
system. Communications and Mobile Computing (CMC),
Shenzhen, 2010, pp. 86-90

[41] L. Deri, F. Fusco, MicroCloud-based Network Traffic
Monitoring, Proc. of the Intern. Symposium on Integrated
Network Management, IM 2013.

[42] Tianyang Li, Fuye Han, Shuai Ding and Zhen Chen.
LARX: Large-scale Anti-phishing by Retrospective Data-
Exploring Based on a Cloud Computing Platform.
Computer Communications and Networks (ICCCN), 2011
Proceedings of 20th International Conference on IEEE.,
Maui, HI, pp. 1-5.

Zhen Chen is an associate professor
in Research Institute of Information
Technology at Tsinghua University. He
received his B.E. and Ph.D. degrees from
Xidian University in 1998 and 2004. He
works as postdoctoral researcher leaded
by Prof. Chuang Lin in Network Institute
of Department of Computer Science in

Tsinghua University during 2004 to 2006,. He is also a visiting
scholar in network group of ICSI in UC Berkeley, which leaded
by Prof. Scott Shenker in 2006. His research interests include
overlay networking architecture, Internet security and Data
analysis. He has published around 80 academic papers. Now, he
is leading the nslab-saturn team (www.nslab-saturn.net).

Lingyun Ruan is a Ph.D. student from
Department of Computer Science in
Purdue University. He worked in network
secueity lab of RIIT and finished his
research on UTM in 2011. He got his
BEng degree from Tsinghua University
in 2011. Currently his main research
interests focus on data mining and machine

learning.



12 Tsinghua Science and Technology, August 2013, 18(4): 000-000

Junwei Cao is currently Professor and
Deputy Director of Research Institute
of Information Technology, Tsinghua
University, China. He is also Director of
Open Platform and Technology Division,
Tsinghua National Laboratory for
Information Science and Technology. His
research is focused on advanced computing

technology and applications. Before joining Tsinghua in 2006,
Junwei Cao was a Research Scientist of Massachusetts Institute
of Technology, USA. Before that he worked as a research
staff member of NEC Europe Ltd., Germany. Junwei Cao
got his PhD in computer science from University of Warwick,
UK, in 2001. He got his master and bachelor degrees from
Tsinghua University in 1998 and 1996, respectively. Junwei Cao
has published over 130 academic papers and books, cited by
international researchers for over 3000 times. Junwei Cao is a
Senior Member of the IEEE Computer Society and a Member of
the ACM and CCF.

Yifan Yu is an undergraduate student
working in Department of Electronic

Engineering at Tsinghua University. His
research interests include network security
and mobile safety.

Xin Jiang is working as computer security
researcher. He received the Ph.D.
degree in Computer Science from Institute
of computer network of Department of
Computer Science in Tsinghua University
in 2010. He got bachelor’s degree in PLA
University of science and technology in
1998. His main research interests include

computer network security, performance evaluation and wireless
networks.


