
   

Abstract—Most of the existing literatures concerning 

lifetime extension of battery energy storage (BES) devices 

mainly focus on designing controllers in BES devices 

themselves. In this paper, the problem of BES lifetime 

extension in an islanded microgrid (MG) is considered from 

a different perspective, in the sense that such target is 

achieved by adjusting output power of controllable power 

generation devices. To obtain accurate power models of 

photovoltaic panels (PVs) and loads, a new hybrid modeling 

method utilizing both neural networks (NNs) and stochastic 

differential equations (SDEs) is introduced. We formulate 

the problem of extending the service life of BES devices as 

a stochastic optimal control problem. Meanwhile, the 

situation of over-control in micro-turbines (MTs) is 

effectively avoided. We solve such stochastic optimization 

problem using the dynamic programming solver provided 

by the open source C++ program BOCOPHJB. Finally, the 

obtained optimal controller is verified with simulations. 

 
Index Terms—Neural networks, energy storage, islanded 

microgrid, optimal control, stochastic systems. 

 

NOMENCLATURE 

BES Battery energy storage. 

𝐶𝑚𝑖𝑛 Lower running constraint for SOC. 

𝐶𝑚𝑎𝑥 Upper running constraint for SOC. 

𝐶𝑚𝑖𝑛
𝑇  Lower terminal constraint for SOC. 

𝐶𝑚𝑎𝑥
𝑇  Upper terminal constraint for SOC. 

𝐶𝑃𝐿𝐸𝑇
𝑙𝑖𝑓𝑒

 Total PLET of BES. 

DEG Diesel engine generator. 

DOD Depth of discharge. 

FC Fuel cell. 

FES Flywheel energy storage. 

𝑘𝑃 Peukert lifetime constant. 

LOH Loss of health for BES. 

 

  Manuscript submitted August 8, 2017. This work was supported in part by 

National Natural Science Foundation of China (grant No. 61472200) and 

Beijing Municipal Science & Technology Commission (grant No. 

Z161100000416004). 

MT Micro-turbine. 

MG Microgrid. 

MLP Multilayer perceptron. 

MSE Mean square error. 

NMSE Normalized mean square error. 

NN Neural network. 

ODE Ordinary differential equation. 

𝑃𝐵𝐸𝑆 Input/output power of BES. 

𝑃𝐿 Load power. 

𝑃𝐿𝑝 Deterministic part of 𝑃𝐿. 

𝑃𝐿𝑒 Stochastic part of 𝑃𝐿. 

PLET Peukert lifetime energy throughput. 

𝑃𝑀𝑇 Output power of MTs. 

𝑃𝑀𝑎𝑥
MT  Maximum power of MTs. 

𝑃𝑀𝑖𝑛
𝑀𝑇  Minimum power of MTs. 

𝑃𝑖𝑛 Charging power of BES. 

𝑃𝑜𝑢𝑡 Discharging power of BES. 

𝑃𝑃𝑉 Output power of PVs. 

𝑃𝑃𝑉𝑇 Theoretical solar radiation power. 

PV Photovoltaic panel. 

𝑄𝑠 Capacity of BES. 

𝑟 Ratio of 𝑃𝑃𝑉 and 𝑃𝑃𝑉𝑇. 

𝑟𝑝 Deterministic part of 𝑟. 

𝑟𝑒 Stochastic part of 𝑟. 

𝑅2 Coefficient of determination. 

ReLU Rectified linear unit. 

RES Renewable energy source. 

SDE Stochastic differential equation. 

SOC State of charge. 

𝑇𝑀𝑇 Time constant of MTs. 

WTG Wind turbine generator. 

𝜂𝑖𝑛 Charging coefficient of BES. 

𝜂𝑜𝑢𝑡 Discharging coefficient of BES. 
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I. INTRODUCTION 

With the development of science and technology, human 

beings have consumed a great deal of fossil fuels in daily life. 

In recent years, since people are aware of the depletion of the 

fossil fuels as well as the environmental problems, RESs such 

as solar and wind power are widely used [1], [2]. Although 

RESs has advantages such as clean and sustainable, they have 

defects as well. The power generation by PVs and WTGs 

mainly depends on weather conditions which are time-varying 

and sometimes unpredictable. Thus, output power by PVs and 

WTGs is stochastic and intermittent [3]. In addition, the large 

reliance on weather conditions leads to weaker controllability 

of output power from PVs and WTGs, especially for the case of 

the distributed PVs and WTGs within a certain region. 

The concept of MG was proposed to integrate these 

distributed RESs into the existing power systems, such that they 

can be fully utilized [4], [5]. Normally, a MG is composed of 

loads, power generation devices and energy storage devices. 

MGs can function in the grid-connected mode. Alternatively, 

when disconnecting with the main grid, MG shall be able to 

function on its own, which is denoted as the islanded mode, or 

the off-grid mode [5], [6]. Within one MG, smart monitoring 

devices such as smart meters are set in loads, power generation 

devices and energy storage devices, such that the MG system 

parameters (e.g., power, voltage, etc.) can be obtained. There 

have been a variety of existing MG demonstration projects, e.g., 

the MG in Huatacondo, Chile; the MG project in Sendai, Japan; 

the PV MG system in Hangzhou, China, etc., [7], [8].  

The existence of vast RESs makes the dynamical system of 

MGs more complicated than that of the conventional power 

grids [3], [8], [9]. Particularly, the scenarios of islanded MGs 

involve a number of challenging problems worth considering. 

Up till now, there have been a great number of research outputs 

focusing on different aspects of islanded MGs. One of the 

outstanding issues is life time extension for BES devices in an 

islanded MG. 

Within the islanded MG, energy storage devices absorb the 

power deviation between power generation and consumption, 

such that power supply-demand balance in MG is achieved [10], 

[11]. Since most of the energy storage devices are relatively 

expensive [12], extending the service life of the energy storage 

devices has been regarded as a significant common target for 

electrical engineers. Study on the loss of energy storage devices 

can be found in [10], [13]. Capacity design and optimization of 

energy storage device have been investigated in [11], [12].  

In the field of MGs, the multi-objective optimization 

problems have been studied in [14], [15]. In terms of system 

modeling, power consumption of loads is discussed in [16], [17]; 

and the prediction model regarding the power generation by 

PVs has been investigated in [18]. 

The power forecast is another important issue in power 

systems. Typically, the stochastic nature of the RESs in MGs 

make it even more remarkable. The technique of NNs has been 

widely used in power forecasting tasks.  In [18], NNs are used 

to predict the PV output power. Deep learning techniques have 

been applied to predict the power change of loads [16]. It is 

notable that the drawback of only using NNs to model the 

power dynamics (e.g., [16], [18]) is that drastic fluctuations 

cannot be fully considered. 

Apart from the NN techniques, the stochastic process has also 

been widely employed to formulate the predictive power 

models. The theory of stochastic analysis was first applied to 

describe the dynamics of power systems in 1980s [19], [20]. 

Very recently, the application of SDEs in the field of system 

modeling for MG has attracted much attention, and significant 

advances on this topic have been made; readers can consult [7], 

[21]-[23]. It is notable that only using SDEs to describe the 

power dynamics of PVs, WTGs and loads is a tough task, since 

acquiring such complicated SDE is difficult and costly. 

In this paper, we consider an islanded MG which is composed 

of PVs, MTs, BES devices and loads. Our main purpose is to 

design controllers based on an accurate dynamic system of the 

considered MG, such that the service life of the BES devices 

can be extended. Firstly, by applying a hybrid modeling 

approach, the dynamic system of the considered islanded MG 

is obtained. Then, the target to extend the service life of 

batteries is formulated as a stochastic optimal control problem. 

It is notable that in the considered MG, the controllers are set in 

MTs only. We solve the stochastic optimization problem via the 

dynamic programming solver provided by the open source C++ 

program BOCOPHJB [24]. Finally, the obtained optimal 

controller is evaluated with numerical simulations.  

The importance and contribution of this paper can be 

highlighted as follows. 

1. Most of the related literatures concerning the lifetime 

extension of BES devices mainly focus on designing 

controllers in BES devices themselves; see, e.g., [10], [13]. 

In this paper, the problem of BES lifetime extension is 

considered from a different perspective by adjusting output 

power of controllable power generation devices. In the 

considered islanded MG, this target is achieved by designing 

control schemes for MTs. In this sense, the existing methods 

(e.g., [10], [13]) can still be implemented based on our 

proposed method, such that that the service life of BES 

devices can be further extended. 

2. Some constraints in practical power systems have been 

taken into account in the studied control problem. The output 

power of MTs are restricted within its capacity. In order to 

preserve the reaction ability of BES devices, upper and lower 

bounds are set for SOC. Under the proposed controller, the 

situation of over-control in MTs is avoided effectively. 

3. It is highlighted that our proposed method can be applied 

into more complicated MG scenarios (for example, MGs 

containing multiple WTGs, DEGs, FCs and FES devices) 

without essential difficulty. This is because the power models 

of WTGs are similar to that of PVs; power dynamics of 

controllable devices e.g., DEGs and FCs can be formulated 

as the linear ODEs similar to power dynamics of MTs; and 



the power dynamic equation of FES devices is very similar 

to that of BES devices; see, e.g., [9], [23]. 

4. Apart from the main contribution in this paper that 

successfully extends the service life of BES devices within 

an islanded MG, we have made some innovative 

developments on system modelling.  Different from most of 

the conventional articles using either stochastic processes or 

NNs to describe power dynamics, in this paper, the technique 

of utilizing both SDEs and NNs simultaneously has been 

proposed to establish an accurate power model for PVs and 

loads. Compared with the existing works that deal with the 

modeling of MGs using SDEs, e.g., [7], [21], our approach 

additionally introduces the MLP to model the power of PVs 

and loads. Compared with some existing works using NNs to 

model the power of PVs and loads, e.g., [16], [18], our 

approach additionally introduces SDE to include the drastic 

fluctuations. 

The rest of the paper is organized as follows. Section Ⅱ 

describes the modeling for the dynamics of the islanded MG. 

Section Ⅲ formulates the stochastic optimal control problem 

and introduces the approach to solving it numerically. Section 

Ⅳ provides some numerical simulations and summarizes the 

outcomes. Finally, the conclusion is presented in Section Ⅴ. 

II. SYSTEM MODELING OF ISLANDED MG 

In this section, we formulate the power models of PVs, loads, 

MTs and BES devices, by which we obtain the mathematical 

model of the considered islanded MG. 

A. The Components of the Islanded MG and the Source of 

Data 

The islanded MG considered in this paper is composed of 

distributed PVs, loads, MTs and BES devices. The controllers 

are assumed to be set in MTs only. Both PVs and BES devices 

are considered to be uncontrollable. Since the response time of 

batteries is much faster than that of MTs [25], [26], the drastic 

power fluctuations in islanded MG is absorbed by BES devices, 

rather than eliminated by MTs. The output power of MTs can 

be controlled to achieve a long-term power supply-demand 

balance in the islanded MG.  

The data used in this paper come from the database provided 

by Pecan Street Inc. [27]. We focus on totally 280 civilian 

buildings that joint the smart grid project in Austin, Texas, US. 

The daily power data of these buildings (PVs, loads) and the 

local weather data from January 1st to December 31st in 2016 

are obtained from [27]. The unit of PV power generation and 

power usage is kW and the power data are sampled at a 

frequency of 1/60 Hz. The weather data include weather 

summary, temperature, humidity, atmosphere pressure, wind 

speed, cloud cover and probability of precipitation, all of which 

are recorded once an hour. The theoretical solar irradiation is 

confirmed to be effective for PV power modeling [18]. Since 

the real solar irradiation data are not provided in the data source 

[27], the theoretical solar irradiation data calculated based on 

the geographic location and local time are used for the PV 

output power modeling.  

In the following subsections, the power models of PVs and 

loads are formulated based on real data [27], whereas the power 

models of MTs and BES devices are obtained according to the 

existing literatures [3] and [7], respectively. 

B. Power Modeling of PVs 

The PV output power curves normally contain drastic 

fluctuation, and the size of fluctuation varies during the day 

time. Since the output power of PVs is directly related with the 

power of solar irradiation, PV output power during night time 

is zero, leading to the failure of only using SDEs to model PV 

power for the whole day. Due to this feature, we propose a new 

method to describe PV output power. 

In order to describe such characteristics of PV output power, 

we propose the following model, 

 𝑃𝑃𝑉(𝑡) = 𝑃𝑃𝑉𝑇(𝑡)𝑟(𝑡), (1) 

where 𝑃𝑃𝑉(𝑡) stands for the output power of PVs at time 𝑡, and 

𝑃𝑃𝑉𝑇(𝑡)  represents the theoretical solar irradiation power 

received by PVs at time 𝑡 ignoring weather conditions. In (1), 

𝑟(𝑡)  is defined to be the ratio of 𝑃𝑃𝑉(𝑡)  and 𝑃𝑃𝑉𝑇(𝑡) . 

Mathematically, in order to obtain the power model of PVs, we 

have to find out the varying pattern of 𝑟(𝑡). 

We divide the varying pattern of 𝑟(𝑡) into two parts. The first 

part is 𝑟𝑝(𝑡), which represents for the overall trend. The second 

part is 𝑟𝑒(𝑡), which is the stochastic deviation. Mathematically, 

we have the following relationship, 

 𝑟(𝑡) = 𝑟𝑝(𝑡) + 𝑟𝑒(𝑡). (2) 

Next, we focus on finding the models of 𝑟𝑝(𝑡)  and 𝑟𝑒(𝑡) , 

respectively.  

Firstly, MLP is applied to obtain the model of 𝑟𝑝(𝑡). The 

detailed steps are given as follows. According to the working 

mechanism of PVs, weather conditions like temperature, cloud 

cover, etc., shall influence the PV output power, leading to the 

change of 𝑟𝑝(𝑡) . We assume that there exists a functional 

relationship between some of the above weather conditions and 

𝑟𝑝(𝑡). MLP is used to match such functional relationship. 

To find the weather data that are relevant with 𝑟𝑝(𝑡), we adopt 

the similar approach introduced in [18]. The smoothed 𝑟(𝑡) 
series (denoted as 𝑟𝑝

∗(𝑡)) are used as the approximated values 

of 𝑟𝑝(𝑡). We calculate the Pearson product-moment correlation 

coefficients (see Appendix A) between 𝑟𝑝(𝑡) and the weather 

data. The results are shown in Table I. 

According to Table I, we find that temperature, humidity, 

cloud cover and probability of precipitation have relatively 

strong relationship with 𝑟𝑝(𝑡) . Thus, we use the above four 

types of weather records as the input of the MLP and use the 

output of the network as the estimation of 𝑟𝑝(𝑡) . The MLP 



contains one input layer, one output layer and two hidden layers. 

The ReLU function is chosen as the activation function for 

neurons in the MLP network. We train such NNs with 

backpropagation (BP) algorithm such that the MSE between the 

outputs of the MLP and the target values 𝑟𝑝
∗(𝑡) is minimized. 

Then, we are able to regard the output of the NNs as 𝑟𝑝(𝑡). In 

this sense, the model of 𝑟𝑝(𝑡) is obtained. 

TABLE I    

THE CORRELATION COEFFICIENTS. 

Weather Information Correlation Coefficients 

Temperature 0.323 

Humidity −0.599 

Atmosphere Pressure 0.029 

Wind Speed −0.038 

Cloud Cover −0.617 

Probability of Precipitation −0.350 

 

The coefficient of determination 𝑅2 (see Appendix B) is used 

as the criteria to evaluate the prediction accuracy of the MLP 

model. We randomly select 20% of all valid data as the test set 

and the remaining as the training set. We perform the training 

and validation of the MLP on the training set and the test set, 

respectively. The 𝑅2  values for the trained MLP model are 

shown in Table Ⅱ. 

TABLE Ⅱ    

THE 𝑅2 VALUE OF THE ESTIMATION FOR 𝑟𝑝(𝑡). 

Data Set 𝑅2 

Training Set 0.718 

Test Set 0.712 

 

Next, we focus on obtaining the model of 𝑟𝑒(𝑡). We choose 

the continuous time SDE driven by Brownian motion to 

describe such stochasticity as follows, 

 d𝑟𝑒(𝑡) = 𝜇1𝑟𝑒(𝑡)d𝑡 + 𝜎1d𝑤1(𝑡), (3) 

where 𝑤1(𝑡)  is a standard Brownian motion, 𝜇1  and 𝜎1  are 

system parameters to be determined.  

Taking a small time step 𝛥𝑡, we obtain a discrete version of 

SDE (3) as follows, 

 𝛥𝑟𝑒(𝑡) = 𝜇1𝑟(𝑡)𝛥𝑡 + 𝜎1(𝑤1(𝑡 + 𝛥𝑡) − 𝑤1(𝑡)). (4) 

The term 𝛥𝑟𝑒(𝑡)in (4) represents the increment of 𝑟𝑒(𝑡)  at 

time 𝑡. According to the properties of Brownian motion, the 

increment 𝑤1(𝑡 +  𝛥𝑡) − 𝑤1(𝑡) follows the normal distribution 

𝒩(0, Δ𝑡). In this sense, we are able to calculate the transition 

probability 𝒫(𝑟𝑒(𝑡 +  𝛥𝑡)|𝑟𝑒(𝑡)). 

We estimate the values of 𝜇1  and 𝜎1  with the maximum 

likelihood estimation method. Suppose that there is a sample 

sequence set of 𝑟𝑒(𝑡) , which we denote as {𝑟e
0, 𝑟e

1, … , 𝑟𝑒
𝑁} . 

Given 𝜇1 and 𝜎1, the log-likelihood function is given in (5). 

 ln(𝐿(𝜇1, 𝜎1)) = ∑ ln(𝒫(𝑟𝑒
𝑡|𝑟𝑒

𝑡−1, 𝜇1, 𝜎1)).
𝑁
𝑡=1  (5) 

Next, we are about to find a pair of 𝜇1 and 𝜎1 that maximize 

ln(𝐿(𝜇1, 𝜎1)) . By assigning the two partial differential 

derivatives 
𝜕 ln(𝐿(𝜇1,𝜎1))

𝜕𝜇1
 and  

𝜕 ln(𝐿(𝜇1,𝜎1))

𝜕𝜎1
 to zero, we can find 

the solutions in (6). 

 {

𝜇1 =
∑ (𝑟𝑒

𝑡−𝑟𝑒
𝑡−1)𝑟𝑒

𝑡−1𝑁
𝑡=1

∑ 𝑟𝑒
𝑡−1𝛥𝑡𝑁

𝑡=1  
,

𝜎1 = √
∑ (𝑟𝑒

𝑡−𝑟𝑒
𝑡−1−𝜇1𝑟𝑒

𝑡−1𝛥𝑡)
2𝑁

𝑡=1

𝛥𝑡
.

 (6) 

Generally, under different weather conditions, for example, 

sunny or cloudy, the power generation of PVs would have some 

different characteristics. According to the records in [27], the 

weather conditions are roughly divided into four categories: 

rainy, sunny, partly cloudy and mostly cloudy. In order to 

achieve a better approximation for the dynamics of the PV 

power generation, we associate the power data with these 

different weather conditions and calculate the system 

parameters under different weather types. Parameters for (3) 

under different weathers are provided in Appendix C. 

 

Fig. 1. Typical simulated curves of the proposed PV power model. 

In Fig. 1, we plot one typical simulated power curve for our 

proposed PV power model together with the real PV power 

curve within the same day. In Fig. 1, the notation 𝑅𝑒𝑎𝑙 stands 

for the raw data of PV power in [27], and the notation 𝑀𝑜𝑑𝑒𝑙 
refers to one of the possible PV power curves obtained with our 

proposed method. The grey shadowed area in Fig. 1 stands for 

the most possible range of our proposed PV power model, 

mathematically referring to 𝑃𝑃𝑉𝑇(𝑡)𝑟𝑒(𝑡) . Obviously, the 

simulated examples are very close to the real data, which 

indicates the feasibility and reliability of the proposed PV 

power model. 

C. Power Modeling of Loads 

The variation of load power is closely related to the behavior 

of the inhabitants in each building. The random turning on and 

off of a large number of electrical devices will lead to load 

power deviations. So, it is difficult to use deterministic systems 

javascript:void(0);


to model the load power. Similar to the modeling of PV power, 

we suggest the following model, 

 𝑃𝐿(𝑡) = 𝑃𝐿𝑝(𝑡) + 𝑃𝐿𝑒(𝑡), (7) 

where 𝑃𝐿(𝑡) is the desired power model of loads, 𝑃𝐿𝑝(𝑡) is the 

overall trend of load power, and 𝑃𝐿𝑒(𝑡)  is the stochastic 

deviation of load power. 

Next, we focus on finding the models of 𝑃𝐿𝑝(𝑡) and 𝑃𝐿𝑒(𝑡), 

respectively. To avoid duplicated expression, we briefly 

introduce the following steps, since the main idea is similar to 

that of the PV power modeling. 

Firstly, we apply the MLP to obtain the model of 𝑃𝐿𝑝(𝑡). The 

structure and parameters of the MLP in this section are similar 

with the ones in the PV modeling. The MLP contains two 

hidden layers and uses ReLU as the activation function. We 

denote the smoothed load power data as 𝑃𝐿𝑝
∗ (𝑡) and treat 𝑃𝐿𝑝

∗ (𝑡) 

as the fitting target of the network output. 

Similar with the modeling of PV power, we choose some 

appropriate weather information as the inputs of the NNs. Then, 

we train such NNs with BP algorithm, such that the MSE 

between the outputs and 𝑃𝐿𝑝
∗ (𝑡) is minimized. Then, the outputs 

of the NNs are denoted as 𝑃𝐿𝑝(𝑡). To show the accuracy of the 

trained model, the 𝑅2  values for the estimation of 𝑃𝐿𝑃(𝑡) are 

shown in Table III. 

TABLE III  

THE 𝑅2 VALUE OF THE ESTIMATION FOR 𝑃𝐿𝑃(𝑡). 

Data Set 𝑅2 

Training Set 0.877 

Test Set 0.876 

 

Next, we focus on obtaining the model of 𝑃𝐿𝑒(𝑡). We choose 

the continuous SDE to describe such stochasticity. We have 

 d𝑃𝐿𝑒(𝑡) = 𝜇2𝑃𝐿𝑒(𝑡)d𝑡 + 𝜎2d𝑤2(𝑡). (8) 

The remaining approaches are similar to that of modeling 

𝑟𝑒(𝑡) for PV power from (4) to (6). Here, we omit the details. 

We combine the model of 𝑃𝐿𝑝(𝑡) with that of 𝑃𝐿𝑒(𝑡), then the 

power modeling of 𝑃𝐿(𝑡) is obtained. Based on the proposed 

load power model, we plot the estimation results of load power 

in Fig. 2. 

In Fig. 2, the notation 𝑅𝑒𝑎𝑙 stands for the real data of load 

power in [27], and the notation 𝑀𝑜𝑑𝑒𝑙  refers to one of the 

possible load power curves obtained using our proposed model. 

The grey shadowed area in Fig. 2 stands for the most possible 

range of our proposed load model, mathematically referring to 

𝑃𝐿𝑒(𝑡). 

 

Fig. 2. Typical simulated power curves of load. 

Obviously, the simulated examples are very close to the real 

data, which indicates the feasibility and reliability of the 

proposed load power model. 

D. The Power Modeling of MTs 

The MTs are able to provide stable electricity to the islanded 

MG, thus the output power of MTs is controllable [3]. In our 

considered islanded MG, when PVs cannot provide energy 

during the night time, MTs play a significant role in power 

supply side. 

In this paper, our purpose is to extend the service life of BES 

devices, and the core to achieve this is to make sure that the 

power deviation in BES devices is controlled within a certain 

range. Such requirement pushes us to design a controller in the 

operation system of the islanded MG. Since it is difficult to 

control the output power of the PVs directly [3], we assume that 

such controller is set in MTs only. The importance of setting 

controllers in MTs is that conventional control policies within 

the BES devices (e.g., [10], [13]) can still be implemented 

based on our proposed method. 

Similar to the power modeling of MTs introduced in [3], we 

adopt the following linear ODE to describe the power model for 

MTs, 

 d𝑃𝑀𝑇(𝑡) = −
1

𝑇𝑀𝑇
(𝑃𝑀𝑇(𝑡) − 𝑃𝑀𝑇

𝑀𝑎𝑥𝑢(𝑡))d𝑡, (9) 

where 𝑃𝑀𝑇(𝑡) is denoted as output power of MTs, whose value 

belongs to [0, 𝑃𝑀𝑇
Max]. The time-varying control input signal is 

denoted as 𝑢(𝑡).  

E. The Modeling of BES Devices. 

In general, the full capacity of BES devices will be gradually 

reduced during the whole battery lifetime [13]. Since our 

attention is only paid to the short-term dynamics of BES 

devices, the capacity loss of batteries is not taken into 

consideration in this paper. 

The SOC at time 𝑡 is denoted as 𝑆𝑂𝐶(𝑡), and 𝑆𝑂𝐶(𝑡) ∈ [0,1]. 
The power flow into (or, out of) the BES devices at time 𝑡 is 

denoted as 𝑃𝐵𝐸𝑆(𝑡). The charging and discharging power of 

BES devices can be obtained from (10) and (11), respectively. 

 𝑃𝑖𝑛(𝑡) = max(0, 𝑃𝐵𝐸𝑆(𝑡)), (10) 



 𝑃𝑜𝑢𝑡(𝑡) = max(0,−𝑃𝐵𝐸𝑆(𝑡)). (11) 

Similar to the modeling of energy storage devices in [28], we 

adopt the following ODE to describe the power model of BES 

devices, 

 d𝑆𝑂𝐶(𝑡) =
𝜂(𝑃𝐵𝐸𝑆(𝑡))𝑃𝐵𝐸𝑆(𝑡)

𝑄𝑆
d𝑡. (12) 

The coefficient 𝜂(𝑃𝐵𝐸𝑆(𝑡)) in (12) is defined as follows, 

 𝜂(𝑃𝐵𝐸𝑆(𝑡)) ≜ {
𝜂𝑖𝑛   ,   𝑃𝐵𝐸𝑆(𝑡) ≥ 0,

1/𝜂𝑜𝑢𝑡,   𝑃𝐵𝐸𝑆(𝑡) < 0.
 (13) 

The quantification criteria for the lifetime of BES devices is 

introduced in Section III-C. 

III. THE STOCHASTIC OPTIMAL CONTROL PROBLEM FOR 

ISLANDED MG  

In this section, we formulate the integrated islanded MG 

control system and the objective function mathematically. In 

this sense, the issue of extending the service life of BES devices 

is transformed into a stochastic optimal control problem which 

can be solved by the dynamic programming principle. 

A. The System Modeling of Islanded MG 

Based on the power modeling of PVs, loads, MTs, and BES 

devices, we suggest the following system for our considered 

islanded MG. Let (Ω, ℱ, 𝒫; ℱ𝑡)  be a given complete filtered 

probability space, where there exist two scalar Brownian 

motions 𝑤1(𝑡) and 𝑤2(𝑡), 0 ≤ 𝑡 ≤ 𝑇 . We assume that 𝑤1(𝑡) 
and 𝑤2(𝑡) are independent. Consider the following equations: 

 

{
 
 
 
 

 
 
 
 𝑃𝑃𝑉(𝑡) = 𝑃𝑃𝑉𝑇(𝑡) (𝑟𝑝(𝑡) + 𝑟𝑒(𝑡)) ,

𝑃𝐿(𝑡) = 𝑃𝐿𝑝(𝑡) + 𝑃𝐿𝑒(𝑡),

d𝑟𝑒(𝑡) = 𝜇1𝑟𝑒(𝑡)d𝑡 + 𝜎1d𝑤1(𝑡),

d𝑃𝐿𝑒(𝑡) = 𝜇2𝑃𝐿𝑒(𝑡)d𝑡 + 𝜎2d𝑤2(𝑡),

d𝑃𝑀𝑇(𝑡) = −
1

𝑇𝑀𝑇
(𝑃𝑀𝑇(𝑡) − 𝑃𝑀𝑇

𝑀𝑎𝑥𝑢(𝑡))𝑑𝑡,

d𝑆𝑂𝐶(𝑡) =
𝜂(𝑃𝐵𝐸𝑆(𝑡))𝑃𝐵𝐸𝑆(𝑡)

𝑄𝑆
d𝑡.

 (14) 

In general, the dynamic response time of BES devices is less 

than one second [9], [25]. Noticing that the proposed model 

describes the dynamics of the MG system at minute level, the 

power deviation could be absorbed by the BES devices almost 

instantly. Thus, the balance between power generation and 

consumption can be formulated by 

 𝑃𝑀𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) − 𝑃𝐿(𝑡) − 𝑃𝐵𝐸𝑆(𝑡) = 0. (15) 

Mathematically, (14) and (15) can be transformed into the 

following control system (16). We define an admissible 

controller 𝑢(⋅) to be any ℱ𝑡-adapted process under which (16) 

has a unique solution. The set of all admissible controls is 

denoted by 𝒰. We have 

 {
d𝑥(𝑡) = (𝐴𝑥(𝑡) + 𝐵𝑢(⋅) + 𝐶)d𝑡 + 𝐷d𝑊(𝑡),
𝑥(0) = 𝑥0,

 (16) 

where 𝑥(𝑡) = [𝑃𝐿𝑒(𝑡) 𝑟𝑒(𝑡) 𝑃𝑀𝑇(𝑡) 𝑆𝑂𝐶(𝑡)]′  is system 

state, 𝑢(⋅) is the control input. In the diffusion part of (16), the 

Brownian motion 𝑊(𝑡) = [𝑤1(𝑡) 𝑤2(𝑡)]′. 

System coefficients 𝐴, 𝐵, 𝐶, 𝐷 in (16) are of the following 

forms: 

𝐴 = [

𝜇2 0 0 0
0 𝜇1 0 0
0 0 −1/𝑇𝑀𝑇 0

−𝑎(𝑥(𝑡), 𝑡) 𝑎(𝑥(𝑡), 𝑡)𝑃𝑃𝑉𝑇(𝑡) 𝑎(𝑥(𝑡), 𝑡) 0

 ], 

𝐵 =

[
 
 
 
 
0
0

𝑃𝑀𝑇
𝑀𝑎𝑥

𝑇𝑀𝑇
0 ]
 
 
 
 

, 𝐶 = [

0
0
0

𝑐(𝑥(𝑡), 𝑡)

] , 𝐷 = [

𝜎2 0
0 𝜎1
0 0
0 0

]. 

Besides, we have  

𝑎(𝑥(𝑡), 𝑡) =
𝜂(𝑃𝐵𝐸𝑆(𝑡))

𝑄𝑆
, 

and  

𝑐(𝑥(𝑡), 𝑡) = 𝑎(𝑥(𝑡), 𝑡) (𝑟𝑝(𝑡)𝑃𝑃𝑉𝑇(𝑡) − 𝑃𝐿𝑝(𝑡)). 

B. Constraints for the Islanded MG Model 

Practically, SOC should be maintained within a proper range, 

such that power balance can be ensured in the islanded MG and 

the overcharge/over-discharge of BES devices can be avoided. 

We set the running constraints for the BES devices as 𝐶𝑀𝑖𝑛 ≤
𝑆𝑂𝐶(𝑡) ≤ 𝐶𝑀𝑎𝑥. In order that the BES is of adequate ability to 

deal with the power oscillation, the terminal constrains for SOC 

is set to be within a strict range 𝐶𝑀𝑖𝑛
𝑇 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝐶𝑀𝑎𝑥

𝑇 .  

On the other hand, the islanded MG system might become 

uncontrollable when all MTs are shut down. It costs a certain 

amount of fuel to turn MTs on as well. Besides, a certain 

amount of time is required for the MTs to restart [28]. To 

prevent these challenges, the minimum output power of MTs is 

set to be 𝑃𝑀𝑇
𝑀𝑖𝑛. 

The constraints for the MG system are given in (17) 

 𝑒1 ≤ 𝐸1𝑥(𝑡) ≤ 𝑒2,    𝑒3 ≤ 𝐸2𝑥(𝑇) ≤ 𝑒4, (17) 

where 

𝐸1 = [
0 0 1 0
0 0 0 1

 ] ,     𝐸2 = [0 0 0 1 ], 

𝑒1 = [
𝑃𝑀𝑇
𝑀𝑖𝑛

𝐶𝑀𝑖𝑛
],        𝑒2 = [

𝑃𝑀𝑇
𝑀𝑎𝑥

𝐶𝑀𝑎𝑥
], 



 𝑒3 = 𝐶𝑀𝑖𝑛
𝑇 ,        𝑒4 = 𝐶𝑀𝑎𝑥

𝑇 . 

C. The Formulation of Cost Function 

In general, the service life of BES devices refers to the battery 

cycle count during its normal operation. Since the total battery 

cycle count is limited and the BES devices are expensive [12], 

it is important to develop an optimal control scheme within 

MTs such that the BES devices can be utilized rationally. 

Mathematically, as long as the expected value for the lifetime 

loss of BES devices is minimized, we claim that the so-called 

BES rational utilization is achieved. 

A variety of criteria concerning the lifetime of BES devices 

have been discussed in existing literatures. For example, in [13], 

the charging/discharging power of BES devices as well as the 

deviation of SOC are taken into account. In [10], the Peukert 

lifetime energy throughput (PLET) model is used to measure 

the decrement of BES lifetime. In this paper, we employ the 

PLET model introduced in [10] as the criterion to evaluate the 

loss of BES devices. 

In the PLET model, the BES lifetime is relevant with 𝐶𝑃𝐿𝐸𝑇
𝑙𝑖𝑓𝑒

 

which is defined in (18), 

 𝐶𝑃𝐿𝐸𝑇
𝑙𝑖𝑓𝑒

≜ 𝑛𝑑𝑘𝑃 , (18) 

where 𝑑 is DOD of BES devices (𝐷𝑂𝐷 = 1 − 𝑆𝑂𝐶); 𝑛 is the 

total number of charging/discharging cycles during the lifetime 

of BES devices [10]. According to [10], 𝑘𝑃 is typically in range 

of 1.1 to 1.3, and the total energy throughput 𝐶𝑃𝐿𝐸𝑇
𝑙𝑖𝑓𝑒

 is almost 

constant for any specific 𝑑. Thus, it can be used to measure the 

LOH for BES devices [10]. 

Consider the 𝑖th discharge process of BES devices during the 

time period 𝑡 ∈ [0, 𝑇]. The DOD of this process is assumed to 

be 𝑑𝑖 = ∑ Δ𝑑𝑖,𝑗𝑗 . According to [10], the following formula is 

established, 

 argmin(𝑑𝑖
𝑘𝑃) ≈ argmin (∑ (Δ𝑑𝑖,𝑗)

𝑘𝑃
𝑗 ). (19) 

For the PLET increment Δ𝑐𝑃𝐿𝐸𝑇 in the considered time period 

can be further approximated with (20). 

 Δ𝑐𝑃𝐿𝐸𝑇 ≈ ∑ ∑ (Δ𝑑𝑖,𝑗)
𝑘𝑃

𝑗 ≈ ∫ (
𝑃𝑜𝑢𝑡(𝑡)

𝜂𝑜𝑢𝑡𝑄𝑆
)
𝑘𝑃
d𝑡

𝑇

0
.𝑖  (20) 

The LOH within a considered period can be calculated with  

 𝐿𝑂𝐻(%) =
Δ𝑐𝑃𝐿𝐸𝑇

𝐶𝑃𝐿𝐸𝑇
𝑙𝑖𝑓𝑒 × 100%. (21) 

Large growth of LOH implies fast decrease of BES lifetime. 

In order to extend the service life of BES devices, LOH should 

be minimized. Meanwhile, instead of setting controllers in BES 

devices (e.g., [10], [13]), in this paper, the control target is 

considered within the scope of the whole MG, and the controller 

is set in MTs. Thus, the control cost for MTs shall be considered 

while minimizing the LOH of BES devices. 

To achieve the trade-off between the lifetime extension of 

BES and the rational utilization of MTs, the objective cost 

function 𝐽(0, 𝑥(0); 𝑢(⋅)) is defined as follows, (time 𝑡 omitted) 

 𝐽(0, 𝑥(0); 𝑢(⋅)) ≜ 𝔼 [∫ [(
𝑃𝑜𝑢𝑡(𝑡)

𝜂𝑜𝑢𝑡𝑄𝑆
)
𝑘𝑃
+ 𝛼𝑢2] d𝑡

𝑇

0
], (22) 

where 𝔼 stands for the mathematical expectation, and 𝛼  is a 

weighting coefficient for the controller in MTs. It is notable that 

system state 𝑥(𝑡) is a stochastic process. Thus, the associated 

cost function must be measured by its expected value. The first 

integrant (
𝑃𝑜𝑢𝑡(𝑡)

𝜂𝑜𝑢𝑡𝑄𝑆
)
𝑘𝑃

 in (22) is used to calculate the LOH of 

BES at each time step. The second integrant 𝛼𝑢2 in (22) is used 

to restrict the strength of the controller such that the situation of 

over-control is avoided.  

Our target is to find an optimal control policy for MTs such 

that the cost function 𝐽(0, 𝑥(0); 𝑢(⋅)) is minimized. 

D. Solving the Stochastic Optimal Control Problem 

Now we have transformed our practical scenario into a 

stochastic optimal control problem. Our aim is to minimize the 

cost function 𝐽(0, 𝑥(0); 𝑢(⋅)) subject to (s.t.) (16) and (17), i.e., 

 

min
𝑢(⋅)∈𝒰

 𝐽(0, 𝑥(0); 𝑢(⋅)), 

s. t. d𝑥(𝑡) = (𝐴𝑥(𝑡) + 𝐵𝑢(⋅) + 𝐶)d𝑡 + 𝐷d𝑊(𝑡), 
 𝑒1 ≤ 𝐸1𝑥(𝑡) ≤ 𝑒2, 
 𝑒3 ≤ 𝐸2𝑥(𝑇) ≤ 𝑒4, 

  (23) 

where 𝑥(0) = 𝑥0. 

An admissible pair (𝑥∗(⋅), 𝑢∗(⋅)) is called optimal (w.r.t. the 

initial condition (0, 𝑥0)  if 𝑢∗(⋅)  achieves the infimum of 

𝐽(𝑡, 𝑥(𝑡); 𝑢(⋅)) in (23). 

Using the BOCOPHJB toolbox [24], through discretization 

and dynamic programming techniques, the proposed optimal 

control problem (23) is solved. 

Remark:  The disadvantage of the BOCOPHJB toolbox is that 

the complexity of computation and storage space might 

increase exponentially with the increase of the system’s 

dimension. In this paper, the system that we studied is 4-

dimensional, which is acceptable for the application of the 

BOCOPHJB toolbox. 

IV. NUMERICAL SIMULATIONS 

In this section, numerical simulations are provided to show 

the feasibility and effectiveness of the proposed method. 

The time range for the simulation is set to be [8,18] (hours) 

and the time step is set to be 30s. The MG model obtained in 

Section II is used to generate the power dynamics of PVs and 



loads for simulations. The initial value of SOC is assigned to be 

0.6. Data on August 21st 2016 in [27] are chosen for simulation. 

According to the records, the weather during that period 

belongs to the rainy case. The basic system parameters for 

simulation are shown in Table IV.  

TABLE IV 

SYSTEM PARAMETERS 

Parameters Values Parameters Values 

𝑇𝑀𝑇 3 𝑚𝑖𝑛 𝐶𝑀𝑖𝑛 0.3 

𝑃𝑀𝑎𝑥
𝑀𝑇  600 𝑘𝑊 𝐶𝑀𝑎𝑥 0.8 

𝑃𝑀𝑖𝑛
𝑀𝑇  6 𝑘𝑊 𝐶𝑀𝑖𝑛

T  0.5 

𝐶𝑃𝐿𝐸𝑇
𝑙𝑖𝑓𝑒

 605.23 𝐶𝑀𝑎𝑥
𝑇  0.8 

𝑘𝑃 1.15 𝜂𝑖𝑛 0.97 

𝛼 0.1 𝜂𝑜𝑢𝑡 0.95 

𝑄𝑆 500 𝑘𝑊ℎ   

 

Additionally, to show the advantages of the proposed 

stochastic system model over the conventional deterministic 

one, the simulation results under the corresponding 

deterministic controller is provided. To obtain the deterministic 

controller, the deterministic system degenerated from (23) is 

taken into consideration. Here, degenerated means that the 

volatility term  𝐷d𝑊(𝑡)  in (23) is eliminated. Thus, the 

stochastic characteristics of the islanded MG system are not 

considered in the degenerated system. 

Both of the deterministic and stochastic control schemes are 

obtained with the solver provided in [24]. To demonstrate the 

advantages of our proposed method, the performances of the 

control schemes for the stochastic system and the degenerated 

deterministic system are evaluated in same environment.  

A. Simulation under the Proposed Control Scheme 

The power dynamics of PVs, MTs and loads under the 

proposed control scheme are illustrated in Fig. 3. The SOC 

curve under the proposed control law is illustrated in Fig. 4.  

 

Fig. 3. Power dynamics of PVs, MTs and loads under the proposed control 

scheme. 

The value of the cost function in this simulation is 66.798. 

The LOH in this simulation is 0.02689%. The average LOH in 

200 simulations is 0.02875%. 

 

Fig. 4. The SOC curve of BES devices under the proposed control scheme. 

B. Simulation under the Deterministic Control Scheme 

The SOC curve under the optimal control law is illustrated in 

Fig. 5.  

 

Fig. 5. The SOC curve of BES devices under deterministic control scheme. 

The value of the cost function in this simulation is 75.100. 

The LOH in this simulation is 0.03025%. The average LOH in 

200 rounds of simulation is 0.03694%. 

The dynamics of SOC in Fig. 4 and Fig. 5 show that under the 

proposed control scheme, the cumulative energy throughput of 

BES devices is smaller than that via the deterministic control 

scheme. In this sense, the lifetime of the BES devices can be 

further prolonged via the proposed control scheme. It is clear 

that the value of cost function for the stochastic control scheme 

is smaller. Besides, both of the single and average LOH under 

the proposed scheme is smaller than that under the deterministic 

one. 

With the above simulation results, the advantages of the 

proposed stochastic control method for the lifetime extension 

of BES devices are demonstrated. Although the general trends 

of the PV power and load power are taken into account in the 

deterministic control scheme, the deterministic controller does 

not impair the losses of BES devices conspicuously. Oppositely, 

our proposed control method effectively reduces the LOH for 

BES devices in the simulations. 

According to the comparison and analysis of the above 

simulated results, the proposed control method for the 

investigated stochastic optimal control problem appears to be 



effective. The reasonable utilization of BES devices is achieved 

along with the normal operation of the islanded MG. 

V. CONCLUSIONS 

In summary, we transform the practical islanded MG system 

into a class of stochastic control systems. We formulate a 

stochastic optimization problem such that the LOH for the BES 

in the studied MG is minimized. Meanwhile, the SOC is 

controlled within a reasonable range. It is highlighted that a new 

hybrid method modeling the power of PVs and loads is 

proposed using both NNs and SDEs simultaneously. By using 

the proposed control scheme, the service life of BES devices 

can be effectively extended. The numerical simulations 

demonstrate the usefulness of our proposed approach. 

In order to apply the proposed approach to more complicated 

scenarios, designing more accurate and efficient algorithms for 

the solution of the proposed stochastic optimal control problem 

will be the main direction for our future work. 

APPENDIX 

A. Pearson Product-Moment Correlation Coefficient 

Assuming that there are totally 𝑁 pairs of data 𝑋 and 𝑌, The 

Pearson product-moment correlation coefficient between 𝑋 and 

𝑌 are calculated by 

𝑅 =
∑ (𝑋𝑖 − �̅�) × (𝑌𝑖 − �̅�)
𝑁
𝑖=1

√∑ (𝑋𝑖 − �̅�)
2𝑁

𝑖=1 × √∑ (𝑌𝑖 − �̅�)
2𝑁

𝑖=1

, 

where 𝑅 is the Pearson product-moment correlation coefficient; 

�̅� and �̅� stand for the average values of 𝑋 and 𝑌, respectively.  

B. Coefficient of Determination 

Assuming that there are a series of data {𝑦(𝑡𝑘), 𝑘 =
1,2, … , 𝑁}  and the estimated value {�̂�(𝑡𝑘), 𝑘 = 1,2,… , 𝑁} 
which is obtained with a predictive model 𝑀. The coefficient of 

determination 𝑅2  for these estimations from model 𝑀  is 

calculated with the following formula 

𝑅2 = 1 −
∑ (ŷ(𝑡𝑘) − 𝑦(𝑡𝑘))

2𝑁
𝑘=1

∑ (y(𝑡𝑘) − �̅�)
2𝑁

𝑘=1

, 

where �̅�  is the mean value of the data series {𝑦(𝑡𝑘), 𝑘 =
1,2, … , 𝑁}. 

C. Parameters for Power Models of PVs and Loads 

TABLE V 

PARAMETERS FOR POWER MODELS OF PVS AND LOADS IN FOUR WEATHER 

TYPES. 

Parameters 

Weather Types 

Rainy Sunny 
Partly 

cloudy 

Mostly 

cloudy 

𝜇1 −2.459 −3.278 −1.987 −4.896 
𝜎1 0.151 0.095 0.148 0.189 
𝜇2 −0.520 −0.726 −0.515 −0.579 
𝜎2 44.80 38.16 40.38 47.44 
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