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Stochastic Optimal Energy Storage Management for
Energy Routers via Compressive Sensing

Abstract—The functionality of energy routing among micro-
grids is becoming increasingly important with the progress
of deploying smart power systems all over the world. For
higher energy routing performance and better renewable energy
integration, a new type of electrical device, called energy router
(ER), is being developed as a part of the infrastructure of the
future energy Internet (EI). Generally, the long-term operation
of ERs requires an effective energy management scheme for the
energy storage inside these devices. In this paper, considering the
randomness of power generation by renewable energy sources
and the stochastic power usage of loads in EI scenario, the
compressive sensing is adopted for the solution to the nonlinear
energy storage management problem which is essential for the
design of ERs. The compressive sensing method used in this
paper is proven to be more efficient than the conventional Monte
Carlo methods and polynomial chaos expansion method, and the
performance of the proposed method is evaluated with numerical
examples.

Index Terms—Compressive sensing, energy Internet, energy
router, energy storage, stochastic optimization.

NOMENCLATURE

EI Energy Internet.
ER Energy router.
MG Microgrid.
DG Distributed controllable power generator.
RES Renewable energy source.
∆PLoad Power deviation of loads.
∆PRES Power deviation of RESs.
∆PDG Power deviation of DGs.
∆Pout Aggregate power transmission request from

external ERs.
∆P Power input/output of the energy storage in ER.
SER Energy storage status of the considered ER.
CS Compressive sensing.
MC Monte Carlo.
PCE Polynomial chaos expansion.

I. INTRODUCTION

The EI has changed the mode and the structure of energy
supply and demand in the sense that the centralized top-
down energy management mode is being transformed into a
combination of an interactive centralized top-down mode and a
distributed bottom-up mode, such that consumers are satisfied
with the demand for power services, the contradiction between
power peaks and valleys can be effectively solved, and the
requirements of energy security and reliability can be met [1].
Various energy forms, such as cooling, heating, electricity,
gas, are fully integrated in the generation, transmission and
consumption side, making full use of the complementary
characteristics of multiple energy sources, and increasing the
energy utilization efficiency of the terminal through energy

cascade utilization. Through the free choice and interactive
management of energy sources, the energy industry has also
been influenced by the Internet; related industries have been
risen, and the economic structure and even social habits are
being reformed [2].

In future EI scenarios, demand side response based on big
data and wide-area information platform would improve the
efficiency of energy production and transmission [3]. Located
at the connection points of EI, ERs are the key equipment
to realize not only information transmission but also open
and peer-to-peer transmission routing of energy [4]. The ER
(also called energy hub, or electric router), an emerging
device based on advanced power electronic techniques, shall
be able to implement flexible and dynamic power distribution
in EI analogous to the character of information routers in the
Internet. With the support of ER, communication network and
power network, the bottom-up infrastructure in the future EI
can be built [5].

In recent years, the investigation of ER regarding different
aspects has been popular. The architectures, functionalities and
demonstration of ER have been introduced in [6].Similar to
the data caching function of routers in the Internet, ER needs
the capability of fast and reliable energy storage to enable
the flexible energy sharing in future EI scenarios. Although
research regarding ER has been popular during the past five
years, only prototypes of ERs are developed in laboratories,
and there has been no commercial products so far. In this
paper, the energy storage management for ERs is considered
in a macro perspective, in which sense, control strategies shall
be designed for all MGs in EI, rather than one single ER in
[7]. In particular, the stochastic feature of the power generation
by RESs and the power of loads are considered.We assume
the controllers are set in DGs and ERs. Both ordinary and
stochastic differential equations are adopted to describe the
power dynamics of the considered system. Then, the energy
storage management task for ER is formulated as a nonlinear
stochastic optimization problem.

It is almost impossible to solve this problem analytically,
and numerical methods shall be considered. To address this
issue, adaptive dynamic programming(ADP), proposed by
Werbos [8], has widely been applied to obtain the optimal
energy management policies in EI situation. For example in
[9], it proposes an ADP based approach for the economic
dispatch of MG with DGs and a modified value function
update strategy is included in this work. A lookup tables
based ADP algorithm for the real-time energy management
of the MG under uncertainties is proposed in [10], while
the optimal operation of the MG is also formulated as a
stochastic nonlinear programming problem. In [11], they use
the ADP method to solve a smart home energy management
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system and improve the performance of such problem by
considering uncertainties of the system. A stochastic gas-
power network constrained unit commitment model consider-
ing both combined-cycle units and gas Network is established
in [12], in order to prevent the curse of dimensionality they
also use ADP method to deal with the stochastic control
problem. An action-dependent heuristic dynamic programming
(ADHDP) method is applied to the optimal control of dynamic
energy management systems for MGs [13]. Notably, ADHDP
method also denoted as Q-learning. Moreover, due to the rapid
development of artificial intelligence, reinforcement learning
method becomes more attractive in solving model-free or
model-based problems of EI, such as in [14], an artificial
neural network-based reinforcement learning algorithm was
proposed to manage an optimal multi-energy management-
based energy routing design problem. Reference [15] concen-
trates on a model-free energy routing strategy problem, and
the actor-critic reinforcement learning approach is applied to
solve the optimal control problem. A multi-agent based model
is used to study distributed energy management in a MG in
[16], and a reinforcement learning algorithm was developed to
derive the optimal strategies for energy management and load
scheduling without prior information of the MG system.

An alternative approach is to combine MC method with
heuristic optimization algorithm [17] or traditional iterative
method such as gradient decent, Newton, et. al. Normally,
the MC method has a relatively low convergence rate. Thus,
in order to achieve a desirable computation accuracy, it of-
ten results in a prohibitively high computational complexity.
Hence, aiming to overcome the low efficiency caused by
the huge amount of computation, more efficient methods
for solving stochastic equations should be applied instead of
using MC, an alternative method is PCE [18] which has been
proved efficient in solving stochastic equations, but unlike the
MC method, it usually requires recoding the system into a
much higher dimension problem which make it complex in
programming. However, due to the sparsity of the solution
for stochastic system, CS method which is emerged from the
field of sparse signal recovery [19] can be used to overcome
the disadvantages of both PCE and MC method, because it
does not require recoding the system like PCE method, nor
does it require a large number of samples like MC method.
As a whole, the novelty aspects of this study are summarized
as follows:

1. A novel gradient-based method with CS has been pro-
posed to solve high-dimensional stochastic optimization prob-
lem. The main innovation of our proposed algorithm is to
apply CS method instead of MC method to deal with stochastic
system in the iteration of traditional optimization algorithm,
and it has been shown effective.

2. In this paper, an energy storage management problem for
the ER is formulated as an optimal control problem, taking the
ER system’s nonlinearity and stochasticity into consideration,
which has not been fully investigated in previous works.

3. Simulation results show that when solving the afore-
mentioned problem, CS method converges significantly faster
than MC method, and is much more easy to be realized by
programming than PCE method, which indicates that CS can

Fig. 1. Typical off-grid EI network.

Fig. 2. A typical MG.

save computational cost dramatically when applied in such
kind of stochastic optimization problem. It is notable that our
proposed algorithm can be used not only in the problem of
ER energy management, but also in a variety of fields where
similar optimal control problems are expected to be solved.

The rest of the paper is organized as follows. System
modelling and problem formulation are provided in Section
II and Section III, respectively. The solution to the considered
optimization problem is investigated in Section IV. Section V
provides some simulations. Finally, some concluding remarks
are given in Section VI.

II. SYSTEM MODELLING

In this paper, we consider a special EI scenario where a
variety of MGs are interconnected without access to the utility
grid, in the sense that such EI is functioning in an off-grid
mode. A simplified configuration is illustrated in Fig. 1. Such
EI scenario, in which the main power generation relies on
RESs, is suitable for some rural or remote areas; see, e.g.,
[20].

For the EI scenario in Fig. 1, our focus is put on one of the
interconnected MGs. Each MG consists of multiple types of
RESs, DGs and loads which are all connect with an ER, and
such ER is connected with an external ER in the other MG;
see, Fig. 2.

The linearised modelling approach is adopted to describe
the power dynamics of each component in MG. To reveal the
uncertainty and variation of power of load and RESs [21],
stochastic differential equations driven by scalar Brownian
motion are given as follows,

d∆PLoad = −θl(∆PLoad − µl)dt+ σldWl, (1)
d∆PRES = −θr(∆PRES − µr)dt+ σr dWr, (2)



3

where Wl and Wr refer to scalar Brownian motions, scalars
θl, θr, µl, µr, σl and σr are system parameters that can
be measured by parameter estimation methods.For notation
simplicity, time t of all variables throughout this context is
omitted.

The DGs in our considered MG can be micro-turbines,
diesel engine generators, fuel cells, etc. The following ordinary
differential equation shows the generalized power dynamics of
DGs.

d∆PDG = − 1

TDG
(∆PDG − uG)dt, (3)

where TDG stands for the time constant of DGs, uG is the
desired power adjustment for the DGs, which can be viewed
as control input of DGs.

Power generation by RESs and power usage caused by loads
flows into and out of the ER in Fig. 2, respectively. Thus, it
is obvious that the power to be stored in ER is

∆P = ∆PRES + ∆PG −∆PLoad + ∆Pout(1− uER), (4)

where uER denotes the average transmission rejection rate
for other ERs connected to the considered ER. In this sense,
uER is the control input for the investigated ER. For such
ER, since the total power required from the accessed external
ERs is also random, depending on various complex conditions,
stochastic differential equation similar with (1) and (2) are
used to describe ∆Pout. Let us denote Wp as the stochastic
process in the same probability space of Wl and Wr. Then,
we have

d∆Pout = −θp(∆Pout − µp)dt+ σpdWp, (5)

where scalars θp, µp, σp are system parameters.
The energy storage status of the considered ER, denoted as

SER, is actually the state of charge of ER’s energy storage
component, and it is represented as

dSER = η∆Pdt, (6)

where η is a constant related to the energy efficiency and
capacity of the energy storage attached in the ER, and the
value of SER is naturally defined to be within [0, 100%].

In this sense, the linearized models from (1) to (6) fully
describe the dynamics of one typical MG in the considered EI
scenario. For similar modelling approaches, readers can refer
to [22].

Next, let x = [∆PLoad,∆PRES ,∆PG,∆Pout, SER]′, u =
[uG, uER]′, and W = [Wl,Wr,Wp]′. The system from (1) to
(6) can be rewritten as:

dx = [A(u)x+Bu+ C]dt+DdW, (7)

where matrices

A(u) =


−θl 0 0 0 0
0 −θr 0 0 0
0 0 − 1

Tg
0 0

0 0 0 −θp 0
−η η η η(1− uER) 0

 , (8)

B =


0 0
0 0
1
Tg

0

0 0
0 0

 , C =


θlµl

θrµr

0
θpµp

0

 , D =


σl 0 0
0 σr 0
0 0 0
0 0 σp
0 0 0

 .

(9)
In this sense, our studied MG power dynamics have been
transformed into a stochastic control system (7), where x(t)
is system state, u(t) is system control input.

It is notable that matrix A(u) is not a time-invariant param-
eter matrix. Essentially, it is a function of uER(t). The term
A(u)x indicates that system (7) is indeed a nonlinear system.

III. PROBLEM FORMULATION

In this section, the energy storage management for the
considered ER is formulated as an optimal control problem.

Due to the energy management principle of EI, the au-
tonomous operation of the power system shall be preferably
achieved at the MG level [5]. As key devices providing the
energy sharing functionality among MGs, ERs are expected
to be of the ability to achieve long-term operations with
high stability. To this end, one of the important aspects is
to maintain the energy storage status of the considered ER
at a stable level over time [7]. This target could be achieved
by restricting the power throughput of the energy storage in
the considered ER. However, over-restricted power throughput
may impair the energy storage capability of the ER and reduce
the stability of the entire EI system. In this sense, instead
of utilizing regular quadratic cost functions, the objective
function in (10) is adopted in this paper, whose value should
be minimized by designing proper control strategies.

J0 = E
∫ T

0

{
ε1log(1 + e∆P 2

) + ε2u
2
G

}
dt, (10)

where E is mathematical expectation, ε1 and ε2 are weight
coefficients. The interpretation of each term in (10) is as
follows.

For stochastic control problems, the traditional LQ problem
only considers the mean of the cost and ignores the higher
order momenta. In order to incorporate higher order momenta
of the objective function, we made a little modification by
adopting the term log(1+e∆P 2

) in (10), the objective function
(10) can consider the higher order momenta of the stochastic
inputs according to the design of the exponential-quadratic
control objective function in risk-sensitive control theory [23],
and the energy storage capability of ERs could be better
utilized compared to simply adopting ∆P 2 in (10). Given the
same value of ∆P , for instance, for a small ∆P , we have
log(1+e∆P 2

) ≥ ∆P 2. This means that the optimal controller
for (10) would tend to address small power deviation ∆P via
the adjustment of DGs. Additionally, the second term in the
integral of (10) is used to avoid the over-control of DGs.

Let Cmin and Cmax be the minimum and maximum values
of SER, ∆Pmax

Load, ∆Pmax
RES and ∆Pmax

G be the maximum
power variation constraints of ∆PLoad, ∆PRES and ∆PG,
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respectively. The optimal control problem is then formulated
as (11).

min
uG,uER

J0, (11)

s.t. (1) – (6),
∆PLoad ≤ |∆Pmax

Load|,
∆PRES ≤ |∆Pmax

RES |,
∆PG ≤ |∆Pmax

G |,
Cmin ≤ SER ≤ Cmax,

0 ≤ uER ≤ 1.

In order to deal with the inequality constraints in (11), two
penalty terms P1 and P2 are introduced to the objective
function. Specifically, the penalty term P1 for SER and uER

is designed in the following form to ensure SER and uER vary
near the midpoints of the constraints as much as possible.

P1 =

(
SER − 1

2 (Cmax + Cmin)

Cmax − Cmin

)2

+

(
uER −

1

2

)2

, (12)

Moreover, to keep the power variations within the maximum
constraints, the penalty term P2 for ∆PLoad, ∆PRES and
∆PG, has the following form:

P2 = 105(ILoad + IRES + IG), (13)

where ILoad is the characteristic function defined by:

ILoad =

{
0 if ∆PLoad ≤ |∆Pmax

Load|
1 otherwise,

(14)

Similarly, IRES and IG are defined in the same way. Multiply-
ing the characteristic function by 105 can prevent the power
variations from exceeding the limits

With a large weight coefficient for the penalty term P =
P1 +P2, the optimal controller would presumably keep SER

and uER around the midpoints of their allowed ranges and
control the power variations within reasonable boundaries.
In this manner, the optimal control problem with inequality
constraints in (11) is transformed to be a relaxed problem
(15).

min
uG,uER

J = E
∫ T

0

{ε1log(1 + ex
′Qx) + ε2u

′Ru+ ε3P}dt.

s.t. (1) – (6), (15)

where ε3 is weight coefficients,

Q(u) =


1 −1 −1 uER − 1 0
−1 1 1 (1− uER) 0
−1 1 1 (1− uER) 0

uER − 1 1− uER 1− uER (1− uER)2 0
0 0 0 0 0

 ,

(16)

R =

(
1 0
0 0

)
, (17)

By solving the stochastic nonlinear optimal control problem
(15), the optimal energy storage management strategy for the
considered ER could be obtained. As mentioned in Section

I, the conventional methods, such as dynamic programming
or the MC method, are limited in computational efficiency
and may not be feasible for high dimensional problems. Since
the polynomial expansion of stochastic process usually have
sparsity [24], the CS method which has been developed rapidly
in recent years is used to solve the aforementioned control
problem. The detailed methodologies are given in next section.

IV. SOLVING THE OPTIMIZATION PROBLEM

In this section, an algorithm based on CS has been proposed
to solve the optimization problem (15). First of all, we review
the process of solving differential equations using the CS
method. Then, by combing the CS with gradient descent
method, we propose a new iterative algorithm, named as CS-
GDM, to solve the optimization problem (15).

A. Compressive Sensing for Differential Equations

The process of using CS method to solve stochastic differ-
ential equations can be summarized as three steps:

s1. Representation of Brownian motion via Fourier expan-
sion;

s2. Polynomial chaos expansion;
s3. Sparse recovery using CS method.
For step s1, choosing an orthonormal basis {ϕi}∞i=1, we

have

W (s) =

∞∑
i=1

ξi

∫ s

0

ϕi(τ)dτ, (18)

where W (s) denotes Brownian motion, {ξi}∞i=1 are indepen-
dent identically distributed random variables selected from the
standard normal distribution, and the expansion (18) uniformly
converges to W (s) in the mean square sense.

Expanding the Brownian motion is to discretize the original
problem. Let i ∈ [1, d], we truncate the expansion with d
terms in (18). Then, the Brownian motion in the system (7)
can be expressed via ξ = {ξi}di=1, so the system state x(t) is
actually related to ξ. More specifically, x(t) should be written
as x(t, ξ), then we can use a set of stochastic polynomials to
expand the system state x(t, ξ), which is described as step s2.

In this paper, since the random variables ξ comes from
the standard normal distribution, we choose the generalized
Hermite polynomial basis as the stochastic basis to expand
x(t, ξ) [26]; that is:

x(t, ξ) =

p∑
j=1

cj(t)ψj(ξ), (19)

where {ψj(ξ)}pj=1 are the Hermite polynomials, p is the num-
ber of polynomials needed for the expansion, and {cj(t)}pj=1

are the coefficients which need to be determined by CS method
through step s3.

Once we have the polynomial chaos expansion (19) for
x(t, ξ), we can recover the sparse coefficients in (19) by solv-
ing the following basis pursuit de-noising (BPDN) problem.

ĉ = arg min ‖c‖1, subject to ‖X −Ψc‖ ≤ ε, (20)
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where X is the sample simulation results. If we use n as
the number of sample simulation, then X is a n dimensional
vector at each time t, and Ψ is a n × p information matrix
formed by inserting the stochastic sample points into Hermite
polynomials. c = {cj}pj=1 is the coefficient vector to be
determined. For theoretical analysis regarding this method,
readers can refer to [25].

B. Algorithm for the Stochastic Optimal Control Problem

To solve the optimal control problem (15), we need to
introduce the Hamiltonian function H :

H = J + λ′(t){A(u)x(t) +Bu+ C +DdW}, (21)

where λ(t) is system co-state. Then, the equivalent Hamilto-
nian system for the optimal control problem are:

dx =
∂H

∂λ
, dλ = −∂H

∂x
, 0 =

∂H

∂u
. (22)

To be specific, the corresponding system for control problem
(15) with respect to (7) are given as:

dx = A(u)x+Bu+ C +DdW, (23)

dλ =
−2ε1Qxe

x′Qx

1 + ex′Qx
−A(u)′λ− 2ε3a1(a1x− b1), (24)

0 = 2ε2Ru+ 2ε3a2(a2u− b2) + λ(x
∂A(u)

∂u
+B). (25)

Since system (23)-(25) is nonlinear, it is difficult to be
solved directly. Thus, we tend to choose the iterative algorithm,
such as gradient descent, conjugate direction, Newton, or
quasi-Newton methodscombining with CS method to solve this
stochastic optimization problem numerically. In our proposed
method, we choose gradient descent method as an example,
and a new algorithm named as CS-GMD is proposed as
Algorithm 1.

Instead of some conventional methods, e.g., the MC method,
we use the CS method to calculate the system state x(t)
and the system co-state λ(t), which reduces computational
cost dramatically and is more suitable for high-dimensional
problems. This is regarded as one of the main contribution
of this work. Now, we can numerically solve this complex
stochastic optimal control problem. The obtained controller
is indeed the control strategy for the management of energy
storage in the considered ER. The relevant numerical results
are given in Section V.

It is notable that our proposed CS-GDM algorithm can be
used not only in the problem of ER energy management, but
also in a variety of fields such as fluid mechanics, compu-
tational biology, computational finance, etc., where similar
optimal control problems are expected to be solved.

Algorithm 1 〈CS-GDM optimization algorithm 〉
1. Initialize the optimization.
The optimization loop is initialized as follows:

1) Select the number of Hermite polynomial basis p and
the stochastic dimension d,

2) Select a step size parameter z > 0 and a tolerance
parameter β,

3) Select a time step ∆t ,
4) Select an initial controller u0 ,
5) Using CS method to solve (23) to obtain the coeffi-

cients of expansion for system state x0,
6) Calculate the value J 0 of the objective function (15),

2. Optimization loop.
For l = 1, . . .,

1) From xl−1 and ul−1, using CS method to determine
the solution λl−1 of the co-state equation (24),

2) From λl−1, ul−1 and xl−1, determine the set of steps
∂H

∂ul−1 from (25),
3) From ul−1 and ∂H

∂ul−1 , determine the new value ul

ul = ul−1 − zl−1 ∂H

∂ul−1
,

4) From ul, using the CS method to calculate the coeffi-
cients of the expansion for system state xl,

5) From ul and xl, determine the value of the functional
J l from (15),

6) If J l ≤ J l−1 and (J l − J l−1)/J l−1 ≤ β, stop and
accept the result,
If J l ≤ J l−1 and (J l − J l−1)/J l−1 ≥ β, go to step
1), incrementing the iteration counter l,
If J l ≥ J l−1, set zl = zl−1/2 and go to step 2).

V. SIMULATION RESULTS

In this section, the simulation results derived by our pro-
posed method are given. First, we present some results to
illustrate the feasibility of compressive sensing method in
solving the stochastic differential equations. Then, the sim-
ulation results derived by our proposed CS-DGM algorithm
for storage management problem of single MG and multiple
interconnected MGs are given in the second part and third
part separately. All the solutions are obtained with the SPGL1
toolbox [27] in MATLAB (R2018b, Mathworks Inc., Natick,
MA,USA) environment, and the hardware device is an Ubuntu
18.04 server with Intel Core i7-7700 CPU and one single GPU
card with 2GB of graphic memory.

A. Simulation for State Equations

Since the main innovation of our proposed Algorithm 1 is
to apply the CS method instead of other method to deal with
the stochastic state equation (7), and then combine it with
optimization algorithm to solve optimization problems. So first
of all, at this part, we verify the applicability and efficiency
of CS method by comparing the simulation results with two
traditional approaches, i.e. MC method and PCE method, for
solving stochastic state equation (7).The values of all relevant
parameters are given in Table I [5], [20].
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TABLE I
VALUE OF PARAMETERS

Parameter value Parameter value Parameter value

θl 0.4 µl 0.7 σl 0.4
θr 0.5 µr 0.2 σr 0.12
θp 0.1 µp 0.1 σp 0.43
TDG 0.4 η 0.05 - -
Cmax 0.8 Cmin 0.3 - -

0 50 100

0

10

20

nz = 600

 

 

∆PLoad

0 50 100

0

10

20

nz = 599

 

 

∆PRES

0 50 100

0

10

20

nz = 100

In
d
ex

o
f
p
o
ly
n
o
m
ia
l
ch
a
o
s

 

 

∆PG

0 50 100

0

10

20

nz = 599

 

 

∆Pout

0 50 100

0

10

20

Index of time points

 

 

SER

Fig. 3. Entries in coefficients c with absolute values larger than τ = 1×10−5

within time interval [0, 1].
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Fig. 4. Recovery of ∆P using CS method.

Fig. 3 shows the sparsity of the coefficients c. We divide
time interval [0, 1] into 100 sub-intervals, and the index are
shown on the horizontal axis. The index of Hermite polyno-
mial basis from (19) are shown on the vertical axis, which
is from 0 to 20 in our numerical example. Each column in
Fig. 3 corresponds to a coefficient vector c at different time
nodes. To show the sparsity of the coefficients c, only elements
that are greater than a threshold τ are given as those dots. It
can be seen that each component of x(t, ξ) is sparse with the

TABLE II
ERROR ESTIMATES FOR EXPECTATION RECOVERY FOR SER USING MC

AND CS METHODS

Number of Sample(n) ErrorMC × 10−2 ErrorCS × 10−2

10 7.83 12.71
20 5.49 2.20
30 4.69 0.72
50 3.35 0.006
100 2.41 0.006
150 2.05 0.006
200 1.69 0.006
1000 0.72 0.006

TABLE III
ERROR ESTIMATES FOR SER USING CS AND PCE METHODS

CS method PCE method

Expectation error 6.1×10−5 6.3×10−5

Variance error 1.9×10−4 2.3×10−4

Sparsity(s) 0.2894 0.2579

expansion of Hermite polynomials in stochastic space, which
suggests the feasibility of CS method.

The effectiveness of the proposed CS method is demon-
strated with Fig. 4 in which the power input/output of the
energy storage ∆P integrated in the ER within 10 seconds is
recovered from the solution to the BPDN problem (20) under
the setting of uER = 0.1 and uG = 1.

Next, to demonstrate the computational efficiency of the
proposed method, we give the numerical error estimates for
expectation recovery between the MC method and the CS
method in Table II. It can be seen that when the same
computation accuracy is achieved, 30 sample points are used
via CS method, while 1000 sample points shall be used via
the MC method. In addition, the CS method converges much
faster than MC method, and increasing the number of samples
will not provide additional information. Therefore, in real-
world engineering practice, the CS method can save significant
computational resource.

To further verify the accuracy of the CS method, the
comparision results with the typical PCE method [18] are
given in Table III. The main principle of the PCE method
is to take expansion (19) into the state equations, and then
determine the expansion coefficients c by solving a high
dimensional equations system(26).

d

p∑
j=1

cj(t)ψj(ξ) =

p∑
j=1

[Acj(t)ψj(ξ)+Bu+C+DdW ], (26)

The dimension of equation system (26) is p times of the origi-
nal system (7), which makes the simulation of the PCE method
more complicated. The error estimation of the expectation and
variance for CS and PCE are obtained by comparing with 3000
sample points MC method. The sparsity is the ratio of the
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Fig. 5. Convergence of the objective function obtained by CS-GDM and
CS-NM method
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Fig. 6. Optimal ∆P with control vs initial ∆P without control.

entries greater than τ in c to the total number of entries in c. It
can be seen that the CS method can achieve the same accuracy
and sparsity with PCE method and does not need to rewrite
the state equation solver, which is nevertheless necessary for
PCE method.

In summary, the CS method not only overcomes the slow
convergence of MC method, but also overcomes the compli-
cated programming problem of PCE method, so it is more suit-
able to be combined with iterative method to solve stochastic
optimization problems. In the following simulation parts, we
verify the effectiveness of the algorithm1 in the scenarios of
single MG and multiple interconnected MGs separately.

B. Simulation results for single MG

To demonstrate the solution to the considered control
problem, we give the simulation results within time period
t ∈ [0, T ], T = 10s as an illustrative example. If the simulation
results for a longer time scale is required, there is no essential
difficulty to perform further simulations in different time
periods. To be specific, in this case study, the weighting
coefficients are set as ε1 = 1, ε2 = 0.01, ε3 = 1. The initial
values x0 = (0, 0, 0, 0, 0.5), and the initial control variable uG
and uER are random numbers from (0,1). The corresponding
numerical results are given as follows.

In Fig. 5, the blue spot is the value of objective function J
derived by our Algorithm 1 at each step of the iteration, while
the red spot represents the value of objective function derived
by combining CS with Newton method. They illustrate the
effectiveness of combining CS method with iterative methods
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Fig. 7. Optimal SER with control vs initial SER without control.
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Fig. 8. Optimal Controller uG and uER.
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Fig. 9. Range of uG for different control weight ε2.
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Fig. 10. Expectation of optimal SER for different control weight ε2.

in solving the stochastic optimization problems. Although
Newton method converges faster than our Algorithm 1, which
is reasonable since Newton method has been proved to have
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TABLE IV
COMPARISON OF THE COMPUTATIONAL COSTS BETWEEN MC AND CS

METHODS

Optimal Objective Time CostMC(s) Time CostCS(s)

0.0106(ε1 = 1, ε2 = 0.01, ε3 = 0.1) 4672.84 423.91
0.0776(ε1 = 1, ε2 = 0.01, ε3 = 1) 3833.15 444.81
1.7280(ε1 = 1, ε2 = 1, ε3 = 1) 2934.98 278.64

higher convergence rate than gradient descent method for
optimization problems, we still use gradient descent method
as example to do simulation since it is easier to be coded.

Fig. 6 shows the behaviours of the energy storage in ER
under two ER configurations, i.e., with/without active energy
storage management. It can be seen that with the proposed
control scheme, the power deviation of the considered energy
storage in ER is significantly smaller than that when there is
no active energy management scheme applied.

Similar to Fig. 6, Fig. 7 demonstrates the efficacy of the
proposed optimal controller for the energy storage in ER. It can
be seen that the proposed method is of the capability to achieve
a better energy storage stability, which would be essentially
important in most of practical EI scenarios.

The optimal controllers uG and uER are given in Fig. 8.
As expected, due to the penalty term (12), the optimal average
transmission rejection rate uER for ERs has been properly kept
within the constrained range. The optimal power adjustment
uG controls the power output of DGs with time to meet the
stability of the system.

Next, to illustrate the impact of the emphasis for controller
uG on the optimal control scheme, the effectiveness of energy
management schemes corresponding to different values of
weight coefficients ε2 for generators are evaluated. Here, we
use the symbol εi2, i = 1, 2, ... to represent for different ε2. Fig.
9 gives the optimal controller uG for each ε2, which suggests
that a smaller value of ε2 would lead to a control signal uG
with larger variance. Therefore, in order to avoid over-control
and ineffective control, we should properly choose the weight
coefficients in the proposed optimal control problem (11).

Fig. 10 gives the expectation of energy storage level in the
considered ER under a class of control schemes with different
weight coefficient ε2. It indicates that when the cost for the
adjustment of generators is relatively small, i.e., with small
value of ε2, the energy storage level tend to be better stabilized.

In the final, we compare the time cost and accuracy for
the MC method and our proposed CS-GDM algorithm by
solving the same optimal control problem (15) with different
sets of weight coefficients. In Table V, the error estimations are
derived by comparing the results with 2000 points MC method.
From Table IV and Table V it can be seen that when the accu-
racies are under the same level, CS-GDM method can improve
the computational performance significantly. Apparently, the
advantages of our proposed method in improving the efficiency
of such numerical computation has been demonstrated.

TABLE V
COMPARISON OF THE ERROR BETWEEN MC AND CS METHODS

Optimal Objective ErrMC × 10−5 ErrCS × 10−5

0.0106(ε1 = 1, ε2 = 0.01, ε3 = 0.1) 2.34 4.87
0.0776(ε1 = 1, ε2 = 0.01, ε3 = 1) 1.56 2.35
1.7280(ε1 = 1, ε2 = 1, ε3 = 1) 2.14 3.91

Fig. 11. The interconnected MGs topology for simulation
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Fig. 12. Optimal ∆P for four ERs.

C. Simulation results for interconnected MGs

In this subsection, the results for a more complex EI sce-
nario are provided to demonstrate the efficacy of our proposed
method. We consider four MGs in the network and they
are functioning in the off-grid mode. The topology for this
scenario is shown in Fig. 11. Without loss of generality, we
assume that all MGs have the same components as is presented
in the previous subsection, and the parameter settings are the
same as before except for θp, µp in equation (5) which influ-
ence ∆Pout, the total power required from the other MGs. To
be specific, let us set θ1

p = 0.1, θ2
p = 0.2, θ3

p = 0.5, θ4
p = 0.8

and µ1
p = 0.1, µ2

p = 0.2, µ3
p = 0.5, µ4

p = 0.8 for each MG. To
ensure the balance of power transmission between MGs, the
following constraint (27) need to be added to the system. The
weighting coefficients are set as ε1 = 1, ε2 = 0.01, ε3 = 1.
The corresponding numerical results are given as follows.

4∑
i=1

∆P i
out = 0, (27)

Fig. 12 shows the power dynamics of the energy storage
of the four ERs with active energy storage management. It
can be seen that with the proposed control scheme, the power
deviation of the energy storage in ER1,ER2,ER3 are almost
the same, while more power needs to be stored in ER4 than
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Fig. 13. Optimal SER for four ERs
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Fig. 14. Optimal controller uER for four ERs.

TABLE VI
ERROR ESTIMATES FOR EXPECTATION RECOVERY FOR SER USING MC

AND CS METHODS

Number of Sample(n) ErrorMC × 10−2 ErrorCS × 10−2

30 10.45 23.59
50 8.18 10.42
80 6.46 4.21
100 5.29 1.12
500 2.31 0.054
1000 1.67 0.054
2000 1.39 0.054
3000 1.13 0.054

the others, since ER4 needs to transfer power with the other
ERs.

Similar to Fig. 12, Fig. 13 demonstrates the energy storage
stability of the four ERs under control. It shows that the
proposed method is of the capability to achieve a better energy
storage stability. It also can be seen that the energy storage in
ER1,ER2,ER3 are more stable than that in ER4.

The optimal controllers uER are given in Fig. 14. Similar
to results of the single MG, the optimal average transmission
rejection rate uER for all the ERs have been properly kept
within the constrained range. The adjustment of the transmis-
sion rejection rate of the ER4 plays a major role in controlling
the stability of this EI system.

At the end of this part, the comparison results for MC
method and our CS-GDM method for the interconnected MGs

TABLE VII
TIME COSTS BETWEEN MC AND CS METHODS VS THE NUMBER OF MGS

Number of MGs Time CostMC(s) Time CostCS(s)

1 4672.84 423.91
2 5463.32 607.11
3 7566.14 772.84
4 11426.35 901.76
5 12648.73 1240.51
6 15971.54 1426.23

are illustrated. First, Table VI shows the numerical error esti-
mates for expectation recovery of SER for the interconnected
state equations system. It can be seen that when the same
computation accuracy is achieved, only 100 sample points
are used via CS method, while 3000 sample points shall
be used via the MC method. Therefor, the CS method can
save significantly computational cost when solving the state
equations. However, the key step to solve the control problem
with gradient descent method is to solve the state equations
iteratively. Therefore, it is obvious that the CS-GDM method
is much more efficient than the MC method to solve the same
control problem. To be specific, as is shown in Table VII,
for different number of MGs, the computational time cost
is almost linear increases of both MC method and CS-GDM
method, and MC method is nearly 10 times that of CS-GDM
method. These comparison results fully show the advantages
of CS-GDM method in computational efficiency.

To summarize, this section demonstrates the feasibility
and effectiveness of our proposed compressive sensing based
stochastic optimal control method. Analyses of simulation
results shows the advantages of the CS-GDM approach we
put forward in this work.

VI. CONCLUSION

In this paper, an energy storage management problem for
a typical ER is investigated. By modelling the MG system
mathematically, this issue can be transformed into a nonlinear
stochastic control problem. Then, by properly controlling de-
sired power adjustment for DGs and the average transmission
rejection for the studied ER, we can maintain the energy
storage status at a stable level over time. The CS-GDM method
is applied to solve such complex control problem. In the
simulation part, the feasibility and validity of our proposed
algorithm are verified. The comparison with the MC method
in computational costs shows our proposed algorithm can save
computation time significantly, which means that such method
is more suitable for complex and high-dimensional problems.

There are two main research directions in our future work,
one way is to apply our algorithm to energy management
problems for ERs considering game-theoretic multi-objective
control problems. Another way is to combine CS method with
other existing methods such as ADP or reinforcement learning
methon to further improve the computation efficiency.
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