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Grid middleware development has advanced rapidly over the past few
years to support component-based programming models and service-orientated
architectures. This is most evident with the forthcoming release of the Globus
toolkit (GT4) which represents a convergence of concepts (and standards) from the
web services community. Grid applications are increasingly modular, composed of
workflow descriptions that can feature both resource and application dynamism.
To manage workflow effectively, it is advantageous to understand the performance
implications of executing individual tasks in a given configuration to ensure that
specific qualities of service are achieved across the entire flow. In this work, a
multi-tiered workflow management system is described. The system couples a
performance modelling tool with local and global scheduling algorithms that aim

to meet user-specified deadlines while resolving user and resource conflicts.
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1. INTRODUCTION

Grid computing has undergone a number of signifi-
cant changes in a relatively brief time-frame [1]. With
tremendous community effort, supporting grid mid-
dleware has expanded significantly from rudimentary
batch processing front-ends to fully distributed compo-
nents with complex scheduling, reservation and infor-
mation sharing facilities. Central to this evolutionary
process have been the releases of the Globus toolkit [2],
which represents the de-facto platform for grid applica-
tions. With the imminent release of GT4, grid comput-
ing moves closer towards web services frameworks [3],
where applications are increasingly dynamic, modular
and service-orientated.

Component-based systems typically require workflow
descriptions that reflect both organisational and
technical boundaries. Applications may span multiple
administrative domains in order to obtain specific
data or to utilise specific processing capabilities.
Equally, applications may wish to select components
from a particular domain to increase throughput or
reduce execution costs. In the grid context for
example, an application may have limited choice in
data acquisition (possibly requiring a particular type
of instrumentation), but more scope for data post-
processing (which requires a cluster of commodity
processors). A further level of decomposition may exist
within the organisation or domain, where individual
task atoms are composed to provide the overall service.

Managing workflow is complex and currently the

subject of many research projects. The reasons for
this are manifold: component architectures encourage
code re-use, the ability to build dynamic applications
is attractive to active middleware developers and it
is a natural way to utilise services in a manner that
promotes inter-organisation collaboration. Much of the
existing work focuses on workflow languages and how
they describes component features and facilities. These
languages typically support a variety of operators to
express the workflow, with methods to compile (or
translate) these descriptions into a working application.
In addition, they often describe various input and
output conventions used to inter-connect components.

The migration to component-based systems, orches-
trated by a workflow management system, has interest-
ing consequences for the performance community. First,
the performance implications will become increasingly
difficult to evaluate as applications are constructed from
components that are deeply de-coupled and widely dis-
tributed. It will require an understanding of the im-
pact of executing complex applications on different ar-
chitectures under dynamic load conditions, as well as
the communication and data-transfer effects. There are
a number of performance evaluation techniques that are
useful and can be applied to this type of activity in-
cluding simulation-based approaches [8] and analytical
modelling techniques [5, 6]. In certain conditions, his-
torical data is applicable, although usually a hybrid ap-
proach is required to allow some form of performance
parameterisation [4].

A second performance criterion relates to a strength-
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ening of the quality-of-service (QoS) characteristics
and the implications to the anticipated ‘grid user’.
Grid users were traditionally perceived as being mem-
bers of academic scientific collaborations with relatively
straightforward requirements in terms of service quality.
As the commercial features of web services have influ-
enced Grid middleware design, QoS support has been
extended to offer a range of additional facilities. Timeli-
ness, response and experimental accuracy may be differ-
entiating factors for grid resource providers and future
grid users. These factors are closely associated with
grid performability [7].

Grid workload management systems can be consid-
ered as a supplementary layer to existing grid sched-
ulers, an area of research that is well established in the
grid community. One such system, Pegasus [9], gener-
ates scripts that Condor’s [10] DAGman [11] can use
in order to execute local tasks. Layering systems in
this manner is often seen in grid work and a customary
approach while standards are agreed. In the interim, a
number of systems (such as ICENI [12]) use proprietary
mechanisms to handle workflow, and include interac-
tive workflow designers, solvers and execution modules
to build, plan and execute applications end-to-end. As
standard languages develop, it is important to consider
the performance effects at all stages in a component’s
lifetime, including the workflow actuation phase. As
evident in work on grid scheduling, significant gains to
service quality can be made when application and user
behaviour is predicted.

The system described in this paper is an extension
to an existing grid scheduling system [13] that maps
tasks to appropriate resources based on their expected
performance behaviour. The system does not prescribe
any particular workflow language, neither is it tied to
any particular implementation. The purpose of the
scheduler is to predict how an application workflow
will behave a priori, permitting stronger assertions
regarding quality of service. The research described
in this paper uses an analytical modelling system [6]
to anticipate component behaviour given a particular
resource configuration. This assumes that the models
are sufficiently parameterised and produce performance
data of reasonable fidelity. While these factors can
be problematic when users submit custom code (as
in batch processing systems) the use of components
is helpful in this context as high quality performance
models can be written by a performance specialist when
the component is developed.

The paper is organised as follows: section 2
introduces the grid workflow management problem and
describes the Warwick architecture and the supporting
performance service; section 3 includes a detailed
account of the local and global scheduling algorithms.
Section 4 evaluates the system and provides supporting
experimental results. Related work and conclusions are
documented in sections 5 and 6.
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FIGURE 1. The multi-tiered workflow management
architecture. Grid level is used to describe inter-domain
resource balancing. Local level is used to describe the
mapping of tasks to resources.

2. GRID WORKFLOW MANAGEMENT

Workflow management systems have been the subject
of research for a number of years (see [9, 11, 14, 15]),
but have grown in popularity since the advent of web
services and more recently grid computing. Pioneering
work in the grid community has allowed applications
to be distributed across different domains to form
virtualised applications. This promotes collaboration,
a key goal in grid computing, as it improves the
ability to co-ordinate resources and share data. The
challenges with grid workflow involve the traditional
problems related to wide-scale virtualisation: cross-
domain management, where processes in the grid
traverse different domains of administration; and
dynamic state, where the availability and performance
of grid resources may vary significantly over time.

Maintaining QoS targets for a flow of tasks across
different domains can create resource and user conflicts
that are potentially more severe than in single task
scheduling. User conflicts can occur when a user in
one domain have a priority that does not equate to
a priority in a foreign domain, or in which there is
not the same level of privilege. In this case it is
necessary to map user classes from one domain to
another based on a set of definable characteristics.
Inevitably, this sort of mapping is the responsibility of
the domain administrator and depends on the required
behaviour. Similarly, resource conflicts can occur when
tasks from one workflow require systems in use by
another workflow.

Previous work at Warwick addressed similar issues
with the development of multi-tiered workload manage-
ment system that consists of a local scheduler [13] for
managing applications on physical resources and a grid
scheduler [16, 17] that uses a hierarchy of brokers to load
balance across distributed domains. Performance mod-
els were developed for both scheduled applications and
the underlying resources to assist in workload place-
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ment decisions. This system, known as TITAN, pro-
vides a solid basis for managing more complex applica-
tions with associated topologies (workflow). The eval-
uation of these performance models provides a level of
performance awareness that can be used to enhance ser-
vice quality and the two-tiered architecture assists in
handling workflows across domains.

The distinction between handling tasks at the local
and grid level is crucial: local resources must be
managed in order to obtain good resource utilisation
and throughput. It is the responsibility of the local
scheduler to map individual tasks to resources. A grid
level scheduler operates across domains to move task
sequences to suitable resources that can meet service
quality constraints. This is used to provide a general
load balancing effect where faster architectures can
accommodate a greater proportion of the workload.
Figure 1 illustrates the system architecture with brokers
at the grid level, schedulers at the local level and
resources as the underlying processing systems.

Local resource owners are interested in their own
systems and how these resources are utilised. However,
the emphasis (or balance) of system parameters may
be different depending on the particular domain. One
environment might offer a system that aims to move
jobs through the system rapidly (high throughput),
with users treated on an equal basis. Individual task
deadlines may be considered less important than the
overall system throughput. A second environment
may have different domain criteria: deadlines should
always be met (or at least a good attempt undertaken)
with a reasonably good throughput, otherwise the
domain is limited on how many customers can be
accommodated. The local system developed in this
work is based on a genetic algorithm (GA) that uses
a fitness function that can be adapted to suit various
requirements for scheduling. A tuple of deadline, idle-
time and end-to-end time is weighted to provide a
single penalty measure that can select ‘good quality’
schedules from a population of candidate solutions. The
GA uses a coding scheme that facilities interdependent
relationships and workflow, while the deadlines are
based on penalty cost functions that are shaped on ‘user
class’.

Management at the grid level faces a slightly different
problem. Brokers are used to exchange tasks to create
a load balancing effect and advertise the capabilities of
their local domains to other brokers. A compromise
exists between executing tasks locally (possibly for
economic or contractual reasons) as well as locating
more appropriate remote resources that might better
meet deadlines. There are a number of higher level
issues involved with multi-domain management that are
not considered in this work including trust, allegiances
and economic cost models [18]. Performance models can
still assist at this level as they allow brokers to speculate
on the potential performance of a remote resource, given
appropriate parameterisation. In a workflow scenario

this is important as the consequences of misplacement
can have far-reaching effects across different domains.

2.1. Workflow Definition

In this work, workflows are considered both abstractly
and hierarchically. At the atomic level are tasks that are
composed into intra-domain applications referred to as
sub-workflows. Sub-workflows can then be connected
into workflows that represent the entire application.
Relationships between tasks and sub-workflows include
continuation operators, forks and joins. In practice an
XML script is used to describe workflows and this is
based on the ANT Java build tool [19], which provides
a mechanism for representing runnable applications
with dependencies. The choice of workflow language
is independent of this work; here we concentrate on the
performance model and scheduling characteristics.

Tasks: Tasks are the basic building blocks of
the application in the grid workflow. They are the
individual components or jobs that are executed on a
local grid resource. They are typically MPI tasks that
execute on multiple processors and can be shaped by
the GA to change the level of parallelism. By selecting
an appropriate mapping for the task, good quality
schedules can be constructed that meet the various QoS
requirements.

Sub-workflows: A sub-workflow is a sequence of
closely related tasks that are executed in a predefined
order on local grid resources. This typically occurs
when there is significant communication between two
components and where it is unlikely that decomposition
across domains will improve application response.
Again, the GA has some freedom to reorganise
the task order as long as it does not change the
application’s task precedence. Conflicts occur when
tasks from different sub-workflows require the same
resource simultaneously, and it is the responsibility of
the GA to manage this interleaving.

Workflows: A grid application can be represented as
a sequence of several different activities represented by
sub-workflows. These activities are loosely coupled and
may require multi-sited grid resources.

Figure 2 illustrates the structure of the TITAN
workflow management system. Workflow descriptions,
which define each of the tasks with clearly defined
pre- and post-activities, enter the system at the portal
level and are passed to a broker. The broker runs an
initial execution simulation of the workflow using the
local performance service and neighbouring brokers to
develop a preliminary schedule. The simulation results
can be returned to the portal for user agreement or
executed directly.

The actual execution of the workflow may diverge
from the simulation due to the dynamic nature of
the grid environment. Where significant changes have
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FIGURE 2. Key components in the TITAN architecture.
Workflow descriptions are submitted to a broker, which
locates a suitable resource set and passes the sub-workflow
scripts to a local scheduler.

occurred, the workflow may be sent back to the
simulation engine and rescheduled. Scheduling the sub-
workflow at the local resource level is similar to the
global process except that the local grid sub-workflow
scheduling has to deal with multiple tasks that may
belong to different sub-workflows. The execution times
have to be estimated with the extra consideration of
conflicts, which may occur when multiple tasks require
the same grid resource at the same time.

2.2. The PACE Performance Service

Central to this work is ability to anticipate how
components will behave on a particular architecture in
a given configuration. The Performance Analysis and
Characterisation Environment (PACE [6]) is used to
develop high-fidelity models that are used to drive the
decision making processes at all levels in the system.
While the accuracy of the models has a direct influence
on how effective the scheduling system is, it is possible
to develop good quality models due to the reusable
nature of component-based systems.

The PACE toolkit is based around an evaluation
engine that takes separate resource and application
models as inputs and is able to predict the execution
time of a task prior to run time. A task’s
scalability (execution time vs. level of parallelism)
can be determined using PACE. In the majority of
cases, the product of a tasks execution time and the
number of processors it occupies are not constant and
so PACE can be used to explore different run-time
scenarios. This is useful for strong-scaling applications

Application 
Characterisation

Application 
Objects

Subtask 
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Parallel 
Template 
Objects

Hardware 
Characterisation

PACE Client
PACE Clients

SOAP Request SOAP Response

PACE Grid Frontend

Evaluation 
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FIGURE 3. Key PACE components. Clients connect
to a PACE performance service which runs inside an
OGSA/OGSI container. This in turn compiles, caches and
evaluates model objects using the PACE back-end tools.

to prevent them over-occupying a local resource by
using more processors than is necessary and is especially
apparent where the execution time may not be inversely
proportional to the allocated size due to the presence
of communication among components.

Due to the separation of resource and application
models, it is possible for brokers to execute ‘what-if’
scenarios to identify how a sub-workflow will behave
on a foreign architecture prior to runtime. This can
be used to construct a preliminary workflow schedule.
Each broker makes a resource model available as an
‘advert’ of its local scheduler. It can then share this
model with neighbouring brokers.

To integrate with existing grid middleware, PACE
is made available as a grid service through a front-
end that lies between the existing toolkit and grid
clients (including TITAN). Clients are able to invoke
models and query the PACE evaluation engine using
this interface, which currently runs inside a GT3
container. The performance service itself consists
of a grid service factory [20], which can create
application model instances that encapsulate the
computation and communication behaviour inside a
component using a combination of static code analysis
and instrumentation. Resource descriptions are
also installed which model the processing capability,
cache behaviour and network performance. When
combined, the models form an evaluation engine
instance with which clients interact to obtain the
relevant performance information.

The instance can be used by passing model
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FIGURE 4. 2D coding scheme which forms the basis
of the GA evaluation and evolutionary phases. Task
orders are represented as an m-ary array of task identifiers,
with a corresponding binary representation in the processor
dimension.

parameters to a queryModel function that returns the
expected execution time. A fundamental property is the
expected number of processors. The GA adjusts this
parameter in order to improve throughput, utilisation
and deadline response by improving the interleaving of
each sub-workflow. Where appropriate, other variables
can be modified by the GA, this includes application
parameters that affect runtime, such as the resolution
of a grid in a weak-scaled code for example.

Figure 3 illustrates the structure of the PACE toolkit
and its architecture as a grid service. Multiple clients
can connect through the container to install application
and resource models as well as communicate with the
evaluation engine.

3. THE GRID WORKFLOW SYSTEM

This section introduces the workflow management
system that is responsible for analysing work flow
descriptions and apportioning them to particular
resources. Initially a local level algorithm is introduced,
this shapes the tasks in a sub-workflow so that it
uses appropriate resources within a cluster as guided
by the analytical performance models. At this level
it is necessary to ensure that tasks are run in an
appropriate order (depending on the sub-workflow) and
that deadlines and inter-dependant relationships are
maintained. Following the local level, the grid level load
balancing algorithm is described. The grid-level works
across domains and makes use of a different algorithm
which aims to find appropriate resources (not necessary
the best) using a system of relaxing deadlines.

3.1. The Genetic Algorithm

A genetic algorithm is used by TITAN which forms the
basis of the local workflow system. A two dimensional
coding scheme is used to represent a schedule of parallel
jobs in a cluster. Each column in the coding scheme
specifies the allocation of processing nodes to a parallel
job, while the order of these columns in the coding is
the preferred sequence in which the corresponding jobs
are to be executed. An example is given in Figure 4
and illustrates the coding for a small (6 task) schedule
with associated processor mappings.

The task order sequence specified in the coding
is termed the preferential task order as it may not
represent the actual task sequence in time. Earlier task
allocations that utilise resources that a current task
requires may prevent the task from running, allowing a
later sequenced task to operate instead. Such artefacts
are discovered when the coding is transformed into
the time domain as part of the schedule composition
process. The coding scheme in Figure 4, for example,
contains a blocked processor so that task 6 executes
earlier than task 1, despite being later in the coding
sequence. This transformation is also used to handle
task dependencies and inter-task relationships.

In order to transform the coding into time, each
task identifier (with its allocated processor maps) is
passed to the PACE performance service to obtain an
estimation of the application runtime. The expected
time and host allocations can then be used to build
a schedule for subsequent evaluation. A schedule
is evaluated using three metrics: cumulative over-
deadline, schedule end-to-end time and cumulative
idle-time. These metrics are combined with domain-
controlled weights to form a single comprehensive
penalty metric (denoted by CP ). CP is defined in
Equation 1 where Γ, ω and θ are makespan, idle-
time and over-deadline, respectively; and W i, Wm and
W c are their associated weights. For a given weight
combination, the lower the value of CP , the better the
comprehensive performance of the schedule.

CPk =
(W i ∗ Γk) + (Wm ∗ ωk) + (W c ∗ θk)

W i + Wm + W c
(1)

TITAN uses the GA to find a schedule with a low CP .
The algorithm first generates a set of random schedules
with what is felt are reasonable properties (early
deadline first etc.). The performance of a schedule,
evaluated by the CP , is normalised to a fitness function
using a dynamic scaling technique which is shown in
Equation 2: where CPmin and CPmax represent the
best and the worst comprehensive performance in the
schedule solution set; and CPk is the penalty of the k-th
schedule.

fk =
CPmax − CPk

CPmax − CPmin
(2)

The GA uses fk to determine the probability that
the schedule is selected to create the next generation.
Schedules with good comprehensive performance have
a far greater chance of being selected than poorer
schedules. Crossover and mutation operations are
performed to generate the next generation of the
current schedule set, this continues until the variation
in CP stabilises (diversity → 0) or a pre-set number of
iterations have occurred.

The crossover operation selects two schedules from
the current schedule set, cuts the schedules at a random
location, merges the head portion of one schedule

The Computer Journal, Vol. ??, No. ??, ????



6 D.P. Spooner, J. Cao, S.A. Jarvis, L. He, G.R. Nudd

1 1 1 1 0 0

1 1 1 0 0 0

0 0 0 0 1 1

0 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 1 0

T3 T1 T6 T2 T5 T4

Processors

Task Order

0 0 1 1 0 0 

1 1 1 0 0 0

1 1 1 1 0 0

0 0 0 1 1 1

T6 T3 T1 T2

Processors

1 1 0 0 0 0

0 0 1 1 1 0

T4
Task Order

T5

G
en

er
at

io
n

FIGURE 5. The crossover operator which merges the tail
of one schedule with the head another. Where tasks are
duplicated, the crossover process is reversed.

with the tail portion of the other and then reorders
the schedules to produce two legitimate children; this
process is illustrated in Figure 5. The mutation
operation consists of two parts; one exchanges the
execution order of two randomly selected jobs, while the
other involves randomly adjusting jobs sizes as well as
the allocation to host computers. The probability that
these adjustments are inherited depends on whether
they lead to performance improvements as well as
the extent of the improvement. The probabilities of
performing crossover and mutation are predetermined.

Using a GA with the concept of a fitness function
to reward good quality schedules has been applied to
a number of machine task processing problems [21].
However, its application in this case is useful because it
has the ability to integrate well with the performance
tool and be guided by multiple metrics. This has
implications for both user class designation (how
important a user is) and how the domain controller
prioritises scheduled work (resource utilisation versus
deadline).

3.2. Local Workflow

At the local level, it is necessary to resolve conflicts
that occur when allocated sub-workflows compete
for the same resource. Each scheduled task will
have associated deadlines together with dependencies
specified in the workflow description. In most cases, the
domain administrator will want to minimise the degree
of deadline failure while increasing throughput and
utilisation. The GA is able to deal with this problem
effectively as the multi-metric fitness function aims
to identify schedule solutions that offer a reasonable
compromise between each of the constituent factors.

In addition to the single task representation given
in Figure 4, it is possible to specify task dependencies
using the ordering property of the chromosome codings.
Figure 6 illustrates the method of mapping sub-
workflow descriptions onto the two dimensional coding
scheme used by the GA. Tasks are moved into the
TITAN system by the broker in temporal order and
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0 1 1 1 1 1

1 1 0 0 0 0
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Processors
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FIGURE 6. 3 sub-workflows coded in TITAN.

dependencies can only be specified on tasks that have
already been accepted by the system. In this case,
T6 is dependent on T3 (representing the simplest
form of sub-workflow). The preferred task order
representation places T6 after T3, although they would
run simultaneously if the dependencies did not exist
(the processor maps do not clash).

The composition algorithm, which queries the
relevant performance models to build the schedule,
transforms each dependency into a task reservation that
behaves in the same manner as a blocked processor,
except that this reservation is only visible to the
task with the particular dependency. Creating these
reservations will inevitably result in significant blocks
of idle time in the schedule as tasks are kept back to
wait for the completion of dependant tasks. However,
assuming that the fitness function considers makespan
and idle time (achieved by giving W i and Wm non-
zero weights), offspring schedules will invariably fill
these gaps with other tasks as a consequence of the
GA packing behaviour. This allows different sub-
workflows to interleave according to their deadline,
whilst respecting makespan and idle-time metrics.

Using the fitness function to improve the interleaving
of the sub-workflow is preferable to other techniques
that aim to constrain the search through the use of
complex coding mechanisms. Such cases can limit the
search properties of the scheduler by over-constraining
the GA. By adopting a technique that uses similar
coding, crossover and mutation processes to the single
task case, allows exploration into diverse areas of the
solution space without overburdening the search. As
the scheduler is weighted towards reducing makespan
and idle-time, in addition to resolving deadlines, it
allows the system to perform its normal ‘gap-filling’
activities. This approach only effects the comprehensive
penalty (CP ) and so successful schedules that interleave
the sub-workflow tend to enjoy a better overall
performance and hence a lower CP .

Figure 7 illustrates the initial transform from coding
to time. It is apparent in 7(a) that idle-time gaps are
prevalent where dependent tasks cause blocking in the
queue. However, after a 100 iterations of the scheduler
GA the queue has been packed, removing most of the
idle-time.
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FIGURE 7. Schedule containing workflow: before and
after GA packing.

3.3. Grid Workflow

At the grid level, a different algorithm is used that aims
to allocate sub-workflows to a local scheduler that can
run the tasks effectively. The algorithm aims to make
effective use of the deadlines by allocating more time to
sub-workflows where appropriate.

The approach at the grid level is to consider a
workflow W as a set of sub-workflows Si (i = 1, . . . , n).
Let pi be the number of pre- sub-workflows of Si

and qi be the number of post- sub-workflows of Si.
Suppose that the group of potential local schedulers
Lj (j = 1, . . . ,m) constitutes an overall grid G.
The scheduler aims to identify triples of start time
(πs

i ), end time (πe
i ) and the allocated local grid (ζI).

The scheduler processes each sub-workflow sequentially
using the algorithm described in Algorithm 1.

The process is started with all the properties of
each sub-workflow initialised to NULL. An additional
parameter K is used to signify whether a sub-workflow
has been scheduled. The scheduling process starts
by looking for a schedulable sub-workflow, the pre-
sub-workflows of which have all been scheduled. The
start time of the chosen sub-workflow is configured
with the latest end time of its pre- sub-workflows.
The details of the sub-workflow as well as the start
time are then submitted to a grid level broker. The
brokers work together to discover an available local

grid that can finish the sub-workflow at the earliest
time. These are illustrated in Algorithm 1 as calls to
local grid sub-workflow scheduling functions managed
by the local TITAN system. Brokers filter the local
grid resource information (from the information service)
according to other properties (system architecture etc)
and judge its applicability before a local grid is actually
contacted. If there are a large number of local grids
in the environment, a discovery scope can be defined
to optimise the broker discovery performance. The
scheduling ends when the end checkpoint is reached.
In general, there is an additional adjustment or
rescheduling procedure after scheduling. As shown in
Algorithm 1, the adjustment is processed if the end
time of a sub-workflow is earlier than the start times of
its post- sub-workflows, so that the required deadlines
of the sub-workflows are made less critical without
increasing the scheduled execution time of the complete
workflow. Another process can also be considered
for rescheduling the less critical sub-workflows via the
brokers. This is required when the cost and the
execution time of the workflow are both considered.
In this situation, less critical sub-workflows can be
allocated to less powerful resources whose compute cost
is less.

Algorithm 1 The grid-level scheduling algorithm
1: /** Initialisation **/
2: for i = 0 to i = n do
3: πs

i = NULL; πe
i = NULL;

4: ζi = NULL; Ki = FALSE;
5: end for
6: πs

1 = πe
1 = CurrentTime(); K1 = TRUE;

7: /** Scheduling **/
8: for lp = 2 to lp = n do
9: for i = 1 to i = n do

10: if Ki = FALSE,Kip = TRUE (p = 1, . . . , pi)
then

11: BREAK;
12: end if
13: end for
14: /** Scheduling via TITAN **/
15: πs

i = latest
{
πe

ip|p = 1, . . . , pi

}
;

16: if i 6= n OR πe
i 6= πs

i then
17: (πe

i , ζi) = ealiest {Si, π
s
i } ;

18: end if
19: Ki = TRUE;
20: end for
21: /** Adjustment **/
22: for i = 2 TO i = n− 1 do
23: ne

i = earliest
{
ns

iq|q = 1, . . . , qi

}
;

24: end for

This global grid workflow management algorithm
relies heavily on information obtained from the local
sub-workflow scheduler. The scheduler must be capable
of returning the latest completion time of the incoming
tasks as well as the complementary operator earliest
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which returns the earliest enabling time. The response
to these functions allows the broker to build a workflow
schedule and compare them against solutions from other
brokers. The local TITAN scheduler cannot give precise
results to these functions (the GA search is random),
but can produce approximate results by attaching the
task to the tail of the current queue and using the
performance service to obtain an estimate of these
figures.

When tasks are received by a broker, they pass a
message to the local sub-workflow scheduler to simulate
an execution of the task. In practice, this involves
running a pre-set number of iterations of the GA.
The local scheduler then returns the earliest and
latest time to the broker which then compares these
with timings received from other brokers. The sub-
workflow scheduler that meets the QoS requirements is
subsequently allocated the tasks. If multiple solutions
exist, the task is routed to the most local resource.

The difficulty with this approach is handling users
with different priorities who will place more importance
on task deadlines than on system metrics. The brokers
and local schedulers are able to address this issue with
user classes.

3.4. User Class Desgination

Grid computing grew out academic and research
institutions where the user base was, historically, less
concerned than industry with QoS issues. As grid
services converge with commercially-orientated web
services, it is inevitable that service quality will become
increasingly important. Such issues have important
implications for workflow systems that must consider
multi-domain systems where each domain may have
significantly different performance requirements.

The local schedulers offer some flexibility in how
the fitness function is configured and it is possible to
apply cost functions to the deadline weight in order to
dynamically alter the behaviour of the local scheduler.
Figures 8(a) and 8(b) illustrate two such functions for a
standard domain that wishes to offer gold and silver
services to applications. The functions are specified
in terms as utility functions that modify the deadline
on a per-application basis, returning a penalty measure
that is a fraction of the domain’s pre-set QoS weight for
deadline (W c). The curves are selected by the domain
administrator to obtain a specified behaviour from the
GA for the particular domain. In this case, the function
silver is flat until the first deadline at which it takes
a ‘penalty hit’ - this slopes until twice the deadline
time at which it reaches a higher gradient. Where
the GA builds schedules that have applications that
fail their deadline, the CP is adversely affected and it
is likely that the GA will select a schedule where the
applications meet their deadlines.

The gold service function 8(b) has an increasing
deadline penalty from the outset which encourages the

2

Penalty

Deadlines
0 1

(a) Silver quality (fair)

2

Penalty

Deadlines
0 1

(b) Gold quality (fair)

2

Penalty

Deadlines
0 1

(c) Alternate Silver
quality (hard)

2

Penalty

Deadlines
0 1

(d) Alternate Gold
quality (hard)

FIGURE 8. Deadline utility functions

GA to select schedules that run the application as soon
as possible. Failure to meet the deadline results in a
large penalty, worse than the equivalent silver failure
at the same point in time.

These functions depend on how QoS failure is
measured (and paid for). Figures 8(c) and 8(d) offer
alternative utility functions that are based on pass/fail
contracts (as found in hard scheduling). In other
words, once the deadline has failed the user will be
compensated and so it does not matter whether the task
is run now or at any time in the future, the penalty is
fixed. While this may not feel intuitively correct from a
user perspective, it may be reasonable from the broader
view of system averages. In this case it may be better to
let one deadline slip if it allows many other applications
to achieve their deadline.

A related issue at the grid level is how one user
designation maps onto another designation in a foreign
domain. An application submitted to a grid as silver
may run differently depending on whether the allocated
domain uses cost curves that resemble Figure 8(a) or
8(c). One approach is to adopt an economic model
similar to work by Buyya [18] where a credit fund is
imposed that costs each deadline function against the
incoming application and user profile.

A gold user on a local domain may only achieve
silver status on another domain given the same level
of capital. While this is a relatively crude method
of mapping users across a domain, it provides some
measure of what level of service the user can expect
between different domains. Using a similar mechanism
to the resource model sharing, brokers can advertise the
cost functions which can be used by remote brokers to
determine where to place the sub-workflow.
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4. EXPERIMENTAL EVALUATION

To demonstrate the TITAN workflow architecture, a
series of case studies are performed to evaluate the
effectiveness of the system. In each instance a selection
of heterogeneous applications are executed that have
run-times between 10s and 100s, depending on the type
of application and the architecture the task is allocated
to. The applications are taken from a group of small
scientific kernels that are used as PACE test cases and
have sufficiently accurate performance models. The
system is configured so that each local scheduler is
responsible for 16 underlying grid resources: a cluster
of 2.6Ghz Pentium 4 workstations in this case.

The first experiment is a straightforward demonstra-
tion of the packing characteristic exhibited by the GA
and is used to increase throughput and reduce idle time.
The scheduler is compared with a DAG-based scheduler
(which approximates the local scheduler’s behaviour),
configured with the same parameters as TITAN. 100
sub-workflows, each containing 5 tasks, are are admit-
ted to the DAG scheduler with a user-specified number
of processors and allocated to the cluster. The scheduler
is able to utilise free processors to minimise idle-time
and improve throughput. While TITAN operates in a
similar fashion, the GA is able to change the number
of processors allocated by exploring the performance
model data. It can identify, from the execution curves,
appropriate limits (both upward and downward) on the
available processors as well as compromising a task’s ex-
ecution time to improve another task’s deadline. This
gives TITAN an advantage in removing idle time from
the schedule. Another advantage is the dynamic ele-
ment: should a processor (a host) fail, TITAN is able
to adapt quickly, removing the processor from the task-
order coding and re-evaluating the schedule. The DAG
scheduler may stall if there are not sufficient processors
available for a particular task to complete.

Figure 9(a) illustrates the difference between the
DAG and TITAN approaches when presented with sub-
workflows at different arrival rates. The vertical axis is
the CP measure and is a straightforward combination
of make-span and idle time (W c is set to 0 in this
experiment). It is evident that at low workloads, the
schedulers respond in a similar manner. At higher loads
however, the GA-based scheduler is able to maintain
a lower make-span (higher utilisation and lower idle-
time) through task re-mapping, while using the DAG
scheduler results in a poorer performance. The related
results in Figure 9(b) illustrate the average duration
of a scheduled sub-workflow. While TITAN is able to
make a small reduction to the makespan of each sub-
workflow, it tends to maintain a ‘system view’ when
improving throughput and utilisation. In some cases,
this can be to the detriment of an individual user.

A second experiment evaluates the QoS features of
TITAN by comparing the execution of sub-workflows
under low, medium and high workloads against user-

(a) Comparison of comprehensive performance for DAG and
TITAN under different workloads

(b) Mean length scheduled sub-workflows

FIGURE 9. Comparison of the TITAN and DAG
schedulers

specified deadlines. For each workload rate, sub-
workflows arrive at the scheduler with a deadline
specified in a given range. The range is uniformally
selected and based on the application and architectures
performance, representing a realistic restriction for the
application. The results are given in Figures 10(a)
and 10(b) which show the ratio of failed tasks and the
average ‘over-time’ respectively. TITAN is typically
able to meet more deadlines at a given workload.

Figures 11(a) and 11(b) illustrate the effect of the
utility functions on the fitness and the associated CP .
The workload in this experiment is the same as the
previous experiment where a number of tasks failed to
meet their deadlines. However, a proportion of the tasks
have been given gold status whilst the remaining are
given silver.

The ‘fair’ scheduler fails many deadlines at both low,
medium and high load. However, the degree of failure
(or the ‘over-deadline’, which contributes directly to the
CP ) is small. In contract, the ‘hard’ scheduler typically
fails deadlines less often, but the degree of failure is
more severe as their is no incentive to run the task after
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(a) Proportion of failed deadlines

(b) Mean duration of each sub-workflow

FIGURE 10. Impact on QoS metrics with varying
workload.

the deadline has passed.

5. RELATED WORK

Workflow management has become an essential service
in grid environments in a relatively short time
frame. Many issues still exist including: workflow
specification and adjustment, on-the-fly workflow
construction, enactment and orchestration, simulation
and scheduling. There are a number of on-going
projects that address one or more of these challenges.
Among existing projects Pegasus [9] is most related
to the work described in this paper. Pegasus
aims at planning for workflow execution in grids.
Artificial intelligence algorithms are used for workflow
scheduling. In addition, it is currently integrated with
Condor’s [10] DAGman[11] which is similar to the
scheduling approach used by TITAN [13]. Pegasus
does not provide any QoS support at this time, while
the algorithms in TITAN enable deadlines for job
executions to be satisfied and provides the basis for QoS
support.

There are a number of other research projects which
are partly related to this work. GridAnt [22] reuses

(a) Based on utility functions 8(a) and 8(b)

(b) Based on utility functions 8(c) and 8(d)

FIGURE 11. The effect of the utility functions on the
deadlines for the same workload.

the Ant framework and provides a client-controllable
workflow system for GT3 processes. While GridAnt
provides a set of Grid tasks to be used within
the Ant framework, workflow scheduling is currently
not the key concern in the GridAnt project. IBM
BPWS4J is a web services flow execution engine
designed for BPEL4WS [23], which also has the
potential to become a workflow standard in the
grid community. Other current projects that have
a workflow focus include USA ASCI grid [14] and
GriPhyN [15], UK e-Science project MyGrid [24],
EC/IST FP5 projects GEMSS [25], GridLab [26], and
GRASP [27], the Swiss project BioOpera [28], Japan’s
NAREGI [29] and Business Grid projects [30]. Previous
research on using workflow management in integrated
metacomputing and problem solving environments
include Webflow [31], Symphony [32], Triana [33],
SPINEware [34], TENT [35] and UNICORE [36]. Most
of these projects focus on workflow specification and
enactment and target specific applications, they do not
primarily address workflow scheduling.
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6. CONCLUSIONS

In this paper a workflow management system has been
presented that is able to enact workflow descriptions at
both the local domain and the grid level. Performance
models are used extensively to guide decision making
at each level in the system. User class utility
functions are applied to local and grid scheduling
algorithms to improve workflow allocations across
multi-domains. Different domains are able to specify
different operating parameters to suit their particular
environment, which makes the system attractive to
diverse grid applications. The main contribution of
this work is to add performance-awareness to workflow
services. It does not define a new workflow language, as
there are already a large number of contenders, but aims
to offer an additional management tier that orchestrates
the workflow so that deadlines are met, throughput is
increased and resource utilisation is improved.

Workflow management is currently the subject of
a number of research projects as it clearly facilitates
distributed, collaborative working practices. Giving
users the ability to connect large storage databases to
computational and visualisation services co-ordinated
by supporting middleware is a strong benefit of grid
computing, and one that is being actively pursued
by grid researchers. The approaches presented here
allow users to submit workflows to grid resources with
expected levels of service, performance and reliability.
As important is the ability for grid resource providers
to carefully tune their environments to meet potentially
binding contractual service goals.
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